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Abstract 

Emerging genomic technologies are reshaping the field of molecular ecology. However, many 

modern genomic approaches (e.g., RAD-seq) require large amounts of high quality template 

DNA. This poses a problem for an active branch of conservation biology: genetic monitoring 

using minimally invasive sampling (MIS) methods. Without handling or even observing an 

animal, MIS methods (e.g. collection of hair, skin, faeces) can provide genetic information on 

individuals or populations. Such samples typically yield low quality and/or quantities of 

DNA, restricting the type of molecular methods that can be used. Despite this limitation, 

genetic monitoring using MIS is an effective tool for estimating population demographic 

parameters and monitoring genetic diversity in natural populations. Genetic monitoring is 

likely to become more important in the future as many natural populations are undergoing 

anthropogenically-driven declines, which are unlikely to abate without intensive management 

efforts that often include MIS approaches. Here we profile the expanding suite of genomic 

methods and platforms compatible with producing genotypes from MIS, considering factors 

such as development costs and error rates. We evaluate how powerful new approaches will 

enhance our ability to investigate questions typically answered using genetic monitoring, such 

as estimating abundance, genetic structure and relatedness. As the field is in a period of 

unusually rapid transition, we also highlight the importance of legacy datasets and 

recommend how to address the challenges of moving between traditional and next generation 

genetic monitoring platforms. Finally, we consider how genetic monitoring could move 

beyond genotypes in the future. For example, assessing microbiomes or epigenetic markers 

could provide a greater understanding of the relationship between individuals and their 

environment.  
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INTRODUCTION 

The current era of rapid global environmental change (Zalasiewicz et al., 2011) is 

predicted to lead to a rapid loss of biodiversity (Pimm et al., 2014). To assess and mitigate the 

impact of this loss, many national and international organizations have established 

biodiversity monitoring strategies (e.g., Kurtz et al., 2001; United Nations Environment 

Programme Convention on Biological Diversity SBSTTA, 2003). Key tools for biodiversity 

monitoring utilise methodological approaches from the field of genetic monitoring, relying on 

genetic tools for evaluating change (Stetz et al., 2011). Genetic monitoring focuses on 

quantifying temporal changes in population genetic metrics, or other population data, 

generated using molecular markers. Genetic monitoring can be used to estimate many 

biological parameters of interest, which have previously been classified as follows: Category I 

- demographic parameters such as abundance, vital rates, occupancy, hybridization, disease 

status; Category II - population genetic parameters including genetic diversity, structure and 

effective population size; and Category III - evolutionary adaptation to exploitation or climate 

change (Schwartz et al., 2007; Stetz, 2011). Here, we examine genetic monitoring approaches 

that use noninvasive (e.g., naturally shed feathers) or minimally invasive (e.g., buccal swabs) 

samples (hereafter MIS) because wildlife ecology and conservation has benefitted greatly 

from the new data provided by these approaches (Beja-Pereira et al., 2009). 

Genetic monitoring using MIS approaches was first introduced in 1992 as a method to 

obtain genetic samples from brown bears (Ursus arctos; Höss et al., 1992; Taberlet & Bouvet, 

1992, see Box 1) and to study social structure in chimpanzees (Pan troglodytes; Morin & 

Woodruff, 1992). MIS has become the method of choice for genetic monitoring of many 

vertebrate species because genetic sampling of hair, feces, biopsies or feathers provides DNA 

from free-ranging animals that can be used to identify individuals in time and space and 

generates genetic data without having to catch, handle or in some cases, even observe them 
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(Beja-Pereira et al., 2009; Schwartz et al., 2007; Waits & Paetkau, 2005). In the last 25 years, 

researchers have demonstrated a variety of important applications of MIS including detecting 

rare species (Palomares et al., 2002; Valière et al., 2003), estimating population size and other 

demographic parameters (Carroll et al., 2013; Kendall et al., 2009; M. H. Kohn et al., 1999; 

Rudnick et al., 2005; Woodruff et al., 2016; Woods et al., 1999), evaluating genetic diversity 

and gene flow (Epps et al., 2005; Gerloff et al., 1999; Lucchini et al., 2002; Palsbøll et al., 

1997), detecting movement and migration (Dixon et al., 2006; Proctor et al., 2005), evaluating 

social structure (Constable et al., 2001; Ford et al., 2011; Morin et al., 1994), detecting 

hybridization (Adams et al., 2003; Bohling et al., 2016; Steyer et al., 2016), monitoring 

disease epizootics (M. H. Kohn & Wayne, 1997; Schunck et al., 1995), identifying diet items 

(De Barba et al., 2016; Höss, 1992; Taberlet & Fumagalli, 1996), and wildlife forensic 

applications (Banks et al., 2003; Ernest et al., 2002; Lukoshek et al., 2009; Wasser et al., 

2004).  

 There is now a wealth of published evidence that MIS is more cost-effective than 

traditional methods that require other technological approaches (e.g., camera trapping, tracks 

and signs and even trapping animals) and that collection and analysis of larger sample sizes 

are often possible (De Barba et al., 2010; Marucco et al., 2009; Solberg et al., 2006; Stenglein 

et al., 2010), prompting many wildlife managers to shift to MIS approaches. Extensive 

methodological and analytical development has been invested in establishing protocols to 

maximize success rates and minimize error rates when using these low-quality DNA sources 

for genetic monitoring (Beja-Pereira et al., 2009; Broquet & Petit, 2004; Miquel et al., 2006; 

Morin et al., 2010; Smith & Wang, 2014; Taberlet, Griffin, et al., 1996; Taberlet & Luikart, 

1999; Waits, 2005; Wang, 2016). Genetic monitoring is set to become more important in the 

future, largely because many vertebrate species have undergone rapid, anthropogenic 

population declines (Li et al., 2016) that are unlikely to abate without intensive management 
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efforts. Fortunately, the genomic revolution of the early 2000s has given rise to a variety of 

more precise or more powerful molecular techniques that will make genetic monitoring even 

more effective in the future. 

New technologies for genetic monitoring typically rely upon single nucleotide 

polymorphisms, or SNPs (Morin et al., 2004). Unlike more conventional DNA markers such 

as microsatellites, SNPs have relatively few alleles per locus (theoretically up to four but 

usually only two due to mutation/drift equilibrium; Glaubitz et al., 2003). The advantages of 

SNP loci are thus not in their allelic diversity, but in a) the number of loci than can be 

surveyed simultaneously and b) the relative ease of scoring, analysis and modeling of SNP 

genotype data due to the digital/binary nature of the data. The latter point contrasts favourably 

with the near continuous distribution of microsatellite alleles that can be difficult to 

consistently characterize due to scoring errors. One major disadvantage of SNP markers is 

that they have more limited application across species than microsatellite markers and are 

often species-specific. In addition, they are more prone to ascertainment bias, as they are 

selected because of their high polymorphism in the populations of interest but are often 

monomorphic in even closely related populations (Gautier et al., 2009). However, SNP-based 

approaches have great potential for noninvasive genotyping and will be the focus of this 

review. 

 

 SAMPLING AND METHODOLOGICAL CONSIDERATIONS 

Sampling Issues 

Sampling strategies for non-invasive material in the natural environment can be carried out 

randomly, opportunistically, or using standardized designs. When planning a non-invasive 

sampling strategy, it is important to account for patterns of social structure (random or 

nonrandom association of individuals), habitat-use, and availability of the material produced 
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(feces, urine, partially consumed food). This is, in part, because it is important to maximize 

sampling opportunities for elusive species, given the labor-intensive nature of field work, but 

also because certain parameters (e.g., genotype capture-recapture methods to estimate census 

size) require the application of assumptions about sampling that may or may not be satisfied if 

sampling is conducted incorrectly.  It is also important to consider the temporal sampling 

interval which can affect sample sizes, genotyping success rates, genotyping error rates and 

impact the ability to meet modeling assumptions for mark-recapture and occupancy analyses 

(Lonsinger et al., 2015; Woodruff et al., 2015). 

