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Motivation

Background

Statistical software is, at it’s core, a language one uses to create a convincing
analysis. The final creative product is a narrative that will address a scientific
or business question in a way deemed satisfactory. Within a scientific setting,
this generally will be developing a narrative that allows a scientific finding
to be published in a peer-reviewed setting. In a business setting, there are
myriad endpoints for an analysis, but most serve the purpose of helping business
partners make a decision. Folded into this narrative is the choice of experimental
approach and statistical methods with known properties that convincingly model
or approximate the data.

As with any mode of expression, a practitioner must first learn the technical
skill of the trade before they can use it to create. A photographer must learn
how to manage the aperture, shutter speed, and numerous other features of a
camera that control light exposure before she can use the tool to create unique
and affecting photographs. The statistical analog for this – and the focus of
this paper – is the process of creating the technical artifact using the statistical
language and other tools, that delivers the analysis narrative to interested parties.
In a scientific setting, the technical artifact is often a journal article. Within a
business setting, the technical artifact may be a quick email, a slide deck, a white
paper or a long-lived dashboard. In all these creative fields, increased fluency
and mastery of the tooling means that the practitioner can create uninhibited.

Statistical training often focuses on the narrative aspects of this process: mathe-
matical derivations and proofs of statistical tests, methods and models. This
foundational training is crucial to understanding the strengths and limitations
of conclusions that can be drawn from a particular approach to analyzing data.
However, the process of developing the technical artifact is less frequently taught,
or even acknowledged as a set of necessary skills. Given that this process is
complex and prone to error, this hamstrings practitioners, keeping them from
establishing fluency in the tools and allowing them to make common, avoidable
and time-consuming mistakes. The purpose of this paper is to present clear opin-
ions on how, technically, an analysis should be developed, drawing from recent
developments in related fields, available tooling and common best practices.
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Process and Human Error

In order to discuss nuances of a process, it’s important and useful to define
it first. I define the process of technically creating an analysis as “analysis
development”, directly borrow from software development. “Analysis engineering”
is an acceptable alternative, and in both fields these terms are used exchangeably.

By defining the process, we can begin to borrow from the rich field of operations,
which focuses primarily on process. One paradigm that proves especially useful is
the concept of human error. The seminal book The Field Guide to Understanding
Human Error argues for a paradigm shift from the “Old World View” (that
when an error occurs it is an individual actor’s fault) to the “New World View”
(that when an error occurs, it is a symptom of a flawed system that failed that
individual actor) (Dekker 2014). When an error in an analysis occurs, it is safe
to assume (aside from nefarious actors) that the analyst did not want that error
to occur. Given that she thought she was producing an analysis free from errors,
you must look at the way she developed the analysis to understand where the
error occurred, and create safeguards so that the error does not occur again.

Complex processes such as flying an airplane with autopilot are filled with
safeguards against error. Anyone who has sufficient experience performing
analysis instinctively understands many of these common pitfalls. Furthermore,
we don’t need to look far to see examples of them in practice (including the
rare nefarious actor) (Baggerly and Coombes 2009; Hermans and Murphy-Hill
2015). Nicholas Radcliffe discusses many of these errors, and breaks them into
different classes, in his Test-Driven Data Analysis work (Radcliffe 2016). Our
hesitation as a field to codify safeguards against these common errors results in
the continual repetition of these frustrations. And given that people (not even
statisticians) have the “Old World View”, it means that many analysts feel or
are attributed with personal responsibility when these errors occur, despite not
being taught processes that protect against them.

This brings us to the term “opinionated,” which is also borrowed directly from
software development. Opinionated software is software that pushes the user to
follow certain practices (Eccles 2015), from file structure to design features. It is
alternatively described as following a “convention over configuration” principle.
A software language itself can be considered opinionated if it encourages the
programmer to follow certain principles. The creator of Ruby on Rails, an
opinionated framework for web development, describes this trade-off:

It’s a strong disagreement with the conventional wisdom that every-
thing should be configurable, that the framework should be impartial
and objective. In my mind, that’s the same as saying that everything
should be equally hard.

(Bedell 2006).

The motivation for defining “opinionated analysis development” is put the “new
world view” of human error into action, and codify certain best practices that
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guard against error during the process of technically creating an analysis. Equally
important is to have this abstracted away from specific software choices, where
this conversation so often takes place.

