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Abstract 38 

Models and the process of modeling are fundamental to the discipline of biology, and therefore should be 39 

incorporated into undergraduate biology courses. In this essay, we draw upon the literature and our own 40 

teaching experiences to provide practical suggestions for how to introduce models and modeling to 41 

introductory biology students. We begin by demonstrating the ubiquity of models in biology, including 42 

representations of the process of science itself. We advocate for a model of the process of science that 43 

highlights parallel tracks of mathematical and experimental modeling investigations. With this 44 

recognition, we suggest ways in which instructors can call students’ attention to biological models more 45 

explicitly by using modeling language, facilitating metacognition about the use of models, and employing 46 

model-based reasoning. We then provide guidance on how to begin to engage students in the process of 47 

modeling, encouraging instructors to scaffold a progression to mathematical modeling. We use the Hardy-48 

Weinberg Equilibrium model to provide specific pedagogical examples that illustrate our suggestions. We 49 

propose that by making even a small shift in the way models and modeling are discussed in the 50 

classroom, students will gain understanding of key biological concepts, practice realistic scientific 51 

inquiry, and build quantitative and communication skills.  52 
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Overview 53 

The central role of models and modeling in scientific practice should be reflected in the ways we 54 

teach science. Teaching with models and modeling provides an opportunity to engage students in 55 

authentic scientific practices. Indeed, national reports and proposed standards for improving biology 56 

education have advocated for the development of competencies and skills related to using models and 57 

modeling (AAMC-HHMI, 2009; AAAS, 2011; NGSS, 2013; College Board, 2015). Biologists use 58 

models to study complex systems, make predictions, test ideas which are experimentally difficult or 59 

impossible to test, develop conceptual frameworks, and generate causal relationships (Odenbaugh, 2005; 60 

Svoboda and Passmore, 2011). Biologists’ use of models to communicate ideas and explore theories is an 61 

integral component of the scientific process (Tomasi, 1988; Gilbert, 1991; Lander, 2010; Jungck, 2011), 62 

and as computational power and access to data increases, biologists are able to employ quantitative 63 

models more frequently and to greater effect. For students, working with models can enhance 64 

understanding of key biological concepts, provide practice in realistic modes of scientific inquiry, and 65 

build quantitative and communication skills (Lehrer and Schauble, 2005; Garfunkel and Montgomery, 66 

2016). However, it can seem a daunting challenge to incorporate the teaching of these skills into already 67 

overcrowded course curricula.  68 

Who we are and our goals for this essay 69 

We, the authors, are an interdisciplinary group of biologists, mathematicians, mathematical 70 

biologists, and education researchers who came together for a working group at the National Institute for 71 

Mathematical and Biological Synthesis (NIMBioS), organized by the leadership team from the 72 

Quantitative Undergraduate Biology Education and Synthesis project (QUBES; https://qubeshub.org; 73 

Donovan et al., 2015), to address the challenges of teaching modeling. This working group has provided 74 

us the opportunity over two years to explore the education research on modeling, share how modeling is 75 

applied and taught in our various disciplines, and examine our individual teaching experiences for best 76 

practices. In the process, we have become more thoughtful in our practice and have developed more 77 
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granular, nuanced, and inclusive definitions of models and modeling in a broad sense, and mathematical 78 

modeling in particular (Eaton et al., 2017). This has led to insight about how we might improve our 79 

approach to teaching with models in biology courses, which we share in this essay. We have three main 80 

goals in mind: 81 

1. We ask readers who may not have previously thought of themselves as modelers to consider 82 

that models and modeling are ubiquitous in biology, and, as a result, we are all modelers. 83 

2. We ask those new to modeling, and modeling veterans alike, to use our suggested 84 

pedagogical strategies, beginning with explicitly using the language of models and the 85 

process of modeling in the classroom in order to raise student awareness of the role of models 86 

and modeling in biology. 87 

3. We ask instructors to begin to incorporate models and modeling activities in the classroom to 88 

lay the foundation for incorporating more mathematical modeling both within courses, and, 89 

eventually, throughout the biology curriculum. 90 

What is a model? What is modeling? 91 

For clarity, we will begin by defining our terms (Box 1). Our working definition is that a model is 92 

a simplified, abstract or concrete representation of relationships and/or processes in the real world, 93 

constructed for some purpose (Eaton et al., 2017). Model representations can be experiential (physical 94 

manipulatives, animations/simulations, experiments), visual (schematics, diagrams, flowcharts), verbal 95 

(hypotheses, predictions, descriptions, assumptions), numerical (data tables, graphs), or symbolic 96 

(equations, formulas). The symbolic representation, either alone or in combination with one of the other 97 

representations, is what is usually described as a mathematical model (Gilbert, 2004; Eaton et al., 2017). 98 

Whatever the representation, these all share features as models. The representation is chosen based on the 99 

problem at hand. For example, genes can be represented in different ways: a molecular biologist might 100 

use a visual gene diagram that accounts for the mechanisms of gene expression, whereas a population 101 

geneticist might incorporate genes symbolically into a mathematical model to understand the evolutionary 102 
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processes occurring (Figure 1). Both of these gene models are abstractions, including some details and 103 

leaving others out, appropriate to the desired application, question being asked, or concept being taught. 104 

In other words, they are appropriate to their “model utility,” the purpose of constructing and using a 105 

model, an important notion since not all models are appropriate for all purposes (Odenbaugh, 2005; 106 