Sampling strategies may be designed to maximize the total number of individuals detected 

(typically used for minimum census estimates and population genetic studies) or to maximize 

recaptures using high intensity sampling over a limited geographic range (to estimate ranging 

behavior or territory size for an individual or group of individuals, and estimate population 

size e.g., Rudnick et al., 2008). For many population genetic parameters (category II 

monitoring in Schwartz et al., 2007) sampling should be designed to be random with respect 

to kin (this can also be addressed by post hoc data pruning, but see Waples & Anderson, 

2017). 

 

Molecular Methodologies 

The human and agricultural genetics communities have already embraced SNPs for 

genotyping because of their myriad advantages over microsatellites (FAO Commission on 

Genetic Resources for Food and Agriculture Assessments, 2015). There are many methods for 

genotyping thousands of SNPs, including variations on RAD-seq (Baird et al., 2008) and 

genotyping-by-sequencing (Elshire et al., 2011). These approaches could be useful in MIS if 

sufficient DNA can be obtained (e.g., Chiou & Bergey, 2015), but these anonymous-marker 

approaches often require considerably more DNA than is typically available to biologists 
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using MIS. Furthermore, they genotype far more loci than needed for individual identification 

and assessments of relatedness, population structure, and other parameters of general interest 

in genetic monitoring studies and are thus economically inefficient. However, some next 

generation sequencing and advanced genotyping methods are particularly suitable for the low 

quality or quantity of DNA that are typically obtained from MIS; we broadly categorise these 

into SNP arrays and target enrichment methods. 

SNP arrays 

Platforms that more efficiently assess relevant numbers of SNPs include the Fluidigm 

SNPtype assay (Table 1, 2). The fisheries community has embraced SNP genotyping assaying 

scores of loci with the Fluidigm platform (Bonanomi et al., 2016; Campbell & Narum, 2011; 

Hauser et al., 2011) and recently, several wildlife studies have also used this platform in a 

monitoring context (Table 1: Doyle et al., 2016; Kraus et al., 2015; Nussberger et al., 2014). 

The Fluidigm SNP type assay seems to have relatively low error rates (e.g., 0.2% in 

DeWoody et al., 2017; 0.4% in Doyle, 2016; 1-3% in Kraus, 2015; 1.7% in Nussberger, 

2014). The low error rate is important for all aspects of molecular ecology, but particularly for 

inferences of individual identification, parentage, and relatedness.  

A technologically similar platform, Amplifluor SNP genotyping system, has been 

shown to be highly sensitive with low quality/quantity samples: there was a high level of 

genotyping success with as few as 10 DNA templates per assay (Morin & Mccarthy, 2007). 

Mesnick et al., (2011) used 8 microsatellite loci and 38 Amplifluor SNP loci to investigate the 

population structure of North Pacific sperm whales (Physter macrocephalus). 

The Amplifluor SNP loci had a similar error rate (1.4%) to the microsatellite loci (0.9%) in 

this study (Tables 1 and 2).  

 In contrast to the fluorescence-based platforms, the MassARRAY platform uses mass 

spectrometry to determine SNP alleles. The platform has potential for MIS samples: in a 
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recent study, the MassARRAY system successfully genotyped a higher proportion of puma 

scat samples (59.8%) than a conventional microsatellite genotyping approach (39.9%), with 

no significant difference in error rates between the methods (Fitak et al., 2015). However, 

another study that used both microsatellite genotyping and MassARRAY assays to genotype 

Bornean elephant blood and faeces found a lower rate of genotyping success and higher error 

rates for the SNP platform in faecal samples (Goossens et al., 2016). The authors found a 

trade off between genotyping success and multiplexing level, with smaller multiplexes having 

greater success (Table 1, Goossens et al., 2016), and suggested that the issue could be the 

lower quality of faecal DNA. 

Target enrichment methods  

The aim of target enrichment is to selectively capture genomic regions of interest before high 

throughput sequencing. Target enrichment methods can be a highly sensitive way of 

selectively and reproducibly obtaining genomic data. Genomic regions can be selectively 

targeted using PCR, as well as in-solution or array-based methods. PCR-based methods are 

suitable for MIS as they typically require only small amounts of starting material and, by 

utilising multiplex PCR and combinatorial barcoding techniques, can be cost-effective. One 

such method is GT-seq (Campbell et al., 2015, Table 2), which has been used to genotype 

steelhead trout (Oncorhynchus mykiss) to assess abundance, migration timing and stock 

composition (Hess et al., 2016; Matala et al., 2016). GT-seq also appears to have a low error 

rate; the method had a 99.9% concordance rate with genotypes generated with the Fluidigm 

platform. The method may require additional optimisation for low quality/quantity DNA 

samples, although it works well with sheared DNA templates, success rates drop off when 

DNA concentrations <10 ng/uL (N. Campbell, pers. comm.).   

 Another targeted PCR approach has focused on the use of high-throughput sequencing 

to generate microsatellite genotypes (e.g., De Barba et al., 2016). This approach could have 
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the advantage of linking into legacy datasets if the same sets of loci can be used in the new 

and traditional microsatellite genotyping platforms. It also has the benefit of rapidly 

generating consensus genotypes using bioinformatic analysis pipelines. However, 

optimisation and validation steps are required to move microsatellite genotyping on to a new 

sequencing platform (De Barba et al., 2016).  

DNA capture methods, in conjunction with high throughput sequencing, have been 

used to investigate phylogenetic questions (e.g., Hancock-Hanser et al., 2013), but the 

application of such methods to within-population studies has been limited thus far. One 

successful example was the use of custom biotin-tagged RNA baits to capture genomic DNA 

from fecal samples from 62 wild baboons (Papio papio). The enriched libraries were 

sequenced with Illumina HiSeq and provided sufficient genomic markers to undertake 

pedigree reconstruction (Snyder-Mackler et al., 2016). Another study, using bait captures 

generated from the Agilent SureSelect system, successfully sequenced more than 1.5 Mb of 

nuclear DNA and the entire mitochondrial genome from chimpanzee feces (Perry et al., 

2010). These studies highlight the potential of bait capture approaches, both custom and using 

a commercial provider, in a genetic monitoring context. Such approaches could be aided by 

the use of novel extraction methods that enrich samples for endogenous DNA, such as 

FaecalSeq (Chiou & Bergey, 2015). 

 

Data Analysis  

SNP array platforms have proprietary software packages that are used to score genotypes and 

often provide a degree of confidence in genotype calls (e.g., Sequenom platform). Such 

automated calling is not always accurate, and it is recommended that researchers visually 

check the data for error. Target capture approaches that use high throughput sequencing tend 

to have custom bioinformatics pipelines (e.g., Campbell et al., 2015). However, the major 
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steps are similar between studies and include filtering of reads based on quality scores and 

demultiplexing reads into samples and loci. Genotyping is then conducted using custom 

bioinformatics tools and information such as the relative frequency and read depths of 

sequences likely to be alleles versus sequencing artifacts (Campbell et al., 2015; De Barba et 

al., 2013). 

 

Quality Control 

Genotype data are imperfect and subject to missing genotypes (errors of omission) as well as 

erroneous genotypes (errors of commission; Faria et al., 2011). Missing and erroneous 

genotypes can be due to many possible causes, such as suboptimal genotyping protocols, 

limited DNA quantity and quality, contamination, and human error (Bonin et al., 2004; 

Pompanon et al., 2005). MIS data are especially problematic due to the low DNA quality and 

quantity, and can incur a high rate of missing and erroneous genotypes. Markers themselves 

are also imperfect. Loci can have null alleles which produce no observable phenotypes (Dakin 

& Avise, 2004) and thus null allele homozygotes would be scored as missing data, whereas a 

null allele heterozygote would be scored (erroneously) as a homozygote of the observable 

allele. 