If we accept that some practices are better than others at avoiding errors, then
a logical conclusion from that is that analyses developed with these practices
are inherently better than equivalent analyses developed without these practices.
Many statisticians balk at the thought of “cookbookery,” and for good reason
– developing the narrative of an analysis is a deeply creative process, moreso
than we usually acknowledge, and statisticians might be worried that this will
be inhibited. By defining and teasing apart the process of creating the technical
artifact in a way that minimizes error, my hope is that we as a field can begin to
teach analysts skills and process necessary to free up their cognitive energy and
creativity for the narrative aspect of the analysis that is more subjective and
dependent on the audience and scientific question at hand. Put another way–and
borrowing phrasing from Hadley Wickham–the goal of establishing these opinions
is to shift the bottleneck of analysis from the common pitfalls to the creative
and context-specific choices. In addition to making analysis fundamentally more
creative and satisfying, it will make analysts more productive as well.

One final aside is that this paper focuses specifically on the process of developing
an analysis, rather than a productionized technical statistical product such as
recommendations served on a website. While many of the principles overlap,
more energy (within an industry setting) has been focused on this production
problem at the expense of careful thought of analysis deliverables themselves.

Opinionated Analysis Development

I propose here that an analysis should have these key features: reproducible
and auditable, accurate and collaborative. Below I present opinions for how to
achieve each of these features. Many software solutions might exist that allow
for the easy implementation of the opinions below. In fact, given the diversity of
deliverables needed in the business setting, having multiple tools is necessary.
Throughout the remainder of this paper, I provide some examples of software
(primarily in R) that provide elegant implementations of the opinions. These
examples are not meant to be exhaustive, but rather illustrative.

While these opinions are listed in an order that reflects my perceived hierarchy
of needs, not every analysis needs to implement every opinion. A short ad-hoc
analysis, for example, might be easily accomplished while implementing only
a couple of these opinions, just as a quick software project won’t necessarily
embody all the principles of a large enterprise software product. However, by
establishing the principles, an analyst has the ability to subjectively choose when
an analysis becomes sufficiently large or complex to require implementing the
opinions.
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The key features and associated opinions for developing the technical artifact for
an analysis are as follows:

• Reproducible and Auditable
– Executable analysis scripts
– Defined dependencies
– Watchers for changed code and data
– Version control (individual)
– Code review

• accurate
– Modular, tested code
– Assertive testing of data, assumptions and results
– Code review

• Collaborative
– Version control (collaborative)
– Issue tracking

Table 1: Common questions solved by opinionated analysis devel-
opment, listed by opinion.

Analysis
Feature

Opinionated
Approach Question Addressed

Reproducible
and
Auditable

Executable
analysis scripts

Can you re-run the analysis and get the
same results?

Can someone else repeat your analysis?
Can you re-run the analysis on different
data?

Defined
Dependencies

If an external library you’re using is
updated, can you still reproduce your
original results?
If you change code, do you know which
downstream code need to be re-executed?

Watchers for
changed code and
data

If the data or code change but the analysis
is not re-executed, will your analysis reflect
that it is out-of-date?

Version Control
(individual)

Can you re-run your analysis with new
data and compare it to previous results?
Can you surface the code changes that
resulted in a different analysis results?

Code Review Can a second analyst easily understand
your code?

accurate Modular, tested
code

Can you re-use logic in different parts of
the analysis?
If you decide to change logic, can you
change it in just one place?
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Analysis
Feature

Opinionated
Approach Question Addressed

If your code is not performing as expected,
will you know?

Assertive testing of
data, assumptions
and results

If your data are corrupted, do you notice?

If you re-run your analysis on different
data, are the methods you used still valid?

Code Review If you make a mistake in your code, will
someone notice it?
If you are not using efficient code, will you
be able to identify it?

CollaborativeVersion Control
(collaborative)

Can a second analyst easily contribute
code to the analysis?
If two analysts are developing code
simultaneously, can they easily combine
them?

Issue tracking Can you easily track next steps in your
analysis?
Can your collaborators make requests
outside of meetings or email?

The remainder of this paper describes each feature and opinion, with further
context and examples.

Reproducible and auditable

Reproducibility is a feature of analysis that has been widely discussed. Much has
already been written on the subject, and in fact many definitions of reproducibility
may contain some of other opinions I have presented here (Stodden, Leisch, and
Peng 2014; Ram 2013).

Executable analysis scripts

The first, most important and most conventional opinion presented here is that
every analysis should ultimately become a reproducible script or set of scripts,
from ingesting the raw data to compiling the final deliverable. The purpose of
this opinion is simple: it ensures that every step of analysis has been recorded
and communicated so that it can be re-run by either the original analyst or a
second one, on either the same set of data or an updated one.

