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Abstract	47	

Background:	Taxonomic	classification	of	marker-gene	sequences	 is	an	 important	 step	 in	48	

microbiome	 analysis.	 Results:	 We	 present	 q2-feature-classifier	49	

(https://github.com/qiime2/q2-feature-classifier),	 a	 QIIME	 2	 plugin	 containing	 several	50	

novel	 machine-learning	 and	 alignment-based	 taxonomy	 classifiers	 that	 meet	 or	 exceed	51	

classification	accuracy	of	existing	methods.	We	evaluated	and	optimized	several	commonly	52	

used	 taxonomic	 classification	methods	 (RDP,	 BLAST,	 BLAST+,	 UCLUST)	 and	 several	 new	53	

methods	 (a	 scikit-learn	 naive	 Bayes	 machine-learning	 classifier,	 and	 VSEARCH	 and	54	

SortMeRNA	alignment-based	methods).	Conclusions:	Our	results	illustrate	the	importance	55	

of	 parameter	 tuning	 for	 optimizing	 classifier	 performance,	 and	 we	 make	 explicit	56	
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recommendations	 regarding	 parameter	 choices	 for	 a	 range	 of	 standard	 operating	57	

conditions.	 q2-feature-classifier	 and	 our	 evaluation	 framework,	 tax-credit,	 are	 both	 free,	58	

open-source,	BSD-licensed	packages	available	on	GitHub.		59	

	60	

Background	61	

High-throughput	 sequencing	 technologies	 have	 transformed	our	 ability	 to	 explore	62	

complex	microbial	 communities,	offering	 insight	 into	microbial	 impacts	on	human	health	63	

[1]	 and	 global	 ecosystems	 [2].	 This	 is	 achieved	 most	 commonly	 by	 sequencing	 short,	64	

conserved	 marker	 genes	 amplified	 with	 ‘universal’	 PCR	 primers,	 such	 as	 16S	 rRNA	 for	65	

bacteria	 and	 archaea,	 or	 internal	 transcribed	 spacer	 (ITS)	 regions	 for	 fungi.	 Targeted	66	

marker-gene	primers	can	also	be	used	to	profile	specific	taxa	or	functional	groups,	such	as	67	

nifH	 genes	 [3].	 These	 sequences	 often	 are	 compared	 against	 an	 annotated	 reference	68	

sequence	database	to	determine	the	likely	taxonomic	origin	of	each	sequence	with	as	much	69	

specificity	as	possible.	Accurate	and	specific	taxonomic	information	is	a	crucial	component	70	

of	many	experimental	designs.	71	

Challenges	in	this	process	include	the	short	length	of	typical	sequencing	reads	with	72	

current	technology,	sequencing	and	PCR	errors	[4],	selection	of	appropriate	marker	genes	73	

that	 contain	 sufficient	 heterogeneity	 to	 differentiate	 target	 species	 but	 that	 are	74	

homogeneous	 enough	 in	 some	 regions	 to	 design	 broad-spectrum	 primers,	 quality	 of	75	
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reference	sequence	annotations	[5],	and	selection	of	a	method	that	accurately	predicts	the	76	

taxonomic	 affiliation	 of	millions	 of	 sequences	 at	minimal	 computational	 cost.	 Numerous	77	

methods	have	been	developed	for	taxonomy	classification	of	DNA	sequences,	but	few	have	78	

been	directly	compared	in	the	specific	case	of	short	marker-gene	sequences.		79	

We	 introduce	 q2-feature-classifier,	 a	 QIIME	 2	 (https://qiime2.org/)	 plugin	 for	80	

taxonomy	classification	of	marker-gene	sequences.	QIIME	2	 is	 the	successor	to	the	QIIME	81	

[6]	microbiome	analysis	package.	The	q2-feature-classifier	plugin	allows	users	to	use	any	of	82	

the	numerous	machine-learning	classifiers	available	in	scikit-learn	[7][8]	for	marker	gene	83	

taxonomy	classification,	and	currently	provides	two	alignment-based	taxonomy	consensus	84	

classifiers	based	on	BLAST+	[9]	and	vsearch	[10].	We	evaluate	the	latter	two	methods	and	85	

the	 scikit-learn	multinomial	 naive	 Bayes	 classifier	 (labelled	 “Naive	 Bayes”	 in	 the	 Results	86	

section)	 for	 the	 first	 time.	We	 show	 that	 the	 classifiers	 provided	 in	 q2-feature-classifier	87	

match	 or	 outperform	 the	 classification	 accuracy	 of	 several	 widely-used	 methods	 for	88	

sequence	 classification,	 and	 that	 performance	 of	 the	 naive	 Bayes	 classifier	 can	 be	89	

significantly	 increased	 by	 providing	 it	 with	 information	 regarding	 expected	 taxonomic	90	

composition.	91	

We	 also	 developed	 tax-credit	 (https://github.com/caporaso-lab/tax-credit/),	 an		92	

extensible	computational	framework	for	evaluating	taxonomy	classification	accuracy.	This	93	

framework	 streamlines	 the	 process	 of	 methods	 benchmarking	 by	 compiling	 multiple	94	

different	test	data	sets,	including	mock	communities	[11]	and	simulated	sequence	reads.	It	95	

additionally	stores	pre-computed	results	from	previously	evaluated	methods,	including	the	96	

results	 presented	 here,	 and	 provides	 a	 framework	 for	 parameter	 sweeps	 and	 method	97	
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optimization.	 tax-credit	 could	 be	 used	 as	 an	 evaluation	 framework	 by	 other	 research	98	

groups	 in	 the	 future,	 or	 its	 raw	data	 could	 be	 easily	 extracted	 for	 integration	 in	 another	99	

evaluation	framework.		100	

	101	

Results	102	

We	 used	 tax-credit	 to	 optimize	 and	 compare	 multiple	 taxonomy	 classifiers.	 We	103	

evaluated	two	commonly	used,	pre-existing	classifiers	that	are	wrapped	in	QIIME	1	(RDP	104	

Classifier	(version	2.2)	[12],	 legacy	BLAST	(version	2.2.22)	[13]),	two	QIIME	1	alignment-105	

based	consensus	 taxonomy	classifiers	 (the	default	UCLUST	classifier	available	 in	QIIME	1	106	

(based	 on	 version	 1.2.22q)	 [14],	 and	 SortMeRNA	 (version	 2.0	 29/11/2014)	 	 [15]),	 two	107	

alignment-based	 consensus	 taxonomy	 classifiers	 newly	 released	 in	 q2-feature-classifier	108	

(based	 on	 BLAST+	 (version	 2.6.0)	 [9]	 and	 vsearch	 (version	 2.0.3)	 [10]),	 and	 a	 new	109	

multinomial	naive	Bayes	machine-learning	classifier	in	q2-feature-classifier	(see	materials	110	

and	 methods	 for	 information	 about	 q2-feature-classifier	 methods	 and	 source	 code	111	

availability).	 We	 performed	 parameter	 sweeps	 to	 determine	 optimal	 parameter	112	

configurations	for	each	method.	113	

Mock	community	evaluations	114	

We	 first	 benchmarked	 classifier	 performance	 on	 mock	 communities,	 which	 are	115	

artificially	constructed	mixtures	of	microbial	cells	or	DNA	combined	at	known	ratios	[11].	116	
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We	 utilized	 15	 bacterial	 16S	 rRNA	mock	 communities	 and	 4	 fungal	 internal	 transcribed	117	

spacer	 (ITS)	 mock	 communities	 (Table	 1)	 sourced	 from	 mockrobiota	 [11],	 a	 public	118	

repository	 for	 mock	 community	 data.	 Mock	 communities	 are	 useful	 for	 method	119	

benchmarking	 because:	 1)	 unlike	 for	 simulated	 communities,	 they	 allow	 quantitative	120	

assessments	of	method	performance	under	actual	operating	conditions,	 i.e.,	 incorporating	121	

real	sequencing	errors	that	can	be	difficult	 to	model	accurately;	and	2)	unlike	 for	natural	122	

community	 samples,	 the	 actual	 composition	 of	 a	mock	 community	 is	 known	 in	 advance,	123	

allowing	quantitative	assessments	of	community	profiling	accuracy.	124	

An	additional	priority	was	to	test	the	effect	of	setting	class	weights	on	classification	125	

accuracy	 for	 the	 naive	 Bayes	 classifier	 implemented	 in	 q2-feature-classifier.	 In	 machine	126	

learning,	 class	 weights	 or	 prior	 probabilities	 are	 vectors	 of	 weights	 that	 specify	 the	127	

frequency	 at	 which	 each	 class	 is	 expected	 to	 be	 observed	 (and	 should	 be	 distinguished	128	

from	the	use	of	this	term	under	Bayesian	inference	as	a	probability	distribution	of	weights	129	

vectors).	An	alternative	 to	setting	class	weights	 is	 to	assume	that	each	query	sequence	 is	130	

equally	 likely	 to	 belong	 to	 any	 of	 the	 taxa	 that	 are	 present	 in	 the	 reference	 sequence	131	

database.	This	assumption,	known	as	uniform	class	priors	 in	the	context	of	a	naive	Bayes	132	

classifier,	 is	made	by	the	RDP	classifier	[12],	and	its	 impact	on	marker-gene	classification	133	

accuracy	 has	 yet	 to	 be	 validated.	 Making	 either	 assumption,	 that	 the	 class	 weights	 are	134	

uniform	 or	 known	 to	 some	 extent,	 will	 affect	 results	 and	 cannot	 be	 avoided.	 The	 mock	135	

communities	 have	 taxonomic	 abundances	 that	 are	 far	 from	 uniform	 over	 the	 set	 of	136	

reference	taxonomies,	as	any	real	data	set	must.	We	can	therefore	use	them	to	assess	the	137	

impact	 of	 making	 assumptions	 regarding	 class	 weights.	 Where	 we	 have	 set	 the	 class	138	
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weights	 to	 the	 known	 taxonomic	 composition	 of	 a	 sample,	 we	 have	 labelled	 the	 results	139	