 Missing and erroneous genotypes affect many genetic analyses, yielding potentially 

biased and imprecise results and, in turn, incorrect conclusions. Broadly speaking, analyses 

that use genotype data are more severely impacted than analyses that use allele frequency 

data. For example, genetic differentiation, measured by FST (Wright, 1931) and evaluated by 

several estimators (Nei, 1973; Weir & Cockerham, 1984), is determined by marker allele 

frequencies. Since missing and erroneous genotypes do not substantively change allele 

frequencies, such errors tend to have small effects on FST. In contrast, genotype based 

analyses, such as inferences of identity, relatedness and relationship, are strongly influenced 
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by data quality. Ignoring or underestimating genotyping errors can lead to false parentage 

exclusions (Dakin, 2004; Wang, 2010), false sibship exclusions (Wang, 2004), false exclusion 

of duplicated individuals and thus overestimation of population size (Creel et al., 2003; Waits 

& Leberg, 2000).  

  The impact of missing and erroneous genotypes also depends on how they are 

distributed among loci and among individuals. The best scenario is a uniform distribution, 

such that no specific loci and no specific individuals are too problematic to be useful. 

However, with MIS samples, missing and erroneous genotypes are usually clustered among 

individuals because the sample DNA quality and quantity can differ substantially among 

samples, and error rates have been shown to vary considerably across loci (Broquet, 2004; 

Campbell, 2015; Gagneux et al., 1997; Paetkau, 2003). 

A source of error common to both microsatellites and SNP genotypes from next 

generation sequencing (NGS) platforms is allelic dropout (Gagneux et al., 1997). This is 

where heterozygous genotypes inferred from sequence data may be incorrectly typed as a 

homozygote. Allelic dropout is generally caused by random effects that result in missing one 

of the two alleles at a diploid locus, it is also correlated with lower coverage (5-20x; R. 

Nielsen et al., 2011). If the underlying genotype is a heterozygote, then this type of error 

would lead to one of the two possible homozygous genotypes at a similar probability. 

Traditionally, a single best genotype is reported for an individual at a locus. The large 

uncertainties of such called SNP genotypes mean that erroneous results could be produced, 

such as an overestimation of inbreeding (Vieira et al., 2013) and biased estimates of 

relatedness (Vieira et al., 2016).  

The best practice now is to call all possible genotypes at a SNP locus with 

corresponding likelihoods that summarize the quality and evidence of the reads data, as well 

as incorporating information on population-level allele frequencies (Nielsen et al., 2011). By 
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using genotype likelihoods to account for uncertainties at individual genotype level, an 

appropriately designed program can yield unbiased and accurate estimates of parameters such 

as inbreeding and relatedness (Vieira et al., 2013, 2016), even when the average coverage is 

very low and thus the genotype data are highly uncertain (Buerkle & Gompert, 2013). Buerkle 

& Gompert (2013) show that partitioning the sequencing effort maximally among individuals 

and obtaining approximately one read per locus and individual (1X coverage) yields the most 

information about a population.  More statistical methods urgently need to be adapted or 

developed to take advantage of genotype likelihoods. One obstacle is computational burden, 

which increases enormously by considering three possible rather than a single genotype at 

each locus for each individual, though increasingly sophisticated algorithms and 

parallelization may mitigate this issue. 

The fundamental strategy for improving data quality is by enhancing DNA quantity 

and quality, reducing contamination, improving PCR protocols (or NGS coverage), and other 

technical improvements (Bonin, 2004; Paetkau, 2003; Pompanon, 2005). As with 

microsatellite genotyping (Bonin, 2004), the best practice is to report error rates from SNP 

genotype studies. There are two categories of mistyping rate estimation. One category is 

based on duplicated genotype data (i.e. an individual is genotyped independently multiple 

times at a locus), measuring actually the consistency of repeated genotypes (e.g., Broquet et 

al., 2004) or estimating the error rates of repeated genotypes (e.g., Johnson & Haydon, 2007, 

Zhan et al., 2010). These methods generally overestimate the mistyping rate of the final 

genotype dataset, because repeated genotyping allows for the detection and elimination of 

such errors in the final consensus genotypes. This has been a common method for reporting 

genotype error rates in many SNP array studies (Table 2). 

The second category for estimating mistyping rates is based on the final consensus 

genotypes, and is accomplished by examining the genotype against either the Hardy-
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Weinberg equilibrium (e.g., Hosking et al., 2004) or the Mendelian segregation law in a 

known (e.g, Sobel et al., 2002) or reconstructed pedigree (e.g., Wang & Santure, 2009). The 

former is effective only in detecting null alleles and allelic dropouts that can cause directional 

deviations from Hardy-Weinberg proportions (i.e. an excess of homozygotes), but is 

ineffective for mistypings that do not cause detectable distortions, such as false alleles. This 

error estimation approach can have low power (e.g., Cox et al., 2006), and relies on the 

absence of confounding factors, such as strong selection, inbreeding and population structure. 

Some methods have been developed to make joint estimates of null allele frequencies and 

inbreeding (e.g., Hall et al., 2012). How well such methods work has not been thoroughly 

evaluated, however. 

Pedigree, either known or inferred, can be used in likelihood methods to detect 

erroneous genotypes and to estimate mistyping rate at each locus (Sobel et al., 2002; Wang, 

2009). These methods can be used to infer null allele rates, allelic dropout rates, and false 

allele rates, and are highly robust to the violations of some common assumptions such as 

random mating and the absence of inbreeding population structure. Such mistyping estimation 

methods, together with data missing rates, measure data quality. More importantly, these 

methods allow downstream analyses to effectively filter out the noises in exacting information 

from the genotype data and in arriving at robust and accurate analysis results (e.g., 

Kalinowski et al., 2007; Wang, 2004).  

  

QUESTIONS AND METRICS 

Category IA: Individual identification and its application 

Abundance/density  

The recapture of individuals, identified by their genotype, across time and space has allowed 

genetic monitoring to become a key tool in estimating abundance, density, and demographic 
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parameters in a variety of species. It has been particularly important in species that are 

evasive, endangered (Taberlet et al., 1997), dangerous (Stenglein et al., 2010) or otherwise 

difficult to capture/recapture (Constantine et al., 2012), such as those that show limited 

variation in natural markings, reducing the usefulness of conventional identification from 

photographs (e.g. juvenile cetaceans, Carroll et al., (2016)). Using genetic monitoring to 

estimate abundance spans methods from the enumeration of the number of genotypes in a 

region (Taberlet et al., 1997), to single-session models (Miller et al., 2005; Petit & Valière, 

2006), to occupancy (Lonsinger et al., 2017; Marucco et al., 2012), to complex mark 

recapture models that integrate sex, age and reproductive status information (Carroll et al., 

2013; Woodruff et al., 2016). The advent of spatial mark recapture models (Efford et al., 

2004, 2011; Royle & Young, 2008)  greatly improved analytical tools for density 

estimates using genetic monitoring approaches (Mollet et al., 2015; Russell et al., 2012; 

Thompson et al., 2012).  

Population estimation in genetic monitoring has relied on individual identification 

using microsatellite loci to date. Recognition that genotyping error, correlated with low 

quality DNA templates, can create large biases in population abundance estimates (Waits & 

Leberg, 2000) has required the development of methods that generate consensus genotypes 

from multiple PCR replicates (Taberlet et al., 1997) or models that directly incorporate 

genotyping error (Lukacs & Burnham, 2005). In transitioning to the genomics era, new 

approaches such as direct sequencing of microsatellite loci (De Barba et al., 2016) and SNP 

analysis will be used (Fitak et al., 2015; Kraus et al., 2015). Large panels of markers from 

next-generation sequencing will allow for the more efficient identification of related 

individuals. This will allow the use of close kin mark recapture models, which extend the idea 

of using the recapture of individuals to the recapture of close kin to estimate demographic 

parameters such as effective population size (Wang, 2009; Bravington et al. 2016).  
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Demographic parameters 

Effective management of populations and species requires sound knowledge of key 

demographic parameters, such as survival and growth rates. The most common way to 

estimate such parameters is from long-term studies that follow individuals over time 

(McClintock et al., 2009). Long-term MIS studies have been an effective way to estimate 

survival and growth rates in a range of species, by tracking individuals using their genotype. 