Svoboda and Passmore, 2011). Table 1 describes five uses of models in biology, giving examples for 107 

each. 108 

Models are ubiquitous in biology, taking each of the aforementioned forms (Figure 1): a physical 109 

model of the DNA double helix, a visual model of the organelles within a eukaryotic cell, or a 110 

mathematical model of population growth. Hypotheses can be thought of as models because they are 111 

verbal representations of relationships. Experiments themselves are also models as they are based on 112 

interventions and/or observations of the real world by a scientist. They reflect a particular model of the 113 

world and are not the real world itself. Or, consider the figures in an introductory biology text; most, if 114 

not all, of them are visual model representations of biological concepts. As such, figures need to be 115 

viewed critically in terms of intent: Which features of the model were chosen to be foregrounded? Which 116 

features were chosen to be backgrounded or left out entirely? Does the figure represent a summary of 117 

features, which collectively have no actual counterpart in the real world? Thus, only a small shift is 118 

needed to see that models are everywhere in biology. 119 

Having defined models as representations, modeling is then an iterative process in which a model 120 

is proposed, explored, and refined (Figure 2).  Modeling allows us to explore and explain complex, real-121 

world problems. Scientific practices such as experimental or observational studies are one form of 122 

modeling (right side of Figure 2), as is mathematical modeling (left side of Figure 2).  Biological systems 123 

present extremely complicated and difficult problems, and with the increase in computational power, 124 

mathematical modeling is proving to be a valuable tool for exploring these problems. 125 
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Process of modeling as process of science  126 

In Figure 2, we use model-based reasoning (Windschitl et al., 2008) as a framework to show that 127 

the process of modeling is an instance of the process of science. We argue that various types of modeling 128 

present different, and complementary ways, to reason about scientific questions. Understanding of a 129 

biological concept may be enhanced by exploring and reasoning about the concept with models.  In this 130 

framework, to address a biological problem with a model we must identify the problem in its biological 131 

context, organize the relevant information (what we know and what we would like to know), ask 132 

questions, and formulate hypotheses (Figure 2, top). We then seek evidence through experimental or 133 

mathematical modeling (Figure 2, middle, discussed below). Finally we analyze the results, constructing 134 

an argument for a biological interpretation of the results within a larger disciplinary conceptual 135 

framework that is then subjected to review by the scientific community (Figure 2, bottom). Feedback 136 

from other scientists leads to a reframing of the biological problem itself, kicking off the next iteration of 137 

the entire process. Within this framework, experimental modeling (Figure 2, right) and mathematical 138 

modeling (Figure 2, left) are two parallel tracks that can be pursued when seeking evidence. While we 139 

highlight experiments in Figure 2,  we note that observational field studies, evolutionary reconstructions, 140 

and meta-analyses are other modes of investigation carried out by biologists that can be found under the 141 

umbrella of model-based reasoning. 142 

When designing either an experimental model or a mathematical model, a key step is deciding 143 

which aspects of the biological system are relevant to the question and which can be safely ignored, or in 144 

modeling terms, making simplifying assumptions (Figure 2, middle). We might, of course, be wrong, but 145 

the intentional process of identifying the assumptions and explaining why they are acceptable for this 146 

particular situation and question is itself one way to learn about the system (Levins, 1966). Note that in 147 

the experimental modeling process (Figure 2, right track), simplifying assumptions include the choice of a 148 

tractable experimental system such as a model organism that is well-suited to study the phenomenon of 149 

interest and easy to grow in the lab (e.g., Tetrahymena for the study of telomeres; Kain, 2009). For 150 
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experimental modeling, we next select the appropriate materials and methods, bearing in mind the 151 

advantages and disadvantages of each, and design the appropriate positive and negative controls. On the 152 

other hand, to construct the mathematical model (Figure 2, left track), we progress by mathematizing the 153 

biological problem, starting with choices about the type of mathematical technique to use (e.g., 154 

deterministic vs. probabilistic) and then creating a mathematical representation of the system containing 155 

some (but not all!) elements, interactions, and mechanisms (formalized as variables, parameters, and 156 

formula or equations). The next step in the process is to run the experiment or explore the mathematical 157 

model, generating data to analyze. 158 

Model validation (Figure 2, dashed arrow) occurs when experimental and mathematical modeling 159 

results are compared to assess each model’s utility and accuracy. When validating model results, we ask 160 

“Does this choice of model give us explanatory power to make sense of the biological phenomena we are 161 

observing?”,  “Does the model allow us to make predictions of what might happen in areas we have not 162 

yet explored?”,  “Does it promote further inquiry?”. If we fail to validate the model, we can go back to 163 

our experimental or mathematical model and refine it by modifying the experiment or observational study 164 

in the former case or by changing the parameters, variables, formulas, or equations in the latter case. It is 165 

worth noting that this process of formulating hypotheses, building models, constructing an argument from 166 

data, and refining models is a process of theorizing from observation and requires genuine creativity 167 

(Windschitl et al. 2008). 168 

In summary, model-based reasoning is not just a pedagogical approach, it is an important part of 169 

the process of science. Windschitl and colleagues (2008) stress the idea of viewing science as the process 170 

of creating and refining explanatory models of the world. The model-based reasoning view of science is 171 

very general and encompasses the practice of seeking multiple lines of evidence in order to choose one 172 

hypothesis from a set of competing hypotheses.  It gives us a framework to draw parallels between 173 

multiple lines of reasoning (mathematical and experimental). Thus, as can be seen in Figure 2, 174 
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mathematical models and experimental models are both different ways to construct evidence to test a 175 

hypothesis, with parallels even within the individual steps of each. As scientists, we are all modelers. 176 

Aspects of modeling that become hidden in expert practice 177 

When we as scientists and mathematicians use models, mathematical or otherwise, we recognize 178 

key features of the modeling process that define the utility and value of models to solving biological 179 

problems. For example, we understand that the model is a simplified version of the biological system 180 

under study, and as such, it was built with a set of assumptions and carries with it certain limitations. 181 