“bespoke”.	140	

We	 evaluated	 classifier	 performance	 accuracy	 on	 mock	 community	 sequences	141	

classified	at	taxonomic	levels	from	class	through	species.	Mock	community	sequences	were	142	

classified	using	 the	Greengenes	99%	OTUs	16S	 rRNA	or	UNITE	99%	OTUs	 ITS	 reference	143	

sequences	 for	 bacterial	 and	 fungal	 mock	 communities,	 respectively.	 As	 expected,	144	

classification	accuracy	decreased	as	classification	depth	 increased,	and	all	methods	could	145	

predict	the	taxonomic	affiliation	of	mock	community	sequences	down	to	genus	level	with	146	

median	 F-measures	 exceeding	 0.8	 across	 all	 parameter	 sets	 (minimum:	 UCLUST	 F=0.81,	147	

maximum:	 Naive	 Bayes	 Bespoke	 F=1.00)	 (Figure	 1A).	 However,	 species	 affiliation	 was	148	

predicted	 with	 much	 lower	 and	 more	 variable	 accuracy	 among	 method	 configurations	149	

(median	F-measure	minimum:	UCLUST	F=0.42,	maximum:	Naive	Bayes	Bespoke	F=0.95),	150	

highlighting	 the	 importance	of	 parameter	 optimization	 (discussed	 in	more	detail	 below).	151	

Figure	1A	illustrates	line	plots	of	mean	F-measure	at	each	taxonomic	level,	averaged	across	152	

all	 classifier	 configurations;	 hence,	 classifier	 performance	 is	 underestimated	 for	 some	153	

classifiers	 that	 are	 strongly	 affected	 by	 parameter	 configurations	 or	 for	 which	 a	 wider	154	

range	of	 parameters	were	 tested	 (e.g.,	Naive	Bayes).	 Comparing	only	 optimized	methods	155	

(i.e.,	the	top-performing	parameter	configurations	for	each	method),	Naive	Bayes	Bespoke	156	

achieved	significantly	higher	F-measure	 (paired	 t-test	P	<	0.05)	 (Figure	1B),	 recall,	 taxon	157	

detection	 rate,	 and	 taxon	 accuracy	 rate	 scores	 (Figure	 1C)	 and	 lower	 Bray-Curtis	158	

dissimilarity	than	all	other	methods	(Figure	1D).		159	
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Mock	 communities	 are	 necessarily	 simplistic,	 and	 cannot	 assess	 method	160	

performance	 across	 a	 diverse	 range	 of	 taxa.	 Sequences	 matching	 the	 expected	 mock	161	

community	sequences	are	not	removed	from	the	reference	database	prior	to	classification,	162	

in	 order	 to	 replicate	 normal	 operating	 conditions	 and	 assess	 recovery	 of	 expected	163	

sequences.	However,	this	approach	may	implicitly	bias	toward	methods	that	find	an	exact	164	

match	 to	 the	 query	 sequences,	 and	 does	 not	 approximate	 well	 natural	 microbial	165	

communities	 in	 which	 few	 or	 no	 detected	 sequences	 exactly	 match	 the	 reference	166	

sequences.	 Hence,	 we	 performed	 simulated	 sequence	 read	 classifications	 (described	167	

below)	to	further	test	classifier	performance.	168	

Cross-validated	taxonomy	classification	169	

Simulated	 sequence	 reads,	 derived	 from	 reference	 databases,	 allow	 us	 to	 assess	170	

method	performance	across	a	greater	diversity	of	sequences	than	a	single	mock	community	171	

generally	 	 encompasses.	We	 first	 evaluated	 classifier	 performance	 using	 stratified	 k-fold	172	

cross-validation	of		taxonomy	classification	to	simulated	reads.	The	k-fold	cross-validation	173	

strategy	 is	 modified	 slightly	 to	 account	 for	 the	 hierarchical	 nature	 of	 taxonomic	174	

classifications,	which	all	of	the	classifiers	in	this	study	(with	the	exception	of	legacy	BLAST)	175	

handle	by	assigning	the	lowest	(i.e.,	most	specific)	taxonomic	level	where	the	classification	176	

surpasses	 some	 user-defined	 “confidence”	 or	 “consensus”	 threshold	 (see	 materials	 and	177	

methods).	 The	modification	 is	 to	 truncate	 any	 expected	 taxonomy	 in	 each	 test	 set	 to	 the	178	

maximum	level	at	which	an	instance	of	that	taxonomy	exists	in	the	training	set.	Simulated	179	

reads	 were	 generated	 from	 Greengenes	 99%	 OTUs	 16S	 rRNA	 or	 UNITE	 99%	 OTUs	 ITS	180	
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reference	 sequences	 with	 species-level	 annotations,	 and	 do	 not	 incorporate	 artificial	181	

sequencing	 errors	 (see	materials	 and	methods	 for	more	 details).	 In	 this	 set	 of	 tests	 and	182	

below	 for	 novel	 taxa,	 the	 “bespoke”	 classifier	 had	 prior	 probabilities	 that	 were	 inferred	183	

from	the	training	set	each	time	it	was	trained.	184	

	 Classification	 of	 cross-validated	 reads	 yielded	 similar	 results	 to	mock	 community	185	

classification	tests.	For	bacterial	sequences,	average	classification	accuracy	for	all	methods	186	

declined	 from	 near-perfect	 scores	 at	 family	 level	 (median	 F-measure	minimum:	 BLAST+	187	

F=0.92,	maximum	legacy	BLAST	F=0.99),	but	still	retained	accurate	scores	at	species	level	188	

(median	minimum:	BLAST+	F=0.76,	maximum	SortMeRNA	F=0.84),	relative	to	some	mock	189	

community	 data	 sets	 (Figure	 2A).	 Fungal	 sequences	 exhibited	 similar	 performance,	with	190	

the	 exception	 that	 mean	 BLAST+	 and	 vsearch	 performance	 was	 markedly	 lower	 at	 all	191	

taxonomic	levels,	indicating	high	sensitivity	to	parameter	configurations,	and	species-level	192	

F-measures	 were	 in	 general	 much	 lower	 (median	 minimum:	 BLAST+	 F=0.17,	 maximum	193	

UCLUST	 F=0.45)	 than	 those	 of	 bacterial	 sequence	 classifications	 (Figure	 2A).	 At	 species	194	

level,	optimized	UCLUST	and	SortMeRNA	configurations	achieved	the	highest	F-measures	195	

for	16S	rRNA	simulated	sequences	(Figure	2B).	 	UCLUST	achieved	 the	highest	F-measure	196	

for	 ITS	 classification	 (F	 =	 0.51).	 However,	 all	 optimized	 classifiers	 achieved	 similar	 F-197	

measure	ranges,	with	the	exception	of	legacy	BLAST	for	ITS	sequences	(Figure	2B).	198	

	199	

	200	
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Novel	taxa	evaluations	201	

	 Novel	taxa	classification	offers	a	unique	perspective	on	classifier	behavior,	assessing	202	

how	classifiers	perform	when	challenged	with	a	“novel”	clade	that	is	not	represented	in	the	203	

reference	database.	An	ideal	classifier	should	identify	the	nearest	taxonomic	lineage	to	204	

which	this	taxon	belongs,	but	no	further.	In	this	evaluation,	a	reference	database	is	205	

subsampled	k	times	to	generate	query	and	reference	sequence	sets,	as	for	cross-validated	206	

classification,	but	two	important	distinctions	exist:		1)	the	reference	database	used	for	207	

classification	excludes	any	sequence	that	matches	the	taxonomic	affiliation	of	the	query	208	

sequences	at	taxonomic	level	L,	the	taxonomic	rank	at	which	classification	is	being	209	

attempted;	and	2)	this	is	performed	at	each	taxonomic	level,	in	order	to	assess	210	

classification	performance	when	each	method	encounters	a	“novel”	species,	genus,	family,	211	

et	cetera.	212	

Due	to	these	differences,	interpretation	of	novel	taxa	evaluation	results	is	different	213	

from	that	of	mock	community	and	cross-validated	classifications.	For	the	latter,	214	

classification	accuracy	may	be	assessed	at	each	taxonomic	level	for	each	classification	215	

result:	mean	classification	accuracy	at	family	level	and	species	level	evaluate	the	same	216	