This has been accomplished using mark recapture models in species such as southern right 

whales (Eubalaena australis; Carroll et al., 2013, 2016),  the dendrobatid frogs (Allobates 

femoralis; Ringler et al., 2015), M ui dolphins (Cephalorhynchus hectori maui; Baker et al., 

2013) and imperial eagles (Aquila heliaca; Rudnick et al., 2005). The definitive DNA marks 

provided by genetic monitoring can provide robust population estimates in age-structured 

populations that can be difficult to observe in the wild. The difference between observational 

and MIS genetic population estimates can have profound impacts on demographic models and 

associated conservation actions (Katzner et al., 2011). 

Individual space use and movement 

Genetic monitoring using MIS can also provide valuable information on individual space use, 

movement patterns and dispersal. This approach has been used to monitor population 

expansion and individual dispersal distances in reintroduction efforts for brown bears (De 

Barba et al., 2010), gray wolves (Canis lupus; Stenglein et al., 2010), and Columbia Basin 

pygmy rabbits (Brachylagus idahoensis; Demay et al., 2017), investigate connectivity 

between migratory habitats in humpback whales (Megaptera novaeangliae; Constantine et al., 

2014; Garrigue et al., 2011), to monitor roosting movements in eagles (Rudnick et al., 2008) 

and to detect natural range expansion (Carroll et al., 2014; Valière & Petit, 2003) using 

microsatellites. MIS using microsatellites has also been valuable for assessing the 

effectiveness of corridors (Dixon et al., 2006) and evaluating potential barriers (Epps et al., 
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2005; Kendall et al., 2009; Proctor et al., 2005). More recently, SNPs have been utilized to 

estimate pedigree-based dispersal models in brown bears (Norman et al., 2015) and to infer 

individual provenance (i.e., identify potential migrants) based on the distribution of pairwise 

relatedness (DeWoody et al., 2017). 

Relatedness and kin structure (kinship) 

Since the development of relatively large panels of markers (microsatellites and more recently 

SNPs), those panels have been used to monitor the existing relationships between individuals 

of a given population, either to investigate genetic and social structure, gene flow, reconstruct 

pedigrees or minimize inbreeding (Caniglia et al., 2014; Da Silva et al., 2010; Jones et al., 

2002; Peters et al., 1999; Stenglein et al., 2011). Metrics generally used to measure 

relatedness between two individuals estimate either a summary statistic (such as coancestry 

coefficient it its equivalents), which would correspond to the relatedness between two 

individuals, or the probability that two individuals are linked with a particular relationship 

(parent-offspring, first cousins, self-outbred sibs…) given the data (Wang, 2011). In some 

cases, the reliability of relatedness estimates can be limited, especially when the population 

under study exhibits low genetic variation for the marker set; therefore a priori simulations 

should be performed to select the most appropriate estimator and assess its accuracy (Glaubitz 

et al. 2003; Taylor, 2015). The development of NGS tools is expected to increase the 

availability of high density panels, thus improving the reliability of estimators. It may also 

allow the use of new metrics, such as, for instance, segment-based ones, considering the 

measurement of coancestries based on shared segments of identify by descent, instead of 

averaging, marker by marker, the probability that two alleles are identical at state (De Cara et 

al., 2013).  
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Category Ib: Defining species or conservation units  

Occupancy and range 

Species and site occupancy and presence/absence analysis relies on quantifying detection 

rates and especially understanding whether a target species is present, but undetected; 

information needed to avoid biased estimates of site occupancy, colonization, and local 

extinction probabilities (e.g., MacKenzie et al., 2003). Molecular data can augment these 

studies, enabling more accurate detection even at very low levels of occupancy using 

environmental samples and DNA barcoding (e.g., Boothroyd et al., 2016) or faecal samples of 

uncertain species identity (e.g., Faria et al., 2011; Palomares et al., 2002; Stanton et al., 2016), 

although its use is again severely constrained by DNA quality considerations. For example, 

Stanton et al., (2016) assayed faecal samples from an unsurveyed region in the Democratic 

Republic of Congo for the presence of okapi (Okapia johnstoni). Of the 24 fecal samples 

detected, only 12 yielded DNA but of these six were identified as okapi and these yielded four 

mitochondrial haplotypes (hence allowing the inference of minimally four individuals being 

present). Advances in environmental DNA (eDNA) analysis are enhancing our ability to 

examine past and present occupancy and range of various species (see Box 2). 

Social and genetic structure 

In addition to the presence/absence and censusing of individuals, additional information can 

be gained from MIS studies on the socio-genetic structure of the population being surveyed. 

This has become a necessity in certain fields (especially in primatology) where, even if 

individuals can be observed and identified, invasive sampling is regarded as unethical and is 

often prohibited. Such studies may allow identification of social group-mediated genetic 

structure and inferences on sex-biased dispersal and how these may be modified by habitat 

fragmentation (e.g., Minhos et al., 2016) and/or hunting and exploitation (e.g., Ferreira da 

Silva et al., 2014). Understanding social structure and spatial assortment of related individuals 
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using MIS is also an important factor underpinning the accuracy of capture-recapture 

molecular censusing (Miller, 2005; Zhan et al., 2006). 

Both in socially structured and unstructured species, population boundaries may 

spatially coincide with a sampling area being studied using MIS methods. In such cases, it is 

important to know where these boundaries lie in order to infer the underlying demographic 

processes structuring the population(s), and to assign individuals to those populations using 

the correct allele frequency data. Over recent years, numerous studies have successfully 

investigated genetic structure in wild populations using MIS (e.g., Norman et al., 2017; 

Russello et al., 2015; Steyer et al., 2016). Different approaches have been developed to 

investigate the genetic structuring of a group or population, using either multivariate analysis 

(Jombart et al., 2009) or Bayesian methods for optimizing population features such as Hardy-

Weinberg equilibrium (Pritchard et al., 2000) and even allowing for the integration of 

environmental and spatial data for interpretation purpose (e.g., Caye et al., 2015; Guillot et 

al., 2005). Further, these structure-based approaches are relatively robust in the face of bias 

related to small sample size or even genotyping error (Smith & Wang, 2014).

Hybridization and introgression 

For some species, hybridization and introgression are major threats to population and species 

persistence creating a need for long-term genetic monitoring (Allendorf et al., 2001). Genetic 

monitoring approaches using MIS have been applied to detect hybridization in multiple 

carnivore species including gray wolves (Caniglia et al., 2014; Godinho et al., 2015; 

Kopaliani et al., 2014; Monzón et al., 2014), Eastern wolves (Canis lycaon, Benson et al., 

2012), red wolves (Canis rufus; Adams et al., 2003; Bohling et al., 2016) and wildcats (Felix 

silvestris silvestris; Anile et al., 2014; Steyer et al., 2016). The majority of these studies have 

used mitochondrial DNA and microsatellite markers, but a few have used SNPs to detect 

hybridization or monitor gray wolves (Kraus et al., 2015; Monzón et al., 2014) and 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3209v1 | CC BY 4.0 Open Access | rec: 30 Aug 2017, publ: 30 Aug 2017



hybridization between wildcats and domestic cats (Nussberger et al., 2014; Oliveira et al., 

2015).  