Those assumptions may be appropriate under some circumstances and inappropriate under others (Levins, 182 

1966). Limitations mean that the model may describe one aspect of the biological system well but neglect 183 

or perform poorly on another aspect. Understanding the assumptions and limitations of a model allows us 184 

to infer under what circumstances a model is useful. For example, when biologists recognize a box 185 

representation as a gene (Figure 1B), we do not think this is actually what a gene looks like and can 186 

assimilate this model with a different representation of a gene, such as a chromosomal diagram, or the 187 

abstraction of genes and alleles in the Hardy-Weinberg Equilibrium mathematical model (Figure 1C-E). 188 

Or, when a textbook diagram of a gene includes a start codon but not a stop codon, as experts in 189 

discipline-specific knowledge, we can fill in that missing piece. When we become familiar with a model, 190 

its assumptions and limitations may recede from our immediate consciousness, and become part of the 191 

implicit “expert knowledge” and skills we bring to bear in our discipline. In addition, as experts, our 192 

model-based reasoning skills make us adept at layering disciplinary information on models and using 193 

models to explore problems. For example, we can visualize population growth as a logistic curve, 194 

consider the impact a change in variables would have on the shape of the curve, and interpret what this 195 

means to a population. These layers of understanding and intuitive use of models are based on our expert 196 

knowledge of the discipline, these models, and the modeling process. However, even though science 197 

students are constantly making mental models as they make sense of the world (Gilbert, 2004; Louca and 198 

Zacharia, 2012), they are less likely to have the depth of scientific modeling experience or understanding 199 
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of the norms of disciplinary reasoning with models. Modeling instruction should encourage students to 200 

reflect on: (1) the attributes of models, (2) the strategies for their use, and (3) the connections between 201 

models, data, and inferences about biological systems. Furthermore, by describing experiments as models, 202 

students should have a better understanding of what the experiment is doing, i.e., experiments are giving 203 

them as much information as their tools were able to measure, but the results still may not be the complete 204 

picture of reality. That is why scientists use different techniques, such as complementing in vitro 205 

experiments with those conducted in vivo.  206 

What do students need to do to become mathematical modelers? 207 

Mathematical modeling requires a complex suite of skills including higher-order thinking, 208 

quantitative skills, communication and collaboration skills, and foundational knowledge of the biological 209 

problem. Furthermore, as previously mentioned, modeling is an iterative process – there is no fixed end 210 

since models are constantly revised. To develop proficiency in modeling, students must have multiple 211 

opportunities to practice. However, few curricular resources are designed to provide this opportunity, 212 

especially at introductory levels (NRC, 2003; AAMC-HHMI, 2009). Yet, the time invested in teaching 213 

and learning mathematical modeling develops skills that increase student success in any discipline (P21 214 

Partnership, 2009; AAAS, 2011; Garfunkel and Montgomery, 2016; Schuchardt and Schunn, 2016). Here 215 

we share ideas and best practices we have gleaned from the literature and our experience to make 216 

incorporating modeling activities more feasible.  217 

Recommendations for incorporating models and modeling in the 218 

classroom 219 

Our working group includes both veterans and relative newcomers to modeling whose experience 220 

in teaching modeling ranges from in-depth testing and refining of techniques to just recently trying these 221 

ideas for the first time. The discussion of our collective experiences has given us a more practical 222 

understanding of the problems that students and faculty face when including modeling as part of the 223 

curriculum. For the rest of the examples presented in this essay, we focus primarily on lower level courses 224 
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where exploring models and modeling is not necessarily an emphasis. Skills learned there can translate to 225 

upper division courses specifically focused on mathematical modeling, which present a different, but 226 

overlapping, set of challenges. Expanding students’ experiences with models and modeling early in their 227 

course of study will increase their understanding of biological concepts and prepare them for more 228 

advanced mathematical modeling in the future (AAAS, 2011; Schuchardt and Schunn, 2016). Because 229 

mathematical modeling can be a complex and lengthy process which requires time not often available in 230 

our biology curriculum, we do not expect that in every course, students will engage in the entire modeling 231 

process from conception to dissemination (Figure 2, top to bottom). Instead, we suggest that having 232 

students engage in more granular “modeling activities” (individual arrows of Figure 2) forms part of a 233 

longer learning trajectory that can be supported in every class; an approach we advocated in Eaton et al. 234 

(2017). Although we acknowledge that breaking down modeling into individual activities does not 235 

provide students with an experience of the full modeling process, it does provide opportunities to gain 236 

needed skills (for more detail, see Eaton et al., 2017). Our suggestions for increasing student facility with 237 

models and the modeling process in lower division biology courses includes the following:  238 

1. Being explicit about model use, model utility, and the modeling process by adopting 239 

consistent and detailed modeling language and concepts in the classroom (such as 240 

assumptions and limitations; Brewe, 2008); 241 

2. Facilitating metacognition by giving students opportunities to reflect about models and 242 

modeling to help them develop an awareness and evaluation of their thinking (Schwarz and 243 