This approach to statistical analysis comes at odds with the many programs and
programming languages (such as R) that encourage interactive data exploration.
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Such interactivity can be key for the creative exploration of a data set or
statistical method. However, as the analysis approaches the form of a final
deliverable, the analyst should converge to a scripted approach rather than an
interactive one.

Defined dependencies

The second opinion is that the analysis should have a defined dependency tree
or directed acyclic graph (DAG). This concept is critical for the actual process
of re-running an analysis; it ensures that the components of an analysis can be
pieced together and re-run. One can, for example, easily imagine a complex
analysis with many separate scripts, where it is relatively impossible for fresh
eyes to piece together what order they should be run in to reproduce the results.

A secondary benefit to creating a dependency tree is that it reduces the amount
of computation time needed to re-run analysis. For example, consider an analysis
that compares the results of a method on several different simulated data sets. If
the analyst re-simulates one of these data sets, she will know exactly which code
needs to be re-executed in order to update the analysis. Saving computational
time isn’t in itself a necessary component of rigorous analysis development; one
can imagine a completely correct analysis that is slow to run. However, reducing
computational time can increase the probability that an analyst re-runs analysis
every time the code is updated, which in turn increases the probability that the
scripts themselves are reproducible.

Included in the dependency tree is software dependency, such as the package
versions used in the analysis. The moment a package is updated by an outside
developer, it might jeopardize the reproducibility of an analysis. Ostensibly
updated software should always be “better” – that is, one can presume that
software converges to more correct implementations of theory. However, there
are myriad reasons why an analyst might not update her analysis the moment a
new software version comes out. For one, it will take time to assess if the analysis
has changed, whether it is more correct with the newer software version, and
whether it makes practical sense to rerun the analysis. In software engineering
this might be thought of as always ensuring that you have a running version of
the code.

There are several examples of tools that encourage explicitly defining dependency
trees or DAGs for the analysis scripts. knitr – an R package for creating
dynamic documents in R – has the option of defining code “chunk” dependencies
throughout the document (Xie 2016). ProjectTemplate – an R package for
defining project architecture – encourages users to adopt a specific analysis
DAG (White 2014). It accomplishes this through the use of specific code sub-
directories as well as functionality to re-execute code from different points within
the DAG (such as before or after preprocessing or munging data). GNU Make
is a UNIX tool that defines the dependency tree (“GNU Make” 2016), and
facilitates executing code according to this dependency tree.
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For package versioning, there also exist several solutions that run the spectrum
of “ease of reproduction”. Docker, a system for creating environments, is an
elegant solution for creating, archiving and sharing a disc image with the exact
run environment used for an analysis (“Docker” 2016). packrat is an R package
that creates a local, private package library of every R package used in an
analysis (Ushey et al. 2016). This is snap-shotted so that it can be re-built
by another user or on a different system. Microsoft archives daily snapshots of
CRAN (“The CRAN Time Machine”), a tool that an analysis developer can
leverage with the run-date of an analysis (“The Cran Time Machine” 2016). At
the very least, using the sessionInfo function in R will define exactly what
version of packages were used in a specific session – a worthy appendix item for
any analysis deliverable.

Watchers for changed data and code

A final opinion for reproducibility is watching – that is, knowing when data or
analytical code changes and whether it is synced with the current version of the
analysis.

GNU Make, discussed above, includes this watching functionality for free. By
mapping an analysis into a makefile, the analyst can re-execute code and GNU
Make will only execute downstream dependencies from changed code or files.

Code review

Code review is the process of soliciting feedback on analytical code from another
experienced analyst, and appears under two features presented here. Unstruc-
tured code review can expand far beyond the scope of establishing whether or
not the development of the technical artifact was correct and efficient.

Code review is a critical component of developing a reproducible and auditable
analysis because it is the only way to test whether or not it actually accom-
plishes this goal. Performing analysis – even in isolation – is fundamentally a
collaborative endeavor because the fundamental purpose of an analysis is to
communicate a result with the supporting code and data. The analytical code
itself can be thought of as the language which communicates the thought process
and methods used, a concept first developed by Donald Knuth as part of literate
programming (Knuth 1992). A primary goal of code review, then, is to test
whether or not this goal is accomplished.

The process of code review provides critical feedback on how the technical artifact
was developed. It also will serve a psychological purpose when an analyst is in
the process of developing the artifact. If a statistician is developing her analysis
with code review in mind, it will influence how she writes the code, from adding
additional, thorough comments to choosing specific functions that are most
readable.
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Accurate

The idea that an analysis should be accurate is probably such a strong assumption
within a scientific or business setting that it is rarely discussed.