 

Category II: Population Genetic Parameters 

Genetic diversity 

Historically, microsatellites were used with MIS to produce estimates of population genetic 

variation based on allelic diversity and heterozygosity. Allelic diversity, which is often high 

and variable among microsatellite loci, is not very informative for SNPs. This is because 

SNPs have comparatively few alleles, generally limited to one or two (i.e., third or fourth 

alleles at a locus do not materialize before one of the original two is lost due to drift or 

selection). 

      On the other hand, estimates of heterozygosity using SNP loci can be more informative 

than microsatellites because the additional SNP loci surveyed provide higher precision. For 

example, Doyle et al., (2016) surveyed 162 SNPs in golden eagles and found that mean 

observed heterozygosity (HO) was 0.32 ± 0.01 in juveniles whereas adult HO was 0.35 ± 0.01, 

a significant statistical difference consistent with expectations of viability selection. 

Unfortunately, the types of SNP arrays often used in MIS studies preclude the evaluation of 

other genetic diversity metrics that will likely be important in the future (e.g., runs-of-

homozygosity or copy number variants, see Leroy et al, this issue). This is a factor worth 

considering when planning a study, as evaluating change in genetic diversity metrics over 

time is an important task of genetic monitoring (see Box 3). 

Effective population size 

Conservation goals are often set in relation to recent historical abundance, before the impact 

of anthropogenic activity reduced population sizes. For many species, genetic-diversity based 

estimates that provide long-term effective population sizes can be the only way to infer 
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historical abundance (e.g., Beerli & Felsenstein, 2001). While this approach has its limitations 

and caveats (Palsbøll et al., 2013), MIS have been used to estimate long-term effective 

population sizes in species such as southern right whales (Carroll et al., 2015) and Sumatran 

orangutans (Pongo abelii; Nater et al., 2013). Historical samples can provide a direct way of 

assessing past levels of genetic diversity and effective population size, and therefore any 

recent changes in these metrics. Although not typically undertaken using MIS, such studies 

provide important management information for species of conservation concern, for example 

museum specimens were used to assess historical diversity in species such as grizzly bears 

(Ursos actos; Miller & Waits, 2003) and Seychelles warbler (Acrocephalus sechellensis; 

Spurgin et al., 2014). 

Contemporary estimates of effective population size or number of effective breeders 

are also a critical indication of the genetic resilience of a population (Frankham et al., 2014), 

and have been estimated with MIS for brown bears (De Barba et al., 2010), Hector’s dolphin 

(Cephalorhynchus hectori; Hamner et al., 2017), Eurasian otters (Lutra lutra; Koelewijn et 

al., 2010), and southern right whales (Carroll et al., in review). For the purpose of genetic 

management of endangered species, the current or contemporary effective size is more 

relevant than historical or long-term effective size (Wang et al., 2016). 

 

PAST AND FUTURE OPPORTUNITIES 

Legacy Datasets 

The sheer abundance of microsatellite datasets associated with MIS conservation studies is 

impressive. Thus, it would be desirable if future monitoring efforts could tie an individual’s 

established microsatellite DNA profile to a new SNP profile. Many individuals of long-lived 

species like trees, whales, or eagles have already been genetically tagged using 

microsatellites. In an ideal world, a new DNA profile generated with SNPs would be matched 
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to those generated previously with microsatellites. Unfortunately, this is time consuming and 

expensive because it would require SNP genotyping a reference sample for each individual or 

having a way to link the SNP genotype to the microsatellite genotype. In principle, it might be 

possible using a high-density SNP array to genotype individuals at each microsatellite locus. 

However, in practice, this depends on the availability of the SNPs, the extent of linkage 

disequilibrium, recombination rates, nucleotide substitution rates, effective population size, as 

well as the practicalities of designing assays for the repetitive genomic regions that 

microsatellites represent. In practice, it is an easy decision to forego microsatellites and 

establish a new SNP array when monitoring a “new” species. There are online tools, such as 

the ConGress website that contains a Decision Making Tool, that can help managers to 

identify the optimal path for a MIS analysis (http://www.congressgenetics.eu).  

In those cases with extensive legacy datasets, it might make the most sense to use one 

of the “microsatellite sequencing” techniques in the Table 3 (see above) in an effort to 

continue surveying the same loci (albeit with a different technology), at the same time as 

expanding genome sampling. It may be possible to impute genotypes if sufficiently large 

sample sizes are available for present and past data, and both legacy and modern platforms, as 

is routinely carried out for individuals types using different SNP panels in livestock species 

(e.g., Druet et al., 2010). As an example, the imputation of 12 microsatellite markers based on 

SNP haplotypes has been investigated in cattle, a set of 982 SNPs, located within 500 kb of 

the targeted markers, being required for accurate imputation (McClure et al., 2012, 2014). 

Such imputation is likely to be far more difficult in wild species that lack pedigrees 

and dense marker panels.  That said, it might be possible to use known or suspected 

relationships among individuals (e.g., full-siblings) to leverage microsatellite-based 

fingerprinting against SNP-based fingerprinting. 
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Future Directions 

Evolving technology means that genetic monitoring of populations is expanding beyond SNP 

genotypes. We broadly categorise these methods into those that will help enhance 

understanding of population demography, health and diet, and ‘functional’ or adaptive genetic 

monitoring (Category III), which moves beyond using neutral alleles for individual 

identification and estimation of population genetic parameters to assay loci linked to 

processes such as inbreeding and adaptation (Table 3). Wildlife forensics is also set to benefit 

from technological advances (see Box 4). 

Population demography 

Estimating the chronological age of individuals through genetic monitoring would provide 

broader insights into population dynamics. Age classes, or the chronological age of 

individuals in a population, are a critical component to estimating past and future growth 

rates, as well as population level responses to biotic (e.g. prey resources) and abiotic (e.g. 

hunting) pressures. Conventionally, longitudinal studies that track individuals in well-studied 

populations have been the only way to estimate age for many species (Clutton-Brock & 

Sheldon, 2010). However, molecular age biomarkers (MAB), those derived from measurable 

changes in DNA or RNA abundance or sequence change, offer a new way to estimate 

chronological age. One MAB that held promise was telomeres, and although it has been found 

to work well in some bird species (e.g., Haussmann et al., 2003), its wider applicability has 

been limited (Dunshea et al., 2011). A recent paper showed that epigenetic markers can be 

used to estimate age in humpback whales (Polanowski et al., 2014), using MIS, an approach 

that has promise in other species (Jarman et al., 2015). 

Epigenetic markers might have utility in monitoring other facets of population 

demography, as epigenetic changes have been linked to early life conditions (Gapp et al., 

2014), reproductive maturity (Lomniczi et al., 2013), survival (Fairlie et al., 2016) and 
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response to chemical or physical stressors (Feil & Fraga, 2012)  in a variety of species. The 

development of epigenetic markers therefore has the potential to monitor how environmental 

processes can influence population demography through monitoring development and 

fecundity over time.  

Health and Diet 

The microbial communities living on or in multicellular organisms or ‘hosts’, termed 

microbiomes, are a rich area of study in humans and, increasingly, wild animals. Host health 

and fitness can be affected by the microbiome through different mechanisms: the microbiome 

could act directly to protect health, through competitive exclusion or by stimulating 

immunity, or act indirectly, by modifying metabolism or development (Bahrndorff et al., 

2016). For example, research has linked changes in skin bacterial microbiome with outbreaks 

of chytrid fungus in endangered frog populations (e.g., Jani & Briggs, 2014)  and there is 

evidence that symbiotic bacteria on amphibian skin generate metabolites protective against 

the fungus (Loudon et al., 2014). Additionally, the microbiome might include known 

pathogens (Acevedo-Whitehouse et al., 2010; Delgado et al., 2017): long-term, non-invasive 

monitoring of the of the southern resident killer whale population in North America showed 

that antibiotic resistant bacteria were present in the respiratory microbiome of apparently 

healthy individuals (Raverty et al., 2017). Therefore, microbiomes could be regularly 

screened using MIS for the presence of both beneficial and harmful components as part of an 

ongoing genetic monitoring scheme. Changes in the characteristics of the microbiome over 

time might also be indicative of changes in the quality of the social or broader environment 

(Amato et al., 2013; Tung et al., 2015), and can be significantly differentiated amongst 

individuals within a population (Klein-Jöbstl et al. 2015). Additionally, studies in model 

organisms have used proteomic analysis of faecal samples to noninvasively monitor host-
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microbe interaction during development (e.g., Young et al., 2015) and disease processes (e.g., 

Yau et al., 2013). 