White, 2005; Papaevripidou et al., 2007);  244 

3. Using an anchor, a student-accessible concrete base to launch the modeling process (Schwarz 245 

et al., 2009);  246 

4. Encouraging students to ask their own questions (Jungck, 1985; Peterson and Jungck, 1988; 247 

Rothstein and Santana, 2011); 248 
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5. Scaffolding the progression to mathematical modeling by practicing moving between model 249 

representations (experiential, verbal, visual, numerical, and symbolic), and by refining 250 

models (Mayes et al., 2013; Eaton et al., 2017); and 251 

6. Providing opportunities for students to develop their modeling abilities through repeated 252 

practice (Weisstein, 2011).  253 

We placed these recommendations in this particular order so that they progress from relatively easy to 254 

implement for newcomers to modeling to more advanced activities for those who wish to deepen their 255 

practice. Of course, as with the process of modeling and process of science, the real-life implementation 256 

of these pedagogical strategies may come in a different order and can be messy; consider these a menu of 257 

options. In the sections that follow, we flesh out these recommendations in the context of the commonly 258 

taught Hardy-Weinberg Equilibrium (HWE) population genetics model (Soderberg and Price, 2003). 259 

Be explicit by using modeling language and concepts 260 

 A simple step we can take to increase students’ awareness of the utility of models is to be explicit 261 

in our language about models and the process of modeling throughout the course (Brewe, 2008; 262 

Windschitl et al. 2008) as follows: 263 

● First, draw students’ attention to the models used in class (e.g., Figure 1 and textbook figures). 264 

● Show the parallels between the process of modeling and process of science (Figure 2).  265 

● In a think-write-pair-share exercise, have students write and discuss their own definitions of 266 

models and modeling. Write some of these on the board and together develop the definitions that 267 

we have proposed in this essay (Box 1).  268 

● Verbally describe the assumptions used to build a particular model and how that relates to the 269 

limitations of the model.  270 

● Compare different models of the same phenomenon, reviewing how models have been revised 271 

through time and exploring connections between biological and mathematical or statistical 272 

models.  273 
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● Include the process of modeling in course learning objectives, as an indicator of the importance of 274 

using modeling practices throughout the course (e.g., students will analyze and interpret diverse 275 

models used in science; students will construct models to represent biological systems; or, 276 

students will test predictions using mathematical models).  277 

These suggestions do not require substantial alteration of the existing curriculum, just a small shift that 278 

will draw attention to the use of models in biology. By changing how we think about presenting this 279 

information as part of a lecture or activity, we can achieve the goal of raising student awareness and 280 

understanding of models. 281 

If we consider the population genetics model, Hardy-Weinberg Equilibrium (HWE), we can see 282 

how it can be used to foreground the modeling process with students, developing their modeling skills, 283 

while at the same time helping them learn important evolutionary concepts (Box 2). The utility of HWE 284 

as a model is in providing a simple conceptual framework for inferring when evolutionary forces are 285 

acting on a population, one that can be expanded upon to explore which forces may be at play (Table 1). 286 

This type of theoretical exploration provided by the model is an opportunity for students both to engage in 287 

quantitative interpretation of a mathematical model, and to work with the various models of the biological 288 

concepts of genes and alleles, which can be elusive for students to grasp (Speth et al., 2014). First, be 289 

explicit that HWE is a model (something potentially hidden by the distractor of “equilibrium” in the 290 

name), and a mathematical model at that. Then be explicit with how the assumptions built into the HWE 291 

model (one gene, two alleles, a large, randomly mating population with no overlapping generations, and 292 

no evolutionary forces acting upon the population) both make it useful as a null model and also limit its 293 

utility to situations unlikely to be found in real populations. Have the students describe the model (Box 2) 294 

by identifying the variables in the model, their attributes (such as whether they are continuous or 295 

discrete), and measures. Have students explain why these variables are included in the model, and how 296 

the attributes of the variables lead to relationships that result in the model, i.e., link the verbal description 297 

of the assumptions of the model to the symbolic equation. Deliberately emphasizing these aspects of the 298 
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modeling process can help students move beyond focusing simply on the “plug-and-chug” nature of 299 

inputting numbers into p2 + 2pq + q2 = 1 (what Stewart et al., 2010 called “model-less problem solving”) 300 

and towards using model-based reasoning to see how the model fits into a larger explanatory framework 301 

of the evolutionary forces at work (“model-using problem solving” in the language of Stewart et al., 302 

2010). This type of model description is a gateway to later having students develop their own models.  303 

Facilitate metacognition 304 

The previous sections described how model-based reasoning informs our approach to biological 305 

problems and how we can introduce the practices of model use and modeling if we are more explicit in 306 

the language we use in our teaching. Next, by structuring students’ opportunities to reflect about models 307 

and modeling, we encourage them to make new connections between ideas and recognize generalizations 308 

about their experiences. Of course, the goal of having students reflect about using models is to help them 309 

develop an awareness and evaluation of their thinking (a.k.a., metacognition) about models when they 310 

encounter new scientific problems. Some have defined this level of awareness about modeling as 311 

“metamodeling”, which is the ability to be metacognitive about the process of modeling (Box 1, 2; 312 

Schwarz and White, 2005; Papaevripidou et al., 2007). Metamodeling can improve students’ 313 

understanding of practices like predicting, observing, and explaining phenomena (Barab et al., 2000; 314 

Schwarz and White 2005; Sins et al., 2005) and the ability to make mechanistic explanations (Fretz et al., 315 

2002; Louca and Zacharia, 2012). Importantly, metamodeling enhances students’ abilities to regulate their 316 

own learning (Papaevripidou and Zacharia, 2015). As students gain awareness of where they are relative 317 

to a learning progression of modeling (Schwarz et al., 2009), they can be more aware of how they are 318 

using models to address biological problems. For example, a couple of the authors have had success with 319 

journal assignments that ask students to reflect on what they have learned through the modeling activity. 320 

Journal prompts can include questions like: 321 

● How did clarifying your assumptions help you develop a better model? 322 

● How did you determine if the results were biologically valid? 323 
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● What was most surprising about your findings? 324 

● How has the modeling activity given you different insight into the biological problem?  325 