results	but	focus	on	different	taxonomic	levels	of	classification.	For	novel	taxa,	however,	217	

different	query	and	reference	sequences	are	compiled	for	classification	at	each	taxonomic	218	

level	and	separate	classifications	are	performed	for	each.	Hence,	classifications	at	family	219	

and	species	level	are	independent	events	—	one	assesses	how	accurately	each	method	220	
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performs	when	it	encounters	a	“novel”	family	that	is	not	represented	in	the	reference	221	

database,	the	other	when	a	“novel”	species	is	encountered.		222	

Novel	taxa	evaluations	employ	a	suite	of	modified	metrics,	to	provide	more	223	

information	on	what	types	of	classification	errors	occur.	Precision,	recall,	and	F-measure	224	

calculations	at	each	taxonomic	level	L	assess	whether	an	accurate	taxonomy	classification	225	

was	made	at	level	L-1:	for	example,	a	“novel”	species	should	be	assigned	a	genus,	because	226	

the	correct	species	class	is	not	represented	within	the	reference	database.	Any	species-227	

level	classification	in	this	scenario	is	an	overclassification	(affecting	both	recall	and	228	

precision).	Overclassification	is	one	of	the	key	metrics	for	novel	taxa	evaluation,	indicating	229	

the	degree	to	which	novel	sequences	will	be	interpreted	as	known	organisms.	This	230	

overclassification	is	often	highly	undesirable	because	it	leads,	for	example,	to	the	incorrect	231	

classification	of	unknown	but	harmless	environmental	sequences	as	known	pathogens.	232	

Novel	sequences	that	are	classified	within	the	correct	clade,	but	to	a	less	specific	level	than	233	

L,	are	underclassified	(affecting	recall	but	not	precision).	Sequences	that	are	classified	into	a	234	

completely	different	clade	are	misclassified	(affecting	both	recall	and	precision).	235	

Precision,	recall,	and	F-measure	all	gradually	increase	from	average	scores	near	0.0	236	

at	class	level,	reaching	peak	scores	at	genus	level	for	bacteria	and	species	level	for	fungi	237	

(Figure	3A-C).	These	trends	are	paired	with	gradual	decreases	in	underclassification	and	238	

misclassification	rates	for	all	classification	methods,	indicating	that	all	classifiers	perform	239	

poorly	when	they	encounter	sequences	with	no	known	match	at	the	class,	order,	or	family	240	

levels	(Figure	3D-F).	At	species	level,	UCLUST,	BLAST+,	and	vsearch	achieved	significantly	241	

better	F-measures	than	all	other	methods	for	16S	rRNA	classifications	(P	<	0.05)	(Figure	242	
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3G).	UCLUST	achieved	significantly	better	F-measures	than	all	other	methods	for	ITS	243	

classifications	(Figure	3G).	Over-,	under-,	and	misclassification	scores	are	less	informative	244	

for	optimizing	classifiers	for	real	use	cases,	as	most	methods	could	be	optimized	to	yield	245	

near-zero	scores	for	each	of	these	metrics	separately,	but	only	through	extreme	246	

configurations,	leading	to	F-measures	that	would	be	unacceptable	under	any	scenario.	Note	247	

that	all	comparisons	were	made	between	methods	optimized	to	maximize	(or	minimize)	a	248	

single	metric,	and	hence	the	configurations	that	maximize	precision	are	frequently	249	

different	from	those	that	maximize	recall	or	other	metrics.	This	trade-off	between	different	250	

metrics	is	discussed	in	more	detail	below.		251	

The	novel	taxa	evaluation	provides	an	estimate	of	classifier	performance	given	a	252	

specific	reference	database,	but	its	generalization	is	limited	by	the	quality	of	the	reference	253	

databases	available	and	by	the	label-based	approach	used	for	partitioning	and	evaluation.	254	

Mislabeled	and	polyphyletic	clades	in	the	database,	e.g.	Clostridium	group,	increase	the	255	

probability	of	(potentially	erroneous)	misclassification.	A	complementary	analysis	based	256	

on	sequence	similarity	between	a	novel	query	and	top	reference	hit	could	mitigate	this	257	

issue.	However,	we	choose	to	apply	a	label-based	approach,	as	it	better	reflects	the	258	

biological	problem	that	users	can	expect	to	encounter;	i.e.,	using	a	particular	reference	259	

sequence	database	(which	will	contain	some	quantity	of	mislabeled	and	polyphyletic	taxa	260	

inherent	to	currently	available	resources),	how	likely	is	a	classifier	to	misclassify	a	261	

taxonomic	label?	262	

	263	

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3208v1 | CC BY 4.0 Open Access | rec: 30 Aug 2017, publ: 30 Aug 2017



	

13	
	

	

Multi-evaluation	method	optimization	264	

The	mock	community	and	cross-validation	classification	evaluations	yielded	similar	trends	265	

in	configuration	performance,	but	optimizing	parameters	choices	for	the	novel	taxa	266	

generally	lead	to	suboptimal	choices	for	the	mock	community	and	cross-validation	tests	267	

(Figure	4).	We	sought	to	determine	the	relationship	between	method	configuration	268	

performance	for	each	evaluation,	and	use	this	information	to	select	configurations	that	269	

perform	best	across	all	evaluations.	For	16S	rRNA	sequence	species-level	classification,	270	

method	configurations	that	achieve	maximum	F-measures	for	mock	and	cross-validated	271	

sequences	perform	poorly	for	novel	taxa	classification	(Figure	4B).	Optimization	is	more	272	

straightforward	for	genus-level	classification	of	16S	rRNA	sequences	(Figure	4A)	and	for	273	

fungal	sequences	(Figure	4C-D),	for	which	configuration	performance	(measured	as	mean	274	

F-measure)	is	maximized	by	similar	configurations	among	all	three	evaluations.		275	

To	identify	optimal	method	configurations,	we	set	accuracy	score	minimum	276	

thresholds	for	each	evaluation	by	identifying	natural	breaks	in	the	range	of	quality	scores,	277	

selecting	methods	and	parameter	ranges	that	meet	these	criteria.	Table	2	lists	method	278	

configurations	that	maximize	species-level	classification	accuracy	scores	for	mock	279	

community,	cross-validated,	and	novel	taxa	evaluations	under	several	common	operating	280	

conditions.	“Balanced”	configurations	are	recommended	for	general	use,	and	are	methods	281	

that	maximize	F-measure	scores.	“Precision”	and	“Recall”	configurations	maximize	282	

precision	and	recall	scores,	respectively,	for	mock,	cross-validated,	and	novel-taxa	283	

classifications	(Table	2).	“Novel”	configurations	optimize	F-measure	scores	for	novel	taxa	284	
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classification,	and	secondarily	for	mock	and	cross-validated	performance	(Table	2).	These	285	

configurations	are	recommended	for	use	with	sample	types	that	are	expected	to	contain	286	

large	proportions	of	unidentified	species,	for	which	overclassification	is	undesirable.	287	

However,	these	configurations	may	not	perform	optimally	for	classification	of	known	288	

species	(i.e.,	underclassification	rates	will	be	higher).	For	fungi,	the	same	configurations	289	

recommended	for	“Precision”	perform	well	for	novel	taxa	classification	(Table	2).	For	16S	290	

rRNA	sequences,	BLAST+,	UCLUST,	and	vsearch	consensus	classifiers	perform	best	for	291	

novel	taxa	classification	(Table	2).	292	

	293	

Computational	runtime		294	

High-throughput	sequencing	platforms	(and	experiments)	continue	to	yield	increasing	295	

sequence	counts,	which	—	even	after	quality	filtering	and	dereplication	or	operational	296	

taxonomic	unit	clustering	steps	common	to	most	microbiome	analysis	pipelines	—	may	297	

exceed	thousands	of	unique	sequences	that	need	classification.	Increasing	numbers	of	298	

query	sequences	and	references	sequences	may	lead	to	unacceptable	runtimes,	and	under	299	

some	experimental	conditions	the	top-performing	method	(based	on	precision,	recall,	or	300	

some	other	metric)	may	be	insufficient	to	handle	large	numbers	of	sequences	within	an	301	

acceptable	time	frame.	For	example,	quick	turnarounds	may	be	vital	under	clinical	302	

scenarios	as	microbiome	evaluation	becomes	common	clinical	practice,	or	commercial	303	

scenarios,	when	large	sample	volumes	and	client	expectations	may	constrain	turnaround	304	

times	and	method	selection.	305	
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	 We	assessed	computational	runtime	as	a	linear	function	of	1)	the	number	of	query	306	

sequences	and	2)	the	number	of	reference	sequences.	Linear	dependence	is	empirically	307	

evident	in	Figure	5.	For	both	of	these	metrics,	the	slope	is	the	most	important	measure	of	308	

performance.	The	intercept	indicates	the	amount	of	time	taken	to	train	the	reference	309	

sequences,	load	environmental	variables,	or	other	“setup”	steps	that	will	diminish	in	310	

significance	as	sequence	counts	grow,	and	hence	are	negligible.	311	

	 UCLUST	(0.000028	s/sequence),	vsearch	(0.000072	s/sequence),	BLAST+	312	

(0.000080	s/sequence),	and	legacy	BLAST	(0.000100	s/sequence)	all	exhibit	shallow	313	

slopes	with	increasing	numbers	of	reference	sequences.	Naive	Bayes	(0.000483	314	

s/sequence)	and	SortMeRNA	(0.000543	s/sequence)	yield	moderately	higher	slopes,	and	315	