Modular, tested code

Creating modular and tested code (most frequently, creating functions with
unit tests) is the process of creating a unit-tested function to perform repeated
aspects of an analysis. There is no specific moment when a function should
be created – it is a balance of the time needed to develop the function versus
the time saved from having the function. However, creating functions is key
for analysis because it means that changes only need to be made in one place.
Not creating a function leaves the possibility of updating the methods for one
implementation of the code but not another.

A key benefit of creating modular, tested code is that an analyst can test the
validity of the functions using unit tests. Unit testing within software engineering
is an established practice. A software engineer will write a function, and then
create an assertive test that replies “true” or “false” to certain implementations
of the function, in order to check whether the function is performing as expected.
Downstream functionality that depends on the function might be triggered to
fail if the unit test returns a false.

The process of creating functions for code is one that is usually emphasized
as a part of reproducibility. However, I tease it apart from the reproducibility
opinion because it is possible to have a reproducible process that contains no
functions. While tool-makers often focus on cutting edge statistical methodology,
a large portion of statistical analysis (especially in a business setting) involves
no special methodology aside from aggregations and sub-setting. In those cases,
reproducibility is still critical but an emphasis on writing modular code would
not reap extensive benefits.

Assertive testing of data and assumptions

Statisticians are well-trained on the assumptions of specific statistical method-
ologies. This may draw from the fact that the asymptotic proofs for statistical
methods rely on certain assumptions, and are therefore emphasized in both
theoretical and applied training. As with many of the other issues discussed
in this paper, statisticians are often left with the advice to check assumptions
and quality-control data, but without the practical tools necessary to do so
conveniently within the technical artifact. This is made even more of a dangerous
territory as reproducibility is adopted. While reproducibility drastically reduces
the number of errors and opacity of analysis, without assertive testing it runs
the risk of applying an analysis to corrupted data, or applying an analysis to
data that have drifted too far from assumptions.
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The act of assertive testing in data analysis will, in practice, look very similar to
unit testing. The difficulty therein is making sensible decision rules based on
the outcome of the tests. Taken one way, this is the very challenge of inferential
statistics generally as it applies to making decisions based on conventional rules
(such a the widely-covered p-value debate). The key principle, therefore, isn’t the
establishment of specific rules. Rather, it is the establishment that any defined
rule should be explicitly tested, with possible consequences within the analysis
document based on those test results.

The same can be said for data testing. Almost always, by the time a data analyst
has gotten to the point of performing an analysis, she has made the assumption
that the data are not corrupted, usually by inspecting the data or a subset of the
data manually. A negative value for a weight measurement, for example, would
immediately signal to the analyst that she should figure out what “went wrong”.
Assertive testing means establishing these quality-control checks – usually based
on past knowledge of possible corruptions of the data – and halting an analysis
if the quality-control checks are not passed, so the analyst can investigate and
hopefully fix (or at least account for) the problem. This could take the form
of throwing an error in the analysis script, or displaying an error within the
analysis document.

Test-driven data analysis is a comprehensive example of defining different check-
points within an analysis workflow that would benefit from testing (Radcliffe
2016). The authors define errors of implementation, error of interpretation,
errors of process and errors of applicability as key errors to test for within the
data analysis process (Surry and Radcliffe, n.d.).

Creating more flexible testing frameworks is an area of active development within
the R community. The validate R package, for example, provides infrastructure
for creating rules, testing data against those rules and concisely displaying the
results (van der Loo and de Jonge 2016). The assertr package similarly provides
functions for creating tests, with the intent of them breaking the analysis pipeline
when they fail (Fischetti 2015).

Version control – individual

Version control refers broadly to the process of saving intermediate versions
of a project – rather than the current final deliverable – into a centralized or
distributed repository. Version control has become the status quo within software
development; it would be extremely rare to find a large software project that did
not employ some type of version control. It is especially critical in this context
because if new code within a project breaks the software, the developers want
the ability to “roll back” to the last working version of the software as they
debug.

Most statisticians have probably implemented some type of version control, even
if it is as simple as saving updated versions of a paper as a new file with a
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slightly different file name. Additionally, version control is implemented into
Google Docs. However, using a formal version control system, such as git or
svn, will greatly increase the probability that the process of saving versions will
be functionally helpful. Saving intermediate results, for example, will not be
helpful if the statisticians cannot go back and find the version she needs. Peter
Ellis provides a thorough discussion of the multiple benefits of using a robust
version control system in the context of data analysis (Ellis 2016).