Use anchors 326 

A good pedagogical approach for engaging students more deeply with modeling is to provide an 327 

“anchor” – a personally accessible puzzling event or observation, rooted in a complex phenomenon, that 328 

acts as a concrete base for exploring scientific concepts (Schwarz et al., 2009). Anchoring provides an 329 

opportunity for students to engage in active learning, and importantly, provides a larger, compelling 330 

problem for students to solve by applying their knowledge. Introducing a relevant, biological problem and 331 

providing the opportunity to explore the phenomenon through the modeling process sets students up to 332 

learn both disciplinary content and modeling skills (Garfunkel and Montgomery, 2016). The relevance of 333 

the problem provides students with a “need to know” that drives their interest in the problem (e.g., Dohn 334 

et al., 2009), motivating students as they struggle to learn new skills and new information (Hidi and 335 

Harackiwiecz, 2000).  336 

In the case of the HWE model, the anchor could be a familiar case in which organismal 337 

phenotypes change through time, such as artificial selection for agricultural purposes or experiments 338 

using Wisconsin Fast Plants that they may have conducted in biology labs (Williamson, 2015). This 339 

allows students to draw on what they already know. Another type of anchor is to have students conduct 340 

their own research by collecting observations on the phenomenon (Box 2). There is a myriad of 341 

simulations, both computer-based and physical, that demonstrate changes in allele frequency in a 342 

population (Jungck et al., 2010; Brewer and Gardner, 2013; Williamson, 2015). Finally, students might 343 

read the original paper in Science by the mathematician G. H. Hardy (Hardy, 1908). This paper was 344 

motivated by providing an explanation for the anchoring phenomenon that dominant alleles causing 345 

bradydactyly in humans do not increase in frequency in a population, a phenomenon still misunderstood 346 

today.  347 
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Encourage students to ask their own questions 348 

Anchoring introduces students to a relevant, real-world, and messy biological problem and 349 

provides some connection to personal experience with the phenomena of evolutionary forces and 350 

population genetics. Beyond simply providing an example for data collection, this is an opportunity for 351 

students to engage in both the scientific process and the modeling process by asking questions about the 352 

phenomenon (Figure 2, top, Box 2). Students rarely have experience in asking questions, let alone 353 

refining questions to be “good” scientific questions (Jungck, 1985; Peterson and Jungck, 1988; 354 

Windschitl et al., 2008). This fundamental process-of-science skill requires practice and is worth the time 355 

to develop. Encourage students to not just observe what is happening, but also ask why it is happening. 356 

Initial student questions are likely to need revision. Staging the process so that students have an 357 

opportunity to brainstorm unrefined questions, followed by working as a group to hone questions to be 358 

more relevant will help students develop this skill (Rothstein and Santana, 2011). As students settle on 359 

questions they would like to pursue, have them sketch a visual model representing the phenomenon 360 

(Dauer et al., 2013). As with their initial questions, this model is likely to also require refinement. 361 

Engaging in the modeling process to develop a visual model helps students (and their instructors) identify 362 

where they are missing information (Pearsall et al., 1997; Long et al., 2014; Speth et al., 2014). The 363 

process of asking questions, evaluating and refining questions, and making a first pass at a model 364 

representing the phenomenon are valuable learning activities, and provides instructors with insight into 365 

how students are thinking.  366 

In the case of the HWE model, ask students to come up with questions about the observed 367 

anchoring phenomenon of change in a population, and draw a visual model. It is important for students to 368 

have time to work together to clarify and focus their questions and their models. It is not important for the 369 

questions to be good scientific questions, or for the model to be a reliable representation. The educational 370 

value lies in the process, not the product (Garfunkel and Montgomery, 2016). Building in time for 371 

students to ask and refine questions, and develop a conceptual model does require course time. Students 372 
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will need some support in the first iteration of the modeling process, and it is essential they have time to 373 

struggle with the problem. After students have produced their first model, focus discussion on what 374 

quantitative aspects they included in the model (Weisstein, 2011). If the initial models are only qualitative 375 

and visual, then ask the students to brainstorm what quantitative aspects could be added. 376 

Move between multiple representations 377 

In the previous section, we suggested helping students move from a verbal model to a visual 378 

model to a mathematical model representation by asking them what quantitative aspects could be added to 379 

their model. In general, an important modeling skill that can be scaffolded on the way to mathematical 380 

modeling is the ability to represent a model in multiple modalities (experiential, visual, verbal, numerical, 381 

and symbolic, cf. Eaton et al. 2017). Students should practice moving between representations and be able 382 

to explain how the representations are related. We encourage students to develop both qualitative and 383 

quantitative models, moving back and forth between them as different forms of evidence that strengthen 384 

understanding of the phenomena. Having students use multiple representations of a model can support 385 

their learning (Ainsworth, 1999). Multiple representations of a model may complement each other, each 386 

providing different information that allows a student to have a more comprehensive understanding of the 387 

biological problem (Ainsworth, 1999). In addition to translation among multiple representations, it is vital 388 

to stress meaningful qualitative and quantitative interpretation of these models when determining trends 389 

and making predictions, making explicit the link between the models in the biological context (Mayes et 390 

al., 2013).  391 

Shifting between a qualitative verbal or visual model and a quantitative mathematical model 392 

(mathematization, Figure 2, left track) can be particularly challenging for students. Scaffolding the 393 

process by starting with small, accessible steps, may help build student confidence. The first steps in 394 

mathematizing a problem involve identifying variables, a unit measure for each variable, and attributes of 395 

each variable that help determine covariation between variables (Thompson, 2011). Students can use a 396 

qualitative verbal or visual model to identify variables related to the phenomenon and to identify the 397 
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relationships between those variables. With an understanding of the variables and their relationships, 398 

students will be better prepared to move forward with developing a mathematical model. 399 