RDP	(0.001696	s/sequence)	demonstrates	the	steepest	slope	(Figure	5A).	For	runtime	as	a	316	

function	of	query	sequence	count,	UCLUST	(0.002248	s/sequence),	RDP	(0.002920	317	

s/sequence),	and	SortMeRNA	(0.003819	s/sequence)	have	relatively	shallow	slopes	318	

(Figure	5B).		Naive	Bayes	(0.022984	s/sequence),	BLAST+	(0.026222s/sequence)	,	and	319	

vsearch	(0.030190	s/sequence)	exhibit	greater	slopes.	Legacy	BLAST	(0.133292	320	

s/sequence)	yielded	a	slope	magnitudes	higher	than	other	methods,	rendering	this	method	321	

impractical	for	large	data	sets.		322	

	323	

	324	
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Discussion	325	

We	have	developed	and	validated	several	machine-learning	and	alignment-based	326	

classifiers	provided	in	q2-feature-classifier	and	benchmarked	these	classifiers,	as	well	as	327	

other	common	classification	methods,	to		evaluate	their	strengths	and	weaknesses	across	a	328	

range	of	parameter	settings	for	each	(Table	2).	329	

Each	classifier	required	some	degree	of	optimization	to	define	top-performing	330	

parameter	configurations,	with	the	sole	exception	of	QIIME	1’s	legacy	BLAST	wrapper,	331	

which	was	unaffected	by	its	only	user-defined	parameter,	e-value,	over	a	range	of	10-10	to	332	

1000.	For	all	other	methods,	performance	varied	widely	depending	on	parameter	settings,	333	

and	a	single	method	could	achieve	among	the	worst	performance	with	one	configuration	334	

but	among	the	best	performance	with	another.	Configurations	greatly	affected	accuracy	335	

with	mock	community,	cross-validated,	and	novel	taxa	evaluations,	indicating	that	336	

optimization	is	necessary	under	a	variety	of	performance	conditions,	and	optimization	for	337	

one	condition	may	not	necessarily	translate	to	another.	Mock	community	and	cross-338	

validated	evaluations	exhibited	similar	results,	but	novel	taxa	evaluations	selected	different	339	

optimal	configurations	for	most	methods	(Figure	4),	indicating	that	configurations	340	

optimized	to	one	condition,	e.g.,	high-recall	classification	of	known	sequences,	may	be	less	341	

suited	for	other	conditions,	e.g.,	classification	of	novel	sequences.	Table	2	lists	the	top-342	

performing	configuration	for	each	method	for	several	standard	performance	conditions.	343	

Optimal	configurations	also	varied	among	different	evaluation	metrics.	Precision	344	

and	recall,	in	particular,	exhibited	some	mutual	opposition,	such	that	methods	increasing	345	
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precision	reduced	recall.	For	this	reason,	F-measure,	the	harmonic	mean	of	precision	and	346	

recall,	is	a	useful	metric	for	choosing	configurations	that	are	well	balanced	for	average	347	

performance.	“Balanced”	method	configurations	—	which	maximize	F-measure	scores	for	348	

mock,	cross-validated,	and	novel	taxa	evaluations	(Table	2)	—	are	best	suited	for	a	wide	349	

range	of	user	conditions.	The	naive	Bayes	classifier	with	kmer	lengths	of	6	or	7	and	350	

confidence	=	0.7	(or	confidence	≥	0.9	if	using	bespoke	class	weights),	RDP	with	confidence	351	

=	0.6-0.7,	and	UCLUST	(minimum	consensus	=	0.51,	minimum	similarity	=	0.9,	max	accepts	352	

=	3)	perform	best	under	these	conditions	(Table	2).	Performance	is	dramatically	improved	353	

using	bespoke	class	weights	for	16S	rRNA	sequences	(Figure	4A-B),	though	this	approach	is	354	

developmental	and	only	applicable	when	the	expected	composition	of	samples	is	known	in	355	

advance	(a	scenario	that	is	becoming	increasingly	common	with	the	increasing	quantity	of	356	

public	microbiome	data,	and	which	could	be	aided	by	microbiome	data	sharing	resources	357	

such	as	Qiita	(http://qiita.microbio.me)).	For	ITS	sequences,	the	naive	Bayes	classifier	with	358	

kmer	lengths	of	6	or	7	and	confidence	≥	0.9,	or	RDP	with	confidence	=	0.7-0.9,	perform	best,	359	

and	the	effects	of	bespoke	class	weights	are	less	pronounced	(Figure	4C-D).		360	

However,	some	users	may	require	high-precision	classifiers	when	false-positives	361	

may	be	more	damaging	to	the	outcome,	e.g.,	for	detection	of	pathogens	in	a	sample.	362	

Precision	scores	are	maximized	by	naive	Bayes	and	RDP	classifiers	with	high	confidence	363	

settings	(Table	2).	Optimizing	for	precision	will	significantly	damage	recall	by	yielding	a	364	

high	number	of	false	negatives.	365	

Other	users	may	require	high-recall	classifiers	when	false-negatives	and	366	

underclassification	hinder	interpretation,	but	false	positives	(mostly	overclassification	to	a	367	

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3208v1 | CC BY 4.0 Open Access | rec: 30 Aug 2017, publ: 30 Aug 2017



	

18	
	

	

closely	related	species)	are	less	damaging.	For	example,	in	environments	with	high	368	

numbers	of	unidentified	species,	a	high-precision	classifier	may	yield	large	numbers	of	369	

unclassified	sequences;	in	such	cases,	a	second	pass	with	a	high-recall	configuration	(Table	370	

2)	may	provide	useful	inference	of	what	taxa	are	most	similar	to	these	unclassified	371	

sequences.	When	recall	is	optimized,	precision	tends	to	suffer	slightly	(leading	to	similar	F-372	

measure	scores	to	“balanced”	configurations)	but	novel	taxa	classification	accuracy	is	373	

minimized,	as	these	configurations	tend	to	overclassify	(Table	2).	Any	user	prioritizing	374	

recall	ought	to	be	aware	of	and	acknowledge	these	risks,	e.g.,	when	sharing	or	publishing	375	

their	results,	and	understand	that	many	of	the	species-level	classifications	may	be	wrong,	376	

particularly	if	the	samples	are	expected	to	contain	many	uncharacterized	species.	For	16S	377	

rRNA	sequences,	naive	Bayes	bespoke	classifiers	with	kmer	lengths	between	12-32	and	378	

confidence	=	0.5	yield	maximal	recall	scores,	but	RDP	(confidence	=	0.5)	and	naive	Bayes	379	

(uniform	class	weights,	confidence	=	0.5,	kmer	length	=	11,	12,	or	18)	also	perform	well	380	

(Table	2).	Fungal	recall	scores	are	maximized	by	the	same	configurations	recommended	for	381	

“Balanced”	classification,	i.e.,	naive	Bayes	classifiers	with	kmer	lengths	between	6-7	and	382	

confidence	between	0.92-0.98,	or	RDP	with	confidence	between	0.7-0.9	(Table	2).	383	

Runtime	requirements	may	also	be	the	chief	concern	dictating	method	selection	for	384	

some	users.	QIIME	1’s	UCLUST	wrapper	provides	the	fastest	runtime	while	still	achieving	385	

reasonably	good	performance	for	most	evaluations;	Naive	Bayes,	RDP,	and	BLAST+	also	386	

delivered	reasonably	low	runtime	requirements,	and	outperform	UCLUST	on	most	other	387	

evaluation	metrics.		388	

	389	
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Conclusions	390	

The	classification	methods	provided	in	q2-feature-classifier	will	support	improved	391	

taxonomy	classification	of	marker-gene	sequences,	and	are	released	as	a	free,	open-source	392	

plugin	for	use	with	QIIME	2.	We	demonstrate	that	these	methods	perform	as	well	as	or	393	

better	than	other	leading	taxonomy	classification	methods	on	a	number	of	performance	394	

metrics.	The	naive	Bayes,	vsearch,	and	BLAST+	consensus	classifiers	described	here	are	395	

released	for	the	first	time	in	QIIME	2,	with	optimized	“balanced”	configurations	(Table	2)	396	

set	as	defaults.	397	

We	also	present	the	results	of	a	benchmark	of	several	widely	used	taxonomy	398	

classifiers,	and	recommend	the	top-performing	methods	and	configurations	for	the	most	399	

common	user	scenarios.	Our	recommendations	for	“balanced”	methods	(Table	2)	will	be	400	

appropriate	for	most	users	who	are	classifying	16S	rRNA	or	fungal	ITS	sequences,	but	other	401	

users	may	prioritize	high-precision	(low	false-positive)	or	high-recall	(low	false-negative)	402	

methods.	403	

We	have	also	shown	that	great	potential	exists	for	improving	the	accuracy	of	404	

taxonomy	classifications	by	appropriately	setting	class	weights	for	the	machine	learning	405	

classifiers.	Currently,	no	tools	exist	that	allow	users	to	generate	appropriate	values	for	406	

these	class	weights	in	real	applications.	Compiling	appropriate	class	weights	for	different	407	

sample	types	could	be	a	promising	approach	to	further	improve	taxonomic	classification	of	408	

marker	gene	sequence	reads.	409	
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	410	