Learning a formal version control system might present a larger technical barrier
than other points raised in this article. Fortunately, there are some training
resources available from the more popular version control resources. GitHub, for
example, provides free introductory online classes for version control (“GitHub
Services: Training” 2016). Additionally, some professors have integrated version
control into their courses with great success. Jenny Bryan, from University of
British Columbia, incorporates GitHub into her introductory statistics course
(Bryan 2016). The course materials itself are a Github repository, and students
submit their homework via pull request (the process for formally incorporating
code into the central repository).

Collabortive

Version control – collaborative

Version control is a valuable method for a statistician who is developing an
analysis on her own. It also provides critical infrastructure when the process of
developing an analysis becomes collaborative. The number of moving parts, and
the complexity of potential problems, for collaborative developing a code base
increases substantially with the number of collaborators. Any analyst who has
attempted to create a collaborative project has, no doubt, run into the pitfalls
of making sure that everyone has the updated code and data, and understands
exactly what aspects of the analysis they should be tackling.

The benefits of a robust version-control system, such as git or svn, are numerous
within a collaborative context. They are fundamentally designed to allow for
changes of code to be merged. A version control system will provide a centralized
repository of code that all the collaborators can access, and a defined method
for merging different pieces of code. Many also include communication tooling,
discussed next.

One advantage of establishing version control best-practices (such as using
GitHub) in an individual context is that it allows for a relatively seamless
transition to a collaborative environment.

Issue tracking and other communication tooling
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Issue tracking is the process of creating and exposing a list of problems that need
to be solved within a project. A robust issue-tracking system can solve three
main problems: it can communicate known problems that an analyst wishes to
tackle, it can also communicate problems that she already solved or chose to
not solve, and it can allow for outside parties to communicate feedback or new
issues. Issue tracking and communication is as much about establishing effective
collaborative process as it is about anything inherent to the process of analysis
itself.

Establishing a robust issue-tracking system can reduce cognitive burden of
tracking to-do items. Given the collaborative nature of many analyses, it also
provides the infrastructure necessary to have efficient conversations about how
specific items will be tackled. For example, the best issue-tracking systems allow
for discussion and visible archival of issues, which reduces the need to have
redundant conversations around the approach taken in an analysis.

GitHub provides an effective model for issue tracking. It provides the ability to
create issues, have archived and public or private conversations around issues,
and finally tag issues as “complete” or “did not finish” along with custom labels.
Additionally, GitHub provides the ability to connect an issue to a specific pull
request or chunk of code. By doing this, it is very easy to link the additional
code written to solve a certain problem within an analysis.

Code review

Code review – discussed once before for developing a reproducible and auditable
analysis – is also a key feature for developing an accurate analysis. Children are
taught from an early age to have someone read over their writing to check for
spelling and grammatical errors. Coding should be no different. Code review
will not guarantee an accurate analysis, but it’s one of the most reliable ways of
establishing one that is more accurate than before.

As discussed in the introduction, the purpose of this paper is to established
the opinions for developing the technical artifact, rather than developing the
narrative of an analysis. This distinction proves important for the code review
process, as soliciting review on an analysis will likely spark feedback on both the
narrative as well as the code itself. An analyst can be structured in the way she
solicits code review feedback, by directly stating that she is soliciting feedback
on whether or not her code correctly and efficiently implements a set statistical
method, rather than whether or not that statistical method is inherently correct.
Mike Birbilgia, for example, in discussing Ron Howard’s approach to feedback,
states: “He doesn’t do it to be told what the movie’s vision should be, but to
understand whether his vision is coming across” (Birbiglia 2016).

Finally, a tangential benefit to code review by more experienced developers is
that it allows for feedback on code efficiency and practicality. As is common in
other aspects of the field, the idea that as long as the code accomplishes the goal
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then it is valid is not helpful for the fledgling analyst. Every analytical language
has optimized for certain approaches (such as vectorized calculations over loops),
and providing feedback on implementation is often the only way someone will
learn about it.

Conclusion

The state of the art for analysis development has come to a point where opin-
ionated methods and tooling need to become the norm. Statisticians have long
shied away from teaching process, with the complaint that it might limit the
creativity necessary to tackle different analytical problems. However, by not
teaching opinionated analysis development, we subject fledgling data to each
individually spin their wheels in coming up with process for avoiding common
and generalized problems.

The opinions in this paper address specific, known, and common pitfalls in the
analysis development process. By encouraging the use of and fluency in tooling
that implements these opinions, we can foster the growth of processes that fail
the practitioners as infrequently as possible.
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