To derive the HWE mathematical model, students must identify allele frequency as a measure of 400 

evolutionary change in the population. The ease with which we, as instructors, throw around terms like 401 

gene, allele, p, and q, may reproduce textbook conflations of genes and alleles that generate ambiguity 402 

and hide uncertainty on the part of students as to what these terms mean. Connect students to what they 403 

know about the life cycle of an organism (College Board, 2012) and then have them work from their 404 

questions and qualitative verbal or visual models of HWE to identify the variables (alleles) and their 405 

metrics (frequency). Mathematizing the problem themselves gives students the important role of ‘owners’ 406 

of the modeling process because it makes them responsible for learning about phenomena they discovered 407 

(Papaevripidou et al., 2015). In other words, they become self-regulated modelers.  408 

Taking this further, moving back and forth between a symbolic mathematical model and a 409 

simulation (an experiential model) may be optimal for demonstrating how each type of evolutionary force 410 

results in changes in the genetic variation of a population and for preparing students to refine their initial 411 

models (next section). PopGen (http://www.radford.edu/~rsheehy/Gen_flash/popgen/) or the Biological 412 

ESTEEM Project modules Deme 2.0 (http://bioquest.org/esteem/esteem_details.php?product_id=193), 413 

DeFinetti 1.0  (http://bioquest.org/esteem/esteem_details.php?product_id=204), or Evolution Through 414 

Natural Selection (http://bioquest.org/esteem/esteem_details.php?product_id=7080) can be used by 415 

students to manipulate the strength of evolutionary forces and observe changes in allele frequencies over 416 

generations, generating a numerical model. Note that in this pedagogical strategy, we did not start by just 417 

giving the students previously collected data. A data table already indicates the variables that are 418 

important and leapfrogs the student to interpreting trends and even making predictions, both relevant and 419 

irrelevant. In this more advanced example, students should practice constructing the HWE mathematical 420 

model for themselves. 421 
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Refine models 422 

Two frequently overlooked modeling activities that can be performed with students are the 423 

validation and refinement of models (Figure 2). An important aspect of model-based reasoning is model 424 

validation, that the model should be tested empirically against the observations of the phenomena 425 

(Windschitl et al., 2008; Schwarz et al., 2009) by evaluating the data collected to determine if the model 426 

fits the data. Student models should also be tested conceptually against other models, by comparing them 427 

with alternate models from their peers and with established models of the phenomenon. This provides the 428 

opportunity for students to communicate and collaborate to identify weaknesses in their models and sets 429 

the stage for the need for model refinement.  430 

In the case of the HWE model, students can validate the model by making predictions and 431 

explaining outcomes by testing the model on data collected from existing populations. Starting with a 432 

pool of F0 genotypes that are in Hardy-Weinberg equilibrium, give students several possible F1 pools and 433 

ask if evolutionary forces impacted the allele frequencies observed in each pool. For example, a much 434 

smaller number of aa genotypes and much larger number of AA genotypes is consistent with a population 435 

in which the homozygous recessive individuals fail to survive to adulthood. For some courses it will be 436 

appropriate to introduce students to the Chi-square test to quantify the probability that a given F1 437 

population is in HWE. In doing so, we are layering the Chi-square statistical model on top of the HWE 438 

null mathematical model. In terms of model validation, it is important to note that when one compares the 439 

observed F1 genotypes to the expected HWE values, one is checking to see if the experimental population 440 

is in HWE, but when one compares the expected HWE values to the observed population data, one is 441 

validating the assumptions of the mathematical model. 442 

In the example above, the recognition that the genotype frequencies in the F1 generation do not fit 443 

the HWE null model leads to the biological explanation that evolutionary forces may be at play. However, 444 

it should also be recognized that this is an evaluation of the assumptions of the mathematical model and 445 

that an appropriate revision of the model could improve its explanatory power. This calls for students to 446 
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cross the threshold into creating a new model through refinement of an existing model to meet new 447 

criteria or to apply it to a new situation. With a better understanding of the mathematical modeling 448 

process, students can thoughtfully explore the consequences of adding a third allele or a second locus, or 449 

explore the outcomes of various adaptive landscapes. These consequences could be reasoned through and 450 

tested with the PopGen simulator (http://www.radford.edu/~rsheehy/Gen_flash/popgen/) or the 451 

aforementioned Biological ESTEEM Project modules. We recognize that this may be beyond the scope of 452 

a typical introductory biology course, but include this example here to show where this learning trajectory 453 

is leading. In total, the modeling activities described in this essay form a learning progression from model 454 

description to model exploration to model development to model refinement (Box 2). In this process, 455 

students shift from seeing mathematical models as a “black box” to a “glass box”, exploring the why and 456 

how of the observed behaviors. Finally, by developing and refining their own mathematical models, they 457 

are operating with “no box” (http://bioquest.org/esteem/Intro_to_ESTEEM.pdf), having learned skills that 458 

can be transferred to new biological problems.  459 

Provide opportunities for repeated practice of modeling skills within courses and across 460 

the biology curriculum 461 

While we have stayed with the HWE model throughout this essay to demonstrate how to 462 

implement the pedagogical strategies we suggest, we do not wish to imply that these pedagogical 463 

strategies only apply to this particular content domain. Instead, we suggest that instructors be explicit 464 

about the language of models and modeling throughout an introductory biology course. For example, 465 

have students consider the species concept as a collection of species models in different contexts. By 466 

exploring the assumptions and limitations of a species model, students will certainly gain more content 467 

knowledge about the biological relevance of the definition of species (What does “species” mean in the 468 