Methods	411	

Mock	communities	412	

All	 mock	 communities	 were	 sourced	 from	 mockrobiota	 [11].	 Raw	 fastq	 files	 were	413	

demultiplexed	 and	 processed	 using	 tools	 available	 in	 QIIME	 2	 (version	 2017.4)	414	

(https://qiime2.org/).	 Reads	 were	 demultiplexed	 with	 q2-demux	415	

(https://github.com/qiime2/q2-demux)	 and	 quality	 filtered	 and	 dereplicated	 with	 q2-416	

dada2	 [4].	 Representative	 sequence	 sets	 for	 each	 dada2	 sequence	 variant	were	 used	 for	417	

taxonomy	classification	with	each	classification	method.	418	

The	 inclusion	 of	 multiple	 mock	 community	 samples	 is	 important	 to	 avoid	 overfitting;	419	

optimizing	method	 performance	 to	 a	 small	 set	 of	 data	 could	 result	 in	 overfitting	 to	 the	420	

specific	 community	 compositions	 or	 conditions	 under	which	 those	 data	were	 generated,	421	

which	reduces	the	robustness	of	the	classifier.	422	

Cross-validated	simulated	reads	423	

The	 simulated	 reads	 used	 here	 were	 derived	 from	 the	 reference	 databases	 using	 the	424	

“Cross-validated	 classification	 performance”	 notebooks	 in	 our	 project	 repository.	 The	425	

reference	 databases	 where	 either	 Greengenes	 or	 UNITE	 (99%	 OTUs)	 that	 were	 cleaned	426	

according	 to	 taxonomic	 label	 to	 remove	 sequences	 with	 ambiguous	 or	 null	 labels.		427	
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Reference	sequences	were	trimmed	to	simulate	amplification	using	standard	PCR	primers	428	

and	 slice	 out	 the	 first	 250	 bases	 downstream	 (3’)	 of	 the	 forward	 primer.	 The	 exact	429	

sequences	were	used	for	cross	validation,	and	were	not	altered	to	simulate	any	sequencing	430	

error.	The	bacterial	primers	used	were	515F/806R	[17],	and	the	fungal	primers	used	were	431	

BITSf/B58S3r	 [18].	 Each	 database	 was	 stratified	 by	 taxonomy	 and	 10-fold	 randomised	432	

cross-validation	 data	 sets	 were	 generated	 using	 scikit-learn’s	 library	 functions.	Where	 a	433	

taxonomic	 label	 had	 less	 than	 10	 instances,	 taxonomies	 were	 amalgamated	 to	 make	434	

sufficiently	 large	 strata.	 If,	 as	 a	 result,	 a	 taxonomy	 in	 any	 test	 set	was	not	present	 in	 the	435	

corresponding	 training	 set,	 the	 expected	 taxonomy	 label	 was	 truncated	 to	 the	 nearest	436	

common	 taxonomic	 rank	 observed	 in	 the	 training	 set	 (e.g.,	 Lactobacillus	 casei	 would	437	

become	Lactobacillus).		The	notebook	detailing	simulated	read	generation	(for	both	cross-438	

validated	 and	 novel	 taxa	 reads)	 prior	 to	 taxonomy	 classification	 is	 available	 at	439	

https://github.com/caporaso-lab/tax-credit/blob/0.2.2/ipynb/novel-taxa/dataset-440	

generation.ipynb.	441	

Classification	 performance	 was	 also	 slightly	modified	 from	 a	 standard	machine-learning	442	

scenario	 as	 the	 classifiers	 in	 this	 study	 are	 able	 to	 refuse	 classification	 if	 they	 are	 not	443	

confident	 above	 a	 taxonomic	 level	 for	 a	 given	 sample.	 This	 also	 accommodates	 the	444	

taxonomy	truncation	that	we	performed	for	this	test.	The	methodology	was	consistent	with	445	

that	used	below	for	novel	taxa,	but	we	defer	this	description	to	the	next	section.	446	
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“Novel	taxa”	simulation	analysis	447	

“Novel	taxa”	analysis	was	performed	to	test	the	performance	of	classifiers	when	assigning	448	

taxonomy	 to	 sequences	 that	 are	 not	 represented	 in	 a	 reference	 database,	 e.g.,	 as	 a	449	

simulation	 of	what	 occurs	when	 a	method	 encounters	 an	 undocumented	 species.	 In	 this	450	

analysis,	 simulated	 amplicons	 were	 filtered	 from	 those	 used	 for	 the	 cross-validation	451	

analysis.		For	all	sequences	present	in	each	test	set,	sequences	sharing	taxonomic	affiliation	452	

at	a	given	taxonomic	 level	L	(e.g.,	 to	species	 level)	 in	the	corresponding	training	set	were	453	

removed.	Taxa	are	stratified	among	query	and	test	sets	such	that	for	each	query	taxonomy	454	

at	 level	 L,	 no	 reference	 sequences	 match	 that	 taxonomy,	 but	 at	 least	 one	 reference	455	

sequence	 will	 match	 the	 taxonomic	 lineage	 at	 level	 L-1	 (e.g.,	 same	 genus	 but	 different	456	

species).	 An	 ideal	 classifier	 would	 assign	 taxonomy	 to	 the	 nearest	 common	 taxonomic	457	

lineage	 (e.g.,	 genus),	 but	would	not	 “overclassify”	 to	 near	 neighbors	 (e.g.,	 assign	 species-458	

level	 taxonomy	when	species	X	 is	 removed	 from	 the	 reference	database).	For	example,	 a	459	

“novel”	 sequence	 representing	 the	 species	 Lactobacillus	 brevis	 should	 be	 classified	 as	460	

“Lactobacillus”,	without	species-level	annotation,	in	order	to	be	considered	a	true	positive	461	

in	 this	analysis.	As	described	above	 for	 cross-validated	 reads,	 these	novel	 taxa	 simulated	462	

communities	were	also	tested	in	both	bacterial	(B)	and	fungal	(F)	databases	on	simulated	463	

amplicons	trimmed	to	simulate	250-nt	sequencing	reads.	464	

Novel	 taxa	 classification	 performance	 is	 evaluated	 using	 precision,	 recall,	 F-465	

measure,	overclassification	rates,	underclassification	rates,	 and	misclassification	rates	 for	466	

each	 taxonomic	 level	 (phylum	 to	 species),	 computed	 with	 the	 following	 modified	467	
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definitions	 (see	below,	Performance	analyses	using	 simulated	 reads,	 for	 full	description	of	468	

precision,	 recall,	 and	 F-measure	 calculations;	 these	 calculations	 use	 the	 modified	469	

definitions	of	true	positive,	false	positive,	and	false	negative	as	described	here):	470	

1) A	true	positive	is	considered	the	nearest	correct	lineage	contained	in	the	reference	471	

database.	 For	 example,	 if	 Lactobacillus	 brevis	 is	 removed	 from	 the	 reference	472	

database	 and	 used	 as	 a	 query	 sequence,	 the	 only	 correct	 taxonomy	 classification	473	

would	be	“Lactobacillus”,	without	species-level	classification.	474	

2) A	false	positive	would	be	either	an	classification	to	a	different	Lactobacillus	species	475	

(Overclassification),	or	any	genus	other	than	Lactobacillus	(Misclassification).		476	

3) A	false	negative	occurs	if	an	expected	taxonomy	classification	(e.g.,	“Lactobacillus”)	477	

is	not	observed	in	the	results.	Note	that	this	will	be	the	modified	taxonomy	expected	478	

when	using	a	naive	reference	database,	and	 is	not	 the	same	as	 the	true	taxonomic	479	

affiliation	 of	 a	 query	 sequence	 in	 the	 novel	 taxa	 analysis.	 A	 false	 negative	 results	480	

from	 misclassification,	 overclassification,	 or	 when	 the	 classification	 contains	 the	481	

correct	 basal	 lineage,	 but	 does	 not	 assign	 a	 taxonomy	 label	 at	 level	 L	482	

(Underclassification).	 E.g.,	 classification	 as	 “Lactobacillaceae”,	 but	 no	 genus-level	483	

classification. 484	

Taxonomy	classification	485	

Representative	 sequences	 for	 all	 analyses	 (mock	 community,	 cross-validated,	 and	 novel	486	

taxa)	 were	 classified	 taxonomically	 using	 the	 following	 taxonomy	 classifiers	 and	 setting	487	

sweeps:	488	
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1. q2-feature-classifier	multinomial	naive	Bayes	classifier.	Varied	k-mer	length	489	

in	{4,	6,	7,	8,	9,	10,	11,	12,	14,	16,	18,	32}	and	confidence	threshold	in	{0,	0.5,	0.7,	0.9,	490	