As the gut microbiome is closely related to diet (Amato et al., 2013; Delsuc et al., 

2014), it has been suggested as a potential screening tool to identify dietary components 

(Bahrndorff et al., 2016). However, evidence suggests that survey methods focusing on non-

invasively collected faecal samples need to carefully consider the change in microbiome 

linked to environmental conditions, time since deposition and focal species (Menke et al., 

2015). 

While gut microbiome and microbiome-host interaction analysis may be a future 

method for monitoring diet and health, DNA metabarcoding combined with high throughout 

sequencing has proven to be an effective genetic monitoring tool to characterize diet 

(Pompanon et al., 2012; Valentini et al., 2009). This method has been used to non-invasively 

monitor diet in a diverse range of species including Adelie penguins (Pygoscelis adeliae; 

Jarman et al., 2013), golden-crowned sifaka (Propithecus tattersalli; Quéméré et al., 2013) , 

tapir (Tapirus terrestris; Hibert et al., 2013), brown bears (De Barba et al., 2013; Valentini et 

al., 2009), golden marmots (Marmota caudata; Valentini et al., 2009), African herbivores 

(Kartzinel et al., 2015), Hawaiin tree snails (Achatinella spp.; O’Rorke et al., 2015; Price et 

al., 2017) and leopard cats (Prionailurus bengalensis; Shehzad et al., 2012). Limitations of 

this approach can include a lack of reference samples against which to compare generated 

data and the fact that findings should be considered semi-quantitative, due to biases such as 

preferential digestion, PCR amplification bias and gene copy variation (Deagle et al., 2010; 

Pompanon et al., 2012). However, a metagenomic approach whereby shotgun sequencing is 

used to characterize both prey and potential pathogens in faecal samples holds the potential to 

simultaneously characterize diet and microbiomes, while avoiding some of these limitations 

(Srivathsan et al., 2016). In a broader context, assaying dietary niche through genetic 
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monitoring techniques is likely to play a future role in determining the vulnerability of 

populations to disturbances (Clare, 2014) and is already aiding restoration and relocation 

plans (Price et al., 2017).  

Functional or adaptive genetic monitoring 

Traditional genetic monitoring has focused on presumably neutral markers to identify 

individuals and to assess genetic diversity. When whole-genome data are available, 

investigators have the choice of using intergenic SNPs from gene deserts or of using “non-

neutral” markers derived from protein-coding genes thought to be targets of natural selection 

(DeWoody et al., 2017; Doyle et al., 2016). This can be an important distinction, because the 

non-neutral loci are often more sensitive indicators of population differentiation (Freamo et 

al., 2011). By combining genomic and environmental data, landscape genomics approaches 

can also be a powerful approach to infer and define conservation units (Funk et al., 2012).  

Only a few studies have yet investigated the possibilities of using MIS approaches for 

such a purpose. Russello et al., (2015) used hair samples to investigate genetic diversity and 

in the American pika hair, detecting several candidate gene regions which exhibited putative 

signatures of divergent selection for adaptation to altitude. Given the potential environment 

shifts related to climate change that can be expected, landscape genomics may offer useful 

insight to better monitor and manage wild and domestic population. 

 

Conclusion 

Genetic monitoring with MIS has proven to be a valuable tool to monitor and manage species 

and populations. With increasing access to new technological advances, researchers will be 

able to go beyond identifying individuals to investigate their role in the ecosystem and assess 

population level dynamics. Such tools will be necessary to meet the challenges of 

conservation biology in a rapidly changing environment. 
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Table 1: Contemporary approaches for SNP genotyping of low quality and/or quantity DNA samples. 

Reference Starting 
material 

Species Platform/method Inference 

SNP Arrays     
Morin and McCarthy 
(2007) Bone 

Bowhead whale (Balaena 
mysticetus) Ampliflour SNP genotyping 

Development/validation of 
SNP markers 

Mesnick et al., (2011) Skin 
Sperm whale (Physeter 
macroephalus) 

Ampliflour SNP and 
microsatellite genotyping 

Population structure 

DeWoody et al., 2017 Skin Gray whale (Eschrichtius robustus) Fluidigm Individual ID and relatedness 

Nussberger et al., (2014) Hair 
European wildcat (Felis silvestris 
silvestris) Fluidigm 

Validation of SNP markers 
and studying introgression 

Ruegg et al., (2014) Feathers 
Wilson’s warbler (Cardellina 
pusilla) Fluidigm 

Tracking migratory 
populations 

Kraus et al., (2015)  Faeces Gray wolf (Canis lupus) Fluidigm 
Development/validation of 
SNP markers 

Norman and Sprong 
(2015) Faeces Brown bear (Ursus arctos) Fluidigm 

Reconstructing pedigrees and 
estimating dispersal 

Doyle et al., (2016); 
Katzner et al., (2016)  Feathers Golden eagle (Aquila chrysaetos) Fluidigm 

Population structure, 
parentage, and provenance 

Stetz et al., (2016) Faeces River otter (Lontra canadensis) Fluidigm 

Development/validation of 
markers, population 
assignment 

Spitzer et al., (2016) Faeces Brown bear (Ursus arctos) Fluidigm 
Pedigree and population size 
estimation 

Monzon et al., (2014) Faeces Coyote (Canis latrans) 

Illumina GoldenGate 
genotyping assay BeadXpress 
platform 

Admixture and hybridisation 

Hoffman et al., (2012) Skin 
Antarctic fur seal (Arctocephalus 
gazella) 

Illumina GoldenGate 
genotyping assay 

Development/validation of 
markers

Goossens et al., (2016) Faeces Asian elephant (Elephas maximus) MassARRAY (Sequenom) 
Population structure and 
genetic diversity, comparison 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3209v1 | CC BY 4.0 Open Access | rec: 30 Aug 2017, publ: 30 Aug 2017



of SNPs with microsatellites 

Fitak et al., (2015) Faeces Pumas (Puma concolor) MassARRAY (Sequenom) 
Development/validation of 
SNP markers 

Fabbri et al., (2012)  Faeces Gray wolf (Canis lupus) 
SNPs Pyrosequencing (Biotage), 
SNaPshot (ABI), Taqman (ABI) 

Development/validation of 
markers 

Targeted sequence 
capture    

 

De Barba et al., (2016) Faeces Brown bear (Ursus arctos) 
High-throughput sequencing of 
microsatellites (Illumina MiSeq) 

Development/validation of 
markers 

Perry et al., (2010) Faeces Chimpanzees (Pan troglodytes) 

RNA bait capture/illumina 
sequencing (Agilent’s 
SureSelect) 

Validation/SNP genotyping 
for genetic diversity 

Synder-Mackler et al., 
(2016) Faeces Baboons (Papio papio) 

RNA bait capture/illumina 
sequencing  

Development/validation of 
markers, pedigree analysis 

Other examples     

Russello et al., (2015) Hair American pika (Ochotona princeps) nextRAD 
Population structure and 
outlier loci analysis 

Chiou & Bergey (2015) Faeces Baboons (Papio papio) ddRAD using FecalSeq 
Development/validation of 
markers 
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Table 2. Selective summary of characteristics of next-generation sequencing platforms that could be suitable for low quality or quantity DNA 

templates frequently obtained during MIS projects.  