bacterial domain or for extinct species?). Moreover, by making a small shift and using the language of 469 

models and modeling in this different example, the activity reinforces what students learned about the 470 
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modeling process in other situations such as the HWE model and contributes to their ability to apply 471 

modeling skills in another context.  472 

It is important to provide students practice with modeling throughout their degree program, but it 473 

is not necessary for students to engage in the full mathematical modeling process from conception to 474 

dissemination (Figure 2) in every course. For example, it may not make sense to have students engage in 475 

all of the mathematical modeling activities we described, such as deriving the Hardy-Weinberg 476 

mathematical equation in introductory biology. In contrast, it may be an explicit goal of an upper division 477 

genetics or evolution course to not only do so, but to revise the equation for absolute selection against a 478 

homozygous recessive genotype or to move from a one locus-two allele model to more loci or alleles or 479 

both. These goals can be supported by using non-mathematical modeling language in introductory 480 

biology through discussions of how to measure evolution and emphasizing the assumptions of the HWE 481 

model. In addition, students will benefit from repeated experiences with modeling in different contexts.  482 

Another reason to engage students in mathematical modeling is that students come to biology 483 

with quantitative knowledge and reasoning skills (AP Calculus or Statistics, college-level math courses; 484 

see Jungck, 2011), but need practice retrieving and applying them properly in novel contexts (Hester et 485 

al., 2014). Students have exhibited significant learning gains when applying their quantitative skills to 486 

biological problems in mathematics courses designed for biology majors (Eaton and Highlander, 2017), 487 

and we encourage biology faculty to provide opportunities for students to practice and apply these 488 

important skills in biology courses as well. If foundational mathematics and modeling knowledge is not 489 

practiced throughout the curriculum, proficiency in the skill will be lost.  490 

An invitation to modeling: building a community with shared explicit 491 

practices 492 

 We hope this essay has shifted your thinking to see that models are ubiquitous in biology and to 493 

consider yourself a modeler. Our goal was to inspire you to incorporate model-based reasoning in your 494 

biology courses, adopting some of our suggested pedagogical strategies, starting with being explicit in 495 
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your language. Finally, we believe that as you gain experience using models and the language of 496 

modeling with your students, this will lay the foundation for incorporating more mathematical modeling 497 

into your courses. In short, we hope that you have revised your model of teaching modeling, and we 498 

invite you to join our community of modelers. There are many resources available to support your efforts 499 

in this area, some of which we have compiled in the Accessing Materials section. For mathematical 500 

modeling, we encourage you to read the GAIMME report (Garfunkel and Montgomery, 2016), explore 501 

the resources provided by the Society of Industrial and Applied Mathematics (SIAM, 2012; SIAM, 2014;  502 

https://m3challenge.siam.org/resources), and join the QUBES community (https://qubeshub.org; Donovan 503 

et al., 2015), which provides resources, tools, and professional development opportunities around 504 

quantitative biology, especially through the Modeling Hub (https://mmhub.qubeshub.org). While we have 505 

not addressed the assessment of modeling skills in this essay, sample rubrics are available (Garfunkel and 506 

Montgomery, 2016; Bryce et al., 2016). We extend to you an invitation to modeling; we hope you will 507 

join us! 508 

Accessing Materials 509 

● QUBES: https://qubeshub.org, Modeling Hub: https://mmhub.qubeshub.org  510 

● Math Modeling Resources at SIAM: https://m3challenge.siam.org/resources 511 

● PopGen: Population genetics simulation program 512 

http://www.radford.edu/~rsheehy/Gen_flash/popgen/ 513 

● Biological ESTEEM Project (http://bioquest.org/esteem/index.php) 514 

○ Deme 2.0 (http://bioquest.org/esteem/esteem_details.php?product_id=193) 515 

○ DeFinetti 1.0  (http://bioquest.org/esteem/esteem_details.php?product_id=204) 516 

○ Evolution Through Natural Selection 517 

(http://bioquest.org/esteem/esteem_details.php?product_id=7080) 518 
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Figure Legends 725 

Figure 1. Different model representations. (A) a physical DNA model put together by students (see also, 726 

Cooper et al., 2017) and a screenshot of the PopGen simulator 727 

(http://www.radford.edu/~rsheehy/Gen_flash/popgen/) are examples of experiential model 728 

representations; (B) a schematic of a gene is an example of a visual model representation; (C) a statement 729 

of the null hypothesis of the Hardy-Weinberg model is an example of a verbal model representation; (D) a 730 

graph and data table of genotype frequencies are examples of numerical model representations; (E) the 731 

Hardy-Weinberg equations are an example of a symbolic model representation. Photo credit: Tiffany 732 

Jonick. 733 

Figure 2. The parallel and iterative nature of the process of mathematical modeling and the process of 734 

experimental science as instances of model-based reasoning. When approaching a new problem, one 735 

begins by identifying the problem and organizing contextual information before proceeding to asking 736 

questions and formulating hypotheses, which then inform the seeking of evidence. Evidence can be 737 

obtained through either mathematical models or experiments (shown), or other avenues such as 738 

observational field studies, evolutionary reconstruction approaches, or meta-analyses. In each track (left 739 

and right), the steps of the mathematical and experimental model design have clear parallels. Validation 740 

(dashed arrow) occurs when experimental data are compared to model output or vice versa. The analysis 741 

of mathematical model and experimental model results are used to construct an argument for a particular 742 

biological interpretation, which is documented (Grimm et al., 2014) and disseminated to other scientists. 743 

This, in most cases, leads to even more questions. Each arrow is a modeling activity that can be 744 

performed with students. While this diagram was drawn in a top-to-bottom, linear fashion to facilitate 745 

easy viewing, we recognize that actual practice may be messier, requiring entering the diagram at 746 

different points, traversing the steps in a different order, and repeating steps (Eaton et al., 2017; 747 

Understanding Science)1  748 
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Footnote 748 

1 Interestingly, this figure, depicting the relationships and parallels between mathematical and 749 

experimental approaches to modeling, is itself a model. It has served an important purpose in the 750 

negotiation of our shared understanding of modeling over the course of collaboratively writing this paper. 751 

We have actively used this model as a point of focus during our attempts to articulate our claims about the 752 

modeling process. Questions like, “What exactly does this box represent?”,  “Why is this word used 753 

instead of another?”, and “Why are there unidirectional arrows here but bidirectional arrows in another 754 

place?” have been asked by the biologists and mathematicians to each other when developing our ideas. 755 

This figure has been refined many times. 756 
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Table 1: Five types of model utility as described by Odenbaugh (2005) with example models. 

Model Utility Example Model 

Simple, unrealistic 

models for exploring 

complex systems 

● Using Tetrahymena is used as a model organism to study telomeres 

because it has tens of thousands of short linear chromosomes (Kain, 

2009). 

● A model of an epidemic with different initial populations of susceptible, 

infected, and resistant individuals could be explored with different rules 

for transmission and recovery to provide insights into how different 

diseases spread through a population (Allen et al., 2008; Weisstein, 2011; 

Just et al., 2015). 

Exploring unknown 

possibilities 

● Building 3D models based on predicted protein structures could be used 

to understand drug-target interactions. 

● Agent-based models could be used to identify simple interaction rules 

that can lead to different emergent population level behaviors like 

flocking (Macal and North, 2006; Railsback and Grimm, 2011). 

Developing conceptual 

frameworks 

● A pathway diagram is a conceptual model summarizing experimental 

results (examples can be found at WikiPathways, 

http://wikipathways.org; Kutmon et al., 2016). 

● The Hardy-Weinberg null model can provide a starting point for 

explaining diverse evolutionary forces. 

Making accurate 

predictions 

● Data-driven population models of fish stocks inform sustainable harvests. 

● An enzyme kinetic model of pyruvate carbon distribution in lactic acid 

bacteria accurately predicted which genes to manipulate to increase 

flavor compound production (Hoefnagel et al., 2002). 

Generating causal 

explanations 

● A common garden experiment was used to determine whether 

differences in traits among populations of a plant species is due to 

genetic differences or phenotypic plasticity (Cordell et al., 1998).  

● The Hodgkin-Huxley symbolic model of ion flow across cell membranes 

helps to explain the all or none firing of action potentials. 
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Box 1: Definitions of Terms 

Model: A simplified, abstract or concrete representation of relationships and/or processes in the real 

world, constructed for some purpose (Eaton et al., 2017). 

Model utility: The purpose(s) for constructing and using the model, e.g. developing conceptual 

frameworks or making accurate predictions (see Table 1; Odenbaugh, 2005). 

Modeling: An iterative process in which a model is proposed, explored, and refined (the arrows of 

Figure 2). 

Model-based Reasoning: Forms of inquiry based on the process of modeling; using models to 

understand biological concepts. 

Mathematization: The modeling process of going from a visual schematic or verbal description of the 

model and assumptions to a symbolic mathematical model representation. 

Model refinement: Modifying aspects of the model, including changing the objects, processes and/or 

relationships. 

Model exploration: Depending on the type of mathematical model, model exploration can consist of 

mathematical analyses or computer simulations to observe the behavior of the model as a function of its 

assumptions, inputs, and parameters. 

Model validation: The process of assessing a model’s output and assumptions with regard to its 

desired utility (is it addressing our goals?) and accuracy (is it consistent with other lines of evidence, 

e.g., experimental data, observations and/or different models?). 

Reframe: Incorporating the model and results into the broader set of scientific work, leading to new 

questions, hypotheses, or foci for scientific exploration. 
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Box 2: Examples of the range of ways that students can perform different modeling activities using the 

same HWE model. 

 

Model description: Have the students discuss the utility of the null HWE model.  Have students 

describe how the assumptions built into the HWE model limits the conditions under which it can 

usefully be applied. Have students identify the variables in the model, their attributes and measures. 

Link variables to assumptions by asking why these variables are included in the model. How do the 

attributes of the variables lead to relationships that result in the model? 

 

Metamodeling: Have students keep a journal where they reflect upon the modeling process, answering 

questions such as: How did clarifying your assumptions help you develop a better model?, How did 

you determine if the results were biologically valid?, What was most surprising about your findings?, 

How has the modeling activity given you different insight into the biological problem?  

 

Model use: Have students work with a small empirical dataset as an anchoring phenomenon that 

allows them to calculate both allele and genotype frequencies for a population and then test that data 

against the expectations generated by the HWE model. 

 

Model exploration: Have students test the boundary conditions of the model or add alleles to the 

model to more deeply understand the quantitative relationships between allele frequencies and 

genotype frequencies under HWE model conditions. 

 

Moving between multiple model representations: Have students ask their own questions about an 

anchoring phenomenon and then create a sketch or diagram (visual  model). Have them then 

brainstorm what quantitative aspects could be added to the model. 

 

Model development: Have students derive the HWE model after working with a physical “bean-bag” 

genetics simulation and collecting data on the relationships between allele and genotype frequency. 

 

Model refinement: Have students write out (starting in English) changes to the physical bean-bag 

genetics simulation in order to account for one of the evolutionary forces that can influence allele 

frequencies. Then have them try to formalize it into the HWE model equation or have them build a 

spreadsheet simulation of the force acting on a population. 
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