0.92,	0.94,	0.96,	0.98,	1}. 491	

2. BLAST+	 [9]	 local	 sequence	 alignment,	 followed	 by	 consensus	 taxonomy	492	

classification	 implemented	 in	q2-feature-classifier.	Varied	max	accepts	 from	1	 to	100;	493	

percent	 identity	 from	 0.80	 to	 0.99;	 and	 minimum	 consensus	 from	 0.51	 to	 0.99.	 See	494	

description	below.	495	

3. vsearch	 [10]	 global	 sequence	 alignment,	 followed	 by	 consensus	 taxonomy	496	

classification	 implemented	 in	 q2-feature-classifier.	 Varied	 max	 accepts	 from	 1	 to	497	

100;	percent	identity	from	0.80	to	0.99;	and	minimum	consensus	from	0.51	to	0.99.	498	

See	description	below.	499	

4. Ribosomal	 Database	 Project	 (RDP)	 naïve	 Bayesian	 classifier	 [12]	 (QIIME1	500	

wrapper),	with	confidence	thresholds	between	0.0	to	1.0	in	steps	of	0.1. 501	

5. Legacy	BLAST	[13]	(QIIME1	wrapper)	varying	e-value	thresholds	from	1e-9	502	

to	1000. 503	

6. SortMeRNA	 [15]	 (QIIME1	 wrapper)	 varying	 minimum	 consensus	 fraction	504	

from	0.51	 to	0.99;	 similarity	 from	0.8	 to	0.9;	max	accepts	 from	1	 to	10;	and	coverage	505	

from	0.8	to	0.9. 506	

7. UCLUST	 [14]	 (QIIME1	wrapper)	 varying	minimum	consensus	 fraction	 from	507	

0.51	to	0.99;	similarity	from	0.8	to	0.9;	and	max	accepts	from	1	to	10.	508	

	509	
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With	the	exception	of	the	UCLUST	classifier,	we	have	only	benchmarked	the	performance	of	510	

open-source,	 free,	marker-gene-agnostic	 classifiers,	 i.e.,	 those	 that	 can	be	 trained/aligned	511	

on	a	reference	database	of	any	marker	gene.	Hence,	we	excluded	classifiers	 that	can	only	512	

assign	 taxonomy	 to	 a	 particular	 marker	 gene	 (e.g.,	 only	 bacterial	 16S	 rRNA	 genes)	 and	513	

those	that	rely	on	specialized	or	unavailable	reference	databases	and	cannot	be	trained	on	514	

other	 databases,	 effectively	 restricting	 their	 use	 for	 other	 marker	 genes	 and	 custom	515	

databases.	516	

Classification	of	 bacterial/archaeal	 16S	 rRNA	 sequences	was	made	using	 the	Greengenes	517	

reference	 sequence	database	 (13_8	 release)	 [5]	 preclustered	 at	 99%	 ID,	with	V4	domain	518	

amplicons	 extracted	 using	 primers	 515f/806r	 with	 q2-feature-classifier’s	 extract_reads	519	

method.	 Classification	 of	 fungal	 ITS	 sequences	 was	 made	 using	 the	 UNITE	 database	520	

(version	 7.1	 QIIME	 developer	 release)	 [19]	 preclustered	 at	 99%	 ID.	 	 For	 the	 cross	521	

validation	 and	 novel	 taxa	 tests	 we	 prefiltered	 to	 remove	 sequences	 with	 incomplete	 or	522	

ambiguous	 taxonomies	 (containing	 the	 substrings	 ‘unknown’,	 ‘unidentified’,	 or	 ‘_sp’	 or	523	

terminating	at	any	level	with	‘__’).	524	

	525	

The	notebooks	detailing	taxonomy	classification	sweeps	of	mock	communities	are	available	526	

at	https://github.com/caporaso-lab/tax-credit/tree/0.2.2/ipynb/mock-community.	Cross-527	

validated	read	classification	sweeps	are	available	at	https://github.com/caporaso-lab/tax-528	

credit/blob/0.2.2/ipynb/cross-validated/taxonomy-assignment.ipynb.	 Novel	 taxa	529	

classification	 sweeps	 are	 available	 at	 https://github.com/caporaso-lab/tax-530	

credit/blob/0.2.2/ipynb/novel-taxa/taxonomy-assignment.ipynb.	531	
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	532	

Runtime	analyses	533	

The	 tax-credit	 framework	employs	 two	different	 runtime	metrics:	 as	a	 function	of	1)	 the	534	

number	of	query	sequences	or	2)	the	number	of	reference	sequences.	Taxonomy	classifier	535	

runtimes	 were	 logged	 while	 performing	 classifications	 of	 pseudorandom	 subsets	 of	 1,	536	

2,000,	4,000,	6,000,	8,000,	and	10,000	sequences	from	the	Greengenes	99%	OTU	database.	537	

Each	subset	was	drawn	once	then	used	for	all	of	the	tests	as	appropriate.	All	runtimes	were	538	

computed	on	the	same	Linux	workstation	(Ubuntu	16.04.2	LTS,	Intel	Xeon	CPU	E7-4850	v3	539	

@	2.20GHz,	1TB	memory).	The	exact	commands	used	for	runtime	analysis	are	presented	in	540	

the	“Runtime	analyses”	notebook	in	the	project	repository	(https://github.com/caporaso-541	

lab/tax-credit/blob/0.2.2/ipynb/runtime/analysis.ipynb).	542	

Performance	analyses	using	simulated	reads	543	

Cross-validated	and	novel	taxa	reads	are	evaluated	using	the	classic	precision,	recall,	and	F-544	

measure	metrics	[5]	(novel	taxa	use	the	standard	calculations	as	described	below,	but	545	

modified	definitions	for	true	positive	(TP),	false	positive	(FP),	and	false	negative	(FN),	as	546	

described	above	for	novel	taxa).		547	

Precision,	recall,	and	F-measure	are	calculated	as	follows:	548	
○ Precision	=	TP/(TP+FP)	or	the	fraction	of	sequences	that	were	classified	correctly	at	549	

level	L.	550	

○ Recall	 =	 TP/(TP+FN)	 or	 the	 fraction	 of	 expected	 taxonomic	 labels	 that	 were	551	

predicted	at	level	L.	552	
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○ F-measure	=	2	×	Precision	×	Recall	/	(Precision	+	Recall),	or	the	harmonic	mean	of	553	

precision	and	recall.	554	

The	 Jupyter	 notebook	 detailing	 commands	 used	 for	 evaluation	 of	 cross-validated	 read	555	

classifications	 is	 available	 at	 https://github.com/caporaso-lab/tax-556	

credit/blob/0.2.2/ipynb/cross-validated/evaluate-classification.ipynb.	 The	 notebook	 for	557	

evaluation	of	novel	taxa	classifications	is	available	at	https://github.com/caporaso-lab/tax-558	

credit/blob/0.2.2/ipynb/novel-taxa/evaluate-classification.ipynb.	559	

Performance	analyses	using	mock	communities	560	

The	 Jupyter	 notebook	 detailing	 commands	 used	 for	 evaluation	 of	 mock	 communities,	561	

including	 the	 three	 evaluation	 types	 described	 below,	 is	 available	 at	562	

https://github.com/caporaso-lab/tax-credit/blob/0.2.2/ipynb/mock-563	

community/evaluate-classification-accuracy.ipynb.	564	

Precision	and	Recall	565	

Classic	 precision,	 recall,	 and	 F-measure	 are	 used	 to	 calculate	 mock	 community	566	

classification	accuracy,	using	the	definitions	given	above	for	simulated	reads.	These	metrics	567	

require	 knowing	 the	 expected	 classification	 of	 each	 sequence,	 which	 we	 determine	 by	568	

performing	 a	 gapless	 alignment	 between	 each	 representative	 sequence	 in	 the	 mock	569	

community	 and	 the	marker-gene	 sequences	 of	 each	microbial	 strain	 added	 to	 the	mock	570	

community.	 These	 “expected	 sequences”	 are	 provided	 for	 the	 mock	 communities	 in	571	

mockrobiota	 [11].	 Representative	 sequences	 are	 assigned	 the	 taxonomy	 of	 the	 best	572	
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alignment,	and	any	representative	sequence	with	more	than	3	mismatches	to	the	expected	573	

sequences	 are	 excluded	 from	 precision/recall	 calculations.	 If	 a	 representative	 sequence	574	

aligns	 to	more	 than	 one	 expected	 sequence	 equally	well,	 all	 top	 hits	 are	 accepted	 as	 the	575	

“correct”	 classification.	 This	 scenario	 is	 rare	 and	 typically	 only	 occurred	 when	 different	576	

strains	 of	 the	 same	 species	 were	 added	 to	 the	 same	 mock	 community	 to	 intentionally	577	

produce	 this	 challenge	 (e.g.,	 for	 mock-12	 as	 described	 by	 [4]).	 Precision,	 recall,	 and	 F-578	

measure	 are	 then	 calculated	 by	 comparing	 the	 “expected”	 classification	 for	 each	 mock	579	

community	sequence	to	the	classifications	predicted	by	each	taxonomy	classifier	using	the	580	

full	reference	databases,	as	described	above.	581	

Taxon	accuracy	rate	and	taxon	detection	rate	582	

Taxon	 accuracy	 rate	 (TAR)	 and	 taxon	 detection	 rate	 (TDR)	 are	 used	 for	 qualitative	583	

compositional	 analyses	 of	 mock	 communities.	 As	 the	 true	 taxonomy	 labels	 for	 each	584	

sequence	in	a	mock	community	are	not	known	with	absolute	certainty,	TAR	and	TDR	are	585	

useful	 alternatives	 to	 precision	 and	 recall	 that	 instead	 rely	 on	 the	 presence/absence	 of	586	

expected	 taxa,	 or	 microbiota	 that	 are	 intentionally	 added	 to	 the	 mock	 community.	 In	587	

practice,	 TAR/TDR	 are	 complementary	 metrics	 to	 precision/recall	 and	 should	 provide	588	

similar	 results	 if	 the	 expected	 classifications	 for	 mock	 community	 representative	589	

sequences	are	accurate.	590	

At	a	given	taxonomic	level,	a	classification	is	a:	591	

○ true	positive	(TP),	if	that	taxon	is	both	observed	and	expected.	592	
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○ false	positive	(FP),	if	that	taxon	is	observed	but	not	expected.	593	

○ false	negative	(FN),	if	a	taxon	is	expected	but	not	observed.	594	

These	are	used	to	calculate	TAR	and	TDR	as:	595	

○ TAR	=	TP/(TP+FP)	or	the	fraction	of	observed	taxa	that	were	expected	at	level	L.		596	

○ TDR	=	TP/(TP+FN)	or	the	fraction	of	expected	taxa	that	are	observed	at	level	L.	597	

	598	

Bray-Curtis	Dissimilarity	599	

Bray-Curtis	dissimilarity	[20]	 is	used	to	measure	the	degree	of	dissimilarity	between	two	600	

samples	 as	 a	 function	 of	 the	 abundance	 of	 each	 species	 label	 present	 in	 each	 sample,	601	

treating	 each	 species	 as	 equally	 related.	 This	 is	 a	 useful	 metric	 for	 evaluating	 classifier	602	

performance	by	assessing	 the	relative	distance	between	each	predicted	mock	community	603	

composition	(abundance	of	taxa	in	a	sample	based	on	results	of	a	single	classifier)	and	the	604	

expected	composition	of	that	sample.	For	each	classifier,	Bray-Curtis	distances	between	the	605	

expected	 and	 observed	 taxonomic	 compositions	 are	 calculated	 for	 each	 sample	 in	 each	606	

mock	 community	 dataset;	 this	 yields	 a	 single	 expected-observed	 distance	 for	 each	607	

individual	 observation.	 The	 distance	 distributions	 for	 each	 method	 are	 then	 compared	608	

statistically	 using	 paired	 or	 unpaired	 t-tests	 to	 assess	 whether	 one	 method	 (or	609	

configuration)	performs	consistently	better	than	another.	610	
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New	taxonomy	classifiers	611	

We	describe	q2-feature-classifier	(https://github.com/qiime2/q2-feature-classifier),	a	612	

plugin	for	QIIME	2	(https://qiime2.org/)	that	performs	multi-class	taxonomy	classification	613	

of	marker-gene	sequence	reads.	In	this	work	we	compare	the	consensus	BLAST+	and	614	

vsearch	methods	and	the	naive	Bayes	scikit-learn	classifier.	The	software	is	free	and	open-615	

source.	616	

Machine	learning	taxonomy	classifiers	617	

The	q2-feature-classifier	plugin	allows	users	to	apply	any	of	the	suite	of	machine	learning	618	

classifiers	available	in	scikit-learn	(http://scikit-learn.org)	to	the	problem	of	taxonomy	619	

classification	of	marker-gene	sequences.	It	functions	as	a	lightweight	wrapper	that	620	

transforms	the	problem	into	a	standard	document	classification	problem.	Advanced	users	621	

can	input	any	appropriate	scikit-learn	classifier	pipeline,	which	can	include	a	range	of	622	

feature	extraction	and	transformation	steps	as	well	as	specifying	a	machine	learning	623	

algorithm.	624	

	625	

The	plugin	provides	a	default	method	which	is	to	extract	k-mer	counts	from	reference	626	

sequences	and	train	the	scikit-learn	multinomial	naive	Bayes	classifier,	and	it	is	this	627	

method	that	we	test	extensively	here.	Specifically,	the	pipeline	consists	of	a	628	

sklearn.feature_extraction.text.HashingVectorizer	feature	extraction	step	followed	by	a	629	

sklearn.naive_bayes.MultinomialNB	classification	step.	The	use	of	a	hashing	feature	630	

extractor	allows	the	use	of	significantly	longer	k-mers	than	the	8-mers	that	are	used	by	631	
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RDP	Classifier,	and	we	tested	up	to	32-mers.	Like	most	scikit-learn	classifiers,	we	are	able	632	

to	set	class	weights	when	training	the	multinomial	naive	Bayes	classifiers.	In	the	naive	633	

Bayes	setting,	setting	class	weights	means	that	class	priors	are	not	derived	from	the	634	

training	data	or	set	to	be	uniform,	as	they	are	for	the	RDP	Classifier.	For	more	detail	on	how	635	

class	weights	enter	the	calculations	please	refer	to	the	scikit-learn	User	Guide	636	

(http://scikit-learn.org).	637	

	638	

In	most	settings,	it	is	highly	unlikely	that	the	assumption	of	uniform	weights	is	correct.	That	639	

assumption	is	that	each	of	the	taxa	in	the	reference	database	is	equally	likely	to	appear	in	640	

each	sample.	Setting	class	weights	to	more	realistic	values	can	greatly	aid	the	classifier	in	641	

making	more	accurate	predictions,	as	we	show	in	this	work.	When	testing	the	mock	642	

communities	we	made	use	of	the	fact	that	the	sequence	compositions	were	known	a	priori	643	

for	the	bespoke	classifier.	For	the	simulated	reads	studies,	we	allowed	the	classifier	to	set	644	

the	class	weights	from	the	class	frequencies	observed	in	each	training	set	for	the	bespoke	645	

classifier.	646	

	647	

For	this	study,	we	performed	two	parameter	sweeps	on	the	mock	communities:	an	initial	648	

broad	sweep	to	optimize	feature	extraction	parameters	and	then	a	more	focussed	sweep	to	649	

optimise	k-mer	length	and	confidence	parameter	settings.	These	sweeps	included	varying	650	

the	assumptions	regarding	class	weights.	The	focussed	sweeps	were	also	performed	for	the	651	

cross-validated	and	novel	taxa	evaluations,	but	only	for	the	assumption	of	uniform	class	652	
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priors.	The	results	for	the	focussed	sweeps	across	all	data	sets	are	those	which	are	653	

compared	against	the	other	classifiers	in	this	work.	654	

	655	

The	broad	sweeps	used	a	modified	scikit-learn	pipeline	which	consisted	of	the	656	

sklearn.feature_extraction.text.HashingVectorizer,	followed	by	the	657	

sklearn.feature_extraction.text.TfidfTransformer,	then	the	658	

sklearn.naive_bayes.MultinomialNB.	We	performed	a	full	grid	search	over	the	parameters	659	

shown	in	Table	3.	The	conclusion	from	the	initial	sweep	was	that	the	TfidfTransformer	step	660	

did	not	significantly	improve	classification,	that	n_features	should	be	set	to	8192,	feature	661	

vectors	should	be	normalised	using	L2	normalisation	and	that	the	alpha	parameter	for	the	662	

naive	Bayes	classifier	should	be	set	to	0.001.	Please	see	https://github.com/caporaso-663	

lab/tax-credit/blob/0.2.2/ipynb/mock-community/evaluate-classification-accuracy-nb-664	

extra.ipynb	for	details.	665	

Consensus	taxonomy	alignment-based	classifiers	666	

	667	

Two	new	classifiers	implemented	in	q2-feature-classifier	perform	consensus	taxonomy	668	

classification	based	on	alignment	of	a	query	sequence	to	a	reference	sequence.	The	669	

methods	classify_consensus_vsearch	and	classify_consensus_blast	use	the	global	aligner	670	

vsearch	[10]	or	the	local	aligner	BLAST+	[9],	respectively,	to	return	up	to	maxaccepts	671	

reference	sequences	that	align	to	the	query	with	at	least	perc_identity	similarity.	A	672	

consensus	taxonomy	is	then	assigned	to	the	query	sequence	by	determining	the	taxonomic	673	
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lineage	on	which	at	least	min_consensus	of	the	aligned	sequences	agree.	This	consensus	674	

taxonomy	is	truncated	at	the	taxonomic	level	at	which	less	than	min_consensus	of	675	

taxonomies	agree.	For	example,	if	a	query	sequence	is	classified	with	maxaccepts=3,	676	

min_consensus=0.51,	and	the	following	top	hits:	677	

	678	

k__Bacteria;	p__Firmicutes;	c__Bacilli;	o__Lactobacillales;	f__Lactobacillaceae;	679	

g__Lactobacillus;	s__brevis	680	

k__Bacteria;	p__Firmicutes;	c__Bacilli;	o__Lactobacillales;	f__Lactobacillaceae;	681	

g__Lactobacillus;	s__brevis	682	

k__Bacteria;	p__Firmicutes;	c__Bacilli;	o__Lactobacillales;	f__Lactobacillaceae;	683	

g__Lactobacillus;	s__delbrueckii	684	

	685	

The	taxonomy	label	assigned	will	be	k__Bacteria;	p__Firmicutes;	c__Bacilli;	686	

o__Lactobacillales;	f__Lactobacillaceae;	g__Lactobacillus;	s__brevis.	However,	if	687	

min_consensus=0.99,	the	taxonomy	label	assigned	will	be	k__Bacteria;	p__Firmicutes;	688	

c__Bacilli;	o__Lactobacillales;	f__Lactobacillaceae;	g__Lactobacillus.	689	
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	741	

Tables	and	Figures	742	

Table	1.	Mock	communities	currently	integrated	in	tax-credit.	743	

Study ID* target-gene Species Strains Citation 
mock-1 16S 46 48 [21] 
mock-2 16S 46 48 [21] 
mock-3 16S 21 21 [21] 
mock-4 16S 21 21 [21] 
mock-5 16S 21 21 [21] 

mock-7 16S 67 67 [22] 
mock-8 16S 67 67 [11] 

mock-9 ITS 13 16 [11] 

mock-10 ITS 13 16 [11] 

mock-12 16S 26 27 [4] 

mock-16 16S 56 59 [23] 

mock-18 16S 15 15 [24] 

mock-19 16S 15 27 [24] 

mock-20 16S 20 20 [25] 

mock-21 16S 20 20 [25] 

mock-22 16S 20 20 [25] 

mock-23 16S 20 20 [25] 

mock-24 ITS 8 8 [26] 

mock-26 ITS 11 11 [27] 
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*All studies are available on mockrobiota [11] at https://github.com/caporaso-744	

lab/mockrobiota/tree/master/data/[studyID] 745	

 746	

Table	2.	Optimized	methods	configurations	for	standard	operating	conditions.	747	

    Mock Cross-validated Novel taxa  

Target Condition Method Parameters F P R F P R F P R Threshold 

Balanced NB-bespoke [6,6]:0.9 0.705 0.98 0.582 0.827 0.931 0.744 0.165 0.243 0.125 F = (0.49, 0.8, 0.1) 

  [6,6]:0.92 0.705 0.98 0.581 0.825 0.936 0.737 0.165 0.251 0.123 F = (0.7, 0.8, 0.15) 

  [6,6]:0.94 0.703 0.98 0.579 0.822 0.942 0.729 0.162 0.259 0.118  

  [7,7]:0.92 0.712 0.978 0.592 0.831 0.931 0.751 0.151 0.221 0.115  

  [7,7]:0.94 0.708 0.978 0.586 0.829 0.936 0.743 0.157 0.239 0.117  

 naive-bayes [7,7]:0.7 0.495 0.797 0.38 0.819 0.886 0.761 0.115 0.138 0.099  

 rdp 0.6 0.564 0.798 0.457 0.815 0.868 0.768 0.102 0.128 0.084  

  0.7 0.55 0.799 0.438 0.812 0.892 0.746 0.124 0.173 0.096  

 uclust 0.51:0.9:3 0.498 0.746 0.392 0.846 0.876 0.817 0.154 0.201 0.126  

Precision NB-bespoke [6,6]:0.98 0.676 0.987 0.537 0.803 0.956 0.692 0.163 0.303 0.111 P = (0.94, 0.95, 0.25) 

  [7,7]:0.98 0.687 0.98 0.551 0.815 0.951 0.713 0.164 0.283 0.115  

 rdp 1 0.239 0.941 0.16 0.632 0.968 0.469 0.12 0.457 0.069  

Recall NB-bespoke [12,12]:0.5 0.754 0.8 0.721 0.815 0.83 0.801 0.053 0.058 0.049 R = (0.47, 0.75, 0.04) 

  [14,14]:0.5 0.758 0.802 0.726 0.811 0.826 0.797 0.052 0.057 0.048 R = (0.7, 0.75, 0.04) 

  [16,16]:0.5 0.755 0.785 0.732 0.808 0.825 0.792 0.052 0.058 0.047  

  [18,18]:0.5 0.772 0.803 0.748 0.805 0.823 0.789 0.055 0.061 0.05  

  [32,32]:0.5 0.937 0.966 0.913 0.788 0.818 0.76 0.054 0.067 0.045  

 naive-bayes [11,11]:0.5 0.567 0.77 0.479 0.793 0.82 0.768 0.059 0.065 0.055  
16S 
rRNA   [12,12]:0.5 0.567 0.769 0.479 0.79 0.816 0.765 0.059 0.064 0.055  

   [18,18]:0.5 0.564 0.764 0.477 0.779 0.807 0.753 0.057 0.063 0.051  

  rdp 0.5 0.577 0.791 0.48 0.816 0.848 0.787 0.068 0.079 0.06  

 Novel blast+ 10:0.51:0.8 0.436 0.723 0.325 0.816 0.896 0.749 0.225 0.332 0.171 F = (0.4, 0.8, 0.2) 

  uclust 0.76:0.9:5 0.467 0.775 0.348 0.84 0.938 0.76 0.219 0.358 0.158  

  vsearch 10:0.51:0.8 0.45 0.74 0.342 0.814 0.891 0.75 0.226 0.333 0.171  

   10:0.51:0.9 0.45 0.74 0.342 0.82 0.896 0.755 0.219 0.338 0.162  

Fungi Balanced naive-bayes [6,6]:0.94 0.874 0.935 0.827 0.481 0.57 0.416 0.374 0.438 0.327 F = (0.85, 0.45, 0.37) 
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   [6,6]:0.96 0.874 0.935 0.827 0.495 0.597 0.423 0.399 0.473 0.344  

   [6,6]:0.98 0.874 0.935 0.827 0.505 0.629 0.423 0.426 0.52 0.361  

   [7,7]:0.98 0.874 0.935 0.827 0.485 0.596 0.409 0.388 0.47 0.33  

  NB-bespoke [6,6]:0.94 0.928 0.968 0.915 0.48 0.567 0.416 0.371 0.433 0.325  

   [6,6]:0.96 0.928 0.968 0.915 0.491 0.59 0.42 0.393 0.466 0.34  

   [6,6]:0.98 0.927 0.97 0.913 0.504 0.624 0.422 0.421 0.512 0.358  

   [7,7]:0.98 0.935 0.97 0.921 0.487 0.596 0.412 0.386 0.466 0.329  

  rdp 0.7 0.929 0.939 0.922 0.479 0.572 0.413 0.382 0.451 0.332  

   0.8 0.924 0.939 0.915 0.507 0.633 0.422 0.434 0.534 0.366  

   0.9 0.922 0.937 0.913 0.517 0.698 0.411 0.47 0.617 0.379  

 Precision naive-bayes [6,6]:0.98 0.874 0.935 0.827 0.505 0.629 0.423 0.426 0.52 0.361 P = (0.92, 0.6, 0.3) 

  NB-bespoke [6,6]:0.98 0.927 0.97 0.913 0.504 0.624 0.422 0.421 0.512 0.358  

  rdp 0.8 0.924 0.939 0.915 0.507 0.633 0.422 0.434 0.534 0.366  

   0.9 0.922 0.937 0.913 0.517 0.698 0.411 0.47 0.617 0.379  

   1 0.821 0.943 0.742 0.461 0.81 0.322 0.459 0.774 0.327  

 Recall NB-bespoke [6,6]:0.92 0.938 0.971 0.924 0.467 0.544 0.409 0.353 0.407 0.312 R = (0.9, 0.4, 0.3) 

   [6,6]:0.94 0.928 0.968 0.915 0.48 0.567 0.416 0.371 0.433 0.325  

   [6,6]:0.96 0.928 0.968 0.915 0.491 0.59 0.42 0.393 0.466 0.34  

   [6,6]:0.98 0.927 0.97 0.913 0.504 0.624 0.422 0.421 0.512 0.358  

   [7,7]:0.96 0.935 0.969 0.921 0.47 0.56 0.404 0.357 0.422 0.31  

   [7,7]:0.98 0.935 0.97 0.921 0.487 0.596 0.412 0.386 0.466 0.329  

  rdp 0.7 0.929 0.939 0.922 0.479 0.572 0.413 0.382 0.451 0.332  

   0.8 0.924 0.939 0.915 0.507 0.633 0.422 0.434 0.534 0.366  

   0.9 0.922 0.937 0.913 0.517 0.698 0.411 0.47 0.617 0.379  

 Novel naive-bayes [6,6]:0.98 0.874 0.935 0.827 0.505 0.629 0.423 0.426 0.52 0.361 F = (0.85, 0.45, 0.4) 

  NB-bespoke [6,6]:0.98 0.927 0.97 0.913 0.504 0.624 0.422 0.421 0.512 0.358  

  rdp 0.8 0.923 0.939 0.915 0.507 0.633 0.422 0.434 0.534 0.366  

   0.9 0.921 0.937 0.913 0.517 0.698 0.411 0.47 0.617 0.379  

	748	

aF	=	F-measure,	P	=	precision,	R	=	recall	749	
bNaive