Platform Development 
Cost 

Run cost Effort (after 
DNA extraction) 

Information Error rate DNA required Ref 

 Fluidigm  €4300 for oligos 
to query 96 SNPs, 
access to Fluidigm 
system 

 €1250 for 
genotyping 96 
individuals at 96 
SNPs 
 

 PCR  SNP 
genotype 

 ~1% A  Nanograms Doyle et al., 
(2016), 
Katzner et 
al., (2016), 
DeWoody et 
al., (2017) 

 Amplifluor €2200 for oligos 
for 96 loci, access 
to qPCR machine 
 

 €250 for 
genotyping 96 
samples at 96 
loci, based on 20 
loci multiplex* 
 

PCR and analysis 
of qPCR results 

 SNP 
genotype 

 1.4% B  Nanograms Mesnick et 
al., (2011) 

MassARRAY €2600 for oligos 
for 96 loci, 
assuming 2 alleles 
per locus, access 
to MassARRAY 
system 

€777 (384 well 
format, €8.09 
per sample) to 
€1,376 (96 well 
format, €14.33 
per sample) to 
genotype 96 
individuals at 96 
SNPs (24-loci 
multiplex) 

Multiplex PCR 
step, clean up 
step, primer 
extension step and 
another clean up 
step, run on 
compact mass 
spectrometer 

SNP 
genotypes 

Fecal sample 
error rate: 24-
loci multiplex 
9%; 42-loci 
multiplex 
error rate: 
25% A 

nanograms (10 
ng per multiplex 
reaction 
recommended) 

Goosens et 
al., (2016) 

GTSeq <€9000: primary 
cost is oligos but a 
pilot study of the 
markers is 

€3.43 per 
sample, based on 
example where 
2068 samples 

For each of the 22 
x 96-well plates 
there were 2 PCR 
steps and one 

SNPs; could 
be extended to 
haplotypes 

0.01%C Nanograms (10 
ng for first PCR 
minimum 
recommended 

Campbell et 
al., (2015) , 
N. 
Campbell, 
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suggested, high-
throughput 
sequencing run 

were genotyped 
at 192 loci 

normalisation step concentration)  pers. comm.  

Microsatellite 
sequencing 

Primary costs are 
optimization and 
validation study, 
as well as 
oligonucleotides 

No estimate 
provided 

Multiplex PCR, 
purification and 
quantification of 
pooled PCR 
product and 
sequencing run 

Microsatellite 
genotypes 

Good quality 
reference 
hair: allelic 
dropout 
(ADO): 
3.9%, false 
allele rate 
(FA): 0.3%,  
Non-
invasively 
collected low 
quality hair: 
ADO: 10.6%, 
FA 0.8%; 
Low quality 
faecal 
samples: 
ADO: 13.7%, 
FA: 0.8%C 

Not quantified in 
study 

De Barba et 
al., (2016) 

        
*Based on purchase of 5000 assay kit 

Error rate reported are based on replicate genotypingA or calculated per alleleB or per locusC 
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Table 3: Beyond genotypes: selected examples of the application of genomic sequencing technology to study ecology and evolution of species 

using minimally invasive samples.  

Reference Starting 
material 

Species Platform/method Inference 

Assessing genetic diversity   
Hans et al., (2015) Faeces Gorilla (Gorilla gorilla) Illumina MiSeq of pooled PCR 

amplicons 
Diversity of MHC loci 

Ang et al., (2016) Faeces Tonkin snub-nosed monkey 
(Rhinopithecus avunculus) 

Illumina HiSeq of pooled PCR 
amplicons 

Diversity of mtDNA 

Sigsgaard et al., (2016) eDNA water 
sample 

Whale shark (Rhincodon typus) Illumina MiSeq (bulk 
sequencing) 

MtDNA haplotype 
diversity and identity 

Health/diet/demography     
Valentini et al., (2009) Faeces Golden marmots (Marmota 

caudata) and brown bears (Ursus 
arctos) 

454 sequencing of PCR 
amplicons 

Diet 

Shehzad et al., (2012) Faeces Leopard cat (Prionailurus 
bengalensis) 

Illumina PCR amplicon 
sequencing 

Diet 

Jarman et al., (2013) Faeces Adelie penguin (Pygoscelis 
adeliae) 

Ion Torrent PCR amplicon 
sequencing  

Diet 

De Barba et al., (2014) Faeces Brown bear (Ursus arctos) Illumina PCR amplicon 
sequencing 

Diet 

Quéméré et al., (2013) Faeces Golden-crowned sifaka 
(Propithecus tattersalli) 

Illumina PCR amplicon 
sequencing 

Diet 

Polanowski et al., (2014)  Skin biopsy 
sample 

Humpback whale (Megaptera 
novaeangliae) 

Bisulfite conversion and 
PYROMARK 24 Pyrosequencing 
platform (Qiagen) 

Estimate of chronological 
age 

Kartzinel et al., (2015) Faeces Seven large mammalian 
herbivores 

Illumina PCR amplicon 
sequencing  

Diet and niche partitioning 

O’Rorke et al., (2015); 
Price et al., (2017) 

Faeces Hawaiian tree snails (Achatinella 
spp.) 

Illumina PCR amplicon 
sequencing 

Diet and niche 
partitioning, 
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environmental restoration 
planning 

Srivathsan et al., (2016)  Faeces Banded leaf monkey (Presbytis 
femoralis) 

mtDNA shotgun sequencing 
Illumina HiSeq 

Diet and gut parasite 
characterisation 

Raverty et al., (2017) Exhaled breath 
samples 

Killer whale (Orcinus orca) PCR amplicon sequencing of 
bacterial DNA barcodes and 
direct culture of bacteria 

Genetic monitoring of 
respiratory microbiome 
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BOXES 

Box 1: Brown bears (Ursus arctos) as a Model System for the Development of MIS Approaches 

 

The brown bear is the most widely distributed bear species and is locally endangered at many locations across its range. The desire for alternative 

methods to monitor this charismatic species launched the field of noninvasive genetic sampling, and the field has kept pace with technological 

developments. First, Taberlet & Bouvet (1992) and Hoss et al., (1992) demonstrated that mitochondrial DNA (mtDNA) sequences could be 

obtained from snagged hair and faecal samples, respectively. Hoss et al., (1992) were also the first to demonstrate the ability to amplify diet 

items in scat by sequencing a 356 bp rbcL chloroplast sequence to identify the dominant plant in their diet (Photinia villosa). These were the first 

1990 2000 2010

PCR
invented

Microsatellite markers
discovered

Capillary electrophoresis 
improves use of microsatellites

First high-throughput
sequencers on market

1980

mtDNA from snagged 
hair samples

(Tablerlet & Bouvet 1992)

mtDNA from faecal samples
(Hoss et al., 1992)

PCR-based sex ID method 
from hair samples

(Taberlet et al., 1993)

Microsatellite genotyping
for individual identification

from hair and faecal samples
(Taberlet et al., 1997)

First MIS genotype
mark-recapture population size

estimate for brown bears
(Woods et al., 1999)

Faecal DNA diet study using 
amplicon sequencing &

high-throughput platform 
(Valentini et al., 2009)

SNP genotyping of 
faecal samples

(Norman & Sprong 2015)

High-throughput sequencing
of microsatellite markers from faeces

improves genotyping performance
(De Barba et al., 2016)

Stable isotope analysis
of hair samples provides

insight into diet
(Felicetti et al., 2004)
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studies to document successful amplification of DNA from hair and fecal samples of wild species. Soon researchers were amplifying nuclear 

DNA to determine sex (Taberlet et al., 1993) and for individual identification  (Taberlet et al., 1997). This work was critical to the understanding 

of microsatellite genotyping errors and approaches for minimizing their impact in MIS datasets (Taberlet et al., 1996).  MIS was then used 

extensively in Europe in the 1990s to obtain data on genetic diversity, genetic structure, phylogeography and minimum counts of population size 

(Kohn et al., 1995; Taberlet et al., 1997, 1992) .  In the late 1990s, North American researchers embraced MIS methods as an alternative 

approach for population estimation and produced the first mark-recapture population estimates using DNA extracted from brown bear hair 

samples collected from barbed-wire hair snares (Mowat & Strobeck, 2000; Woods, 1999), which revolutionized methods for estimating 

population size (Boulanger et al., 2004; Kendall, 2009).  This approach was expanded to include stable isotope analysis of hair samples to 

provide a new approach for noninvasively determine the number of brown bears in Yellowstone park feeding on cutthroat trout and estimate the 

number of fish consumed per year by bears (Felicetti et al., 2004; Haroldson et al., 2005; Teisberg et al., 2014). MIS applications have expanded 

to include obtaining DNA from saliva on mammalian (Farley et al., 2014) and salmonid (Wheat et al., 2016) carcasses to conduct species and 

individual identification. MIS has been the main method used to track small remnant or reintroduced populations in Europe (e.g., De Barba, 

2010; Karamanlidis et al., 2010), Pakistan (Bellemain et al., 2007), western continental United States (Proctor et al., 2012; Romain-Bondi et al., 

2004) and the Gobi desert (McCarthy et al., 2009; Tumendemberel et al., 2015). Brown bears have also been an important model system for the 

transition from genetic to genomic approaches in MIS. For example, they have been the focus of dietary metabarcoding studies (De Barba et al., 

2013; Valentini et al., 2009).  Recently, new approaches were developed to sequence PCR-amplified microsatellites on an Illumina platform to 
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obtain multilocus genotypes from brown bears (De Barba et al., 2016). This approach increased success rates by 20-30% and decreased costs per 

sample by 40% compared to traditional capillary electrophoresis genotyping of microsatellite loci.  Also, SNP loci have been identified for 

brown bears and successfully genotyped for faecal samples using the Fluidigm platform (Norman & Sprong, 2015; Spitzer et al., 2016). These 

advancements using genomic methods provide much promise for the continued noninvasive genetic monitoring of brown bears across their 

range. The figure shows the timeline of the key advances in using MIS for genetic monitoring of brown bears, along with the approximate timing 

of some key molecular methods.
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Box 2: Environmental DNA in the genetic monitoring context 

Genomic sequencing technologies are broadening the scope of eDNA studies in genetic 

monitoring. Historically, eDNA samples have included hair, faeces and feathers. Now the 

scope is expanding to include environmental samples including water, soil, sediments, snow, 

browsed foliage, as well as DNA from invertebrates (“iDNA”; Schnell et al., 2015) that feed 

on species of interest: some examples are illustrated below. 

 

 

 

 

 

 

 

 

 

water

soil &
sediment

iDNA

Population genetics
of whale shark 

(Rhincodon typus; 
Sigsgaard et al., 2016)

‘Dirt’ DNA to assess 
contemporary

vertebrate diversity 
(Anderson et al., 2012)

Lake sediments to assess
paleoecology: species distribution

and community composition
(Pederson et al., 2016)

DNA from carrion fly stomach 
to assess mammalian 
biodiversity (Calvignac-
Spencer et al., 2013)

Viral DNA from leech gut 
contents to assess prevalence 

of disease in mammals in experimental 
conditions (Kampmann et al., 2017)

Detection of rare and endangered
species in marine and freshwater 
environments (e.g., Foote et al., 

2012, Machler et al., 2014)
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Box 3: The importance of ‘delta’ in genetic monitoring 3	

Endangered species are, by definition, the subject of local, regional, national and international 4	

legislation, including the Convention on Biological Diversity (CBD). The CBD’s 2020 Targets 5	

include a commitment to ‘minimise genetic erosion’ and ‘safeguard genetic diversity’ (Bruford et 6	

al., 2017; Hoban et al., 2013). These commitments require a means of verification and imply a 7	

reference point from which to determine changes in genetic diversity. The statistical approaches 8	

needed to evaluate changes in genetic diversity over short timescales, however, require 9	

development. Temporal genetic monitoring of species at the same location has been 10	

accomplished in a some well-studied populations or species of high conservation concern (e.g., 11	

Italian brown bears; De Barba, 2010) (e.g., Māui's dolphin; Baker et al., 2016) or where 12	

hybridisation is a threat (e.g., red wolves and coyotes; Bohling, 2016). 13	

In the absence of samples from a population over time, analysis of genetic data using 14	

single point samples can provide insights into recent demographic change (e.g., Goossens et al., 15	

2006), however single point estimators can have wide variance and provide inconsistent values 16	

depending on the methods chosen or model assumptions (Barker, 2011). Hoban et al., (2014) 17	

carried out an assessment of temporal indicators of genetic erosion (sensu Aichi Target 13) to 18	

assess which metrics and sampling would be the most sensitive to detecting short-term declines 19	

in genetic diversity. The number of alleles per genetic locus outperformed all other potential 20	

indicators across all scenarios.  21	

Sampling 50 individuals at as few as two time points with 20 microsatellite markers could 22	

detect genetic erosion even in cases where 80– 90 % of diversity remained (Hoban et al 2014).  23	
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Power increased substantially with more samples or markers, with, for example, 2500 SNPs 1	

being extremely effective at detecting minor demographic declines.  Hoban et al., (2014) also 2	

found that statistical power to detect change improved if samples were available before the onset 3	

of decline, implying that archived and museum collections can clearly play an important role as 4	

part of monitoring programs.  5	

 6	

 7	

 8	

 9	

 10	

 11	

 12	

 13	

 14	

 15	

 16	

 17	

 18	

 19	

 20	

 21	

 22	

 23	
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Box 4: Wildlife Forensics 1	

As the global threat of illegal wildlife trade becomes more apparent, the use of genetic and 2	

genomic tools in the fight against wildlife crime has increased substantially (Corlett et al., 2017; 3	

Ogden & Linacre, 2015; Staats et al., 2016). Traditional genetic tools are increasingly being 4	

applied to forensic casework involving material inherently lacking in viable genetic material, e.g. 5	

microsatellite markers to locate the likely origin of seized elephant ivory (e.g., Wasser et al., 6	

2015), and similar tools are now in routine use to enable the development of a database to allow 7	

the matching of carcasses and seized, poached African rhinoceros horn (Harper et al., 2013). 8	

DNA barcoding is being increasingly used in the identification of traded products to species, such 9	

as pangolin scales (Mwale et al., 2017).  10	

The use of genomics has, however, opened up the possibility of additional applications in the 11	

forensic field, including the development of simple, cost effective tools to analyse extremely 12	

problematic samples and to address questions that were otherwise statistically unattainable using 13	

standard genetic approaches. For example, it is possible to identify putrid bushmeat samples, 14	

which can be highly degraded once seized, to species level or beyond using low cost microarrays, 15	

(e.g. Ronn et al, 2009). A landmark paper in 2011 developed a set of SNPs for investigation of 16	

false eco-certification of exploited European fish stocks using population assignment that relies 17	

on divergent SNPs under the influence of selection in species in otherwise undifferentiated 18	

populations, where standard microsatellite-based population assignment had proved impossible 19	

(Nielsen et al., 2012). Furthermore, portable sequencing devices, such as the MinIon (Oxford 20	

Nanopore Technologies), are starting to be used to sequence samples in field laboratory 21	

conditions (Edwards et al., 2016; Quick et al., 2016). This leads to the possibility real-time 22	

assessments of the species and potentially population of origin of products in markets in the near 23	

future.  24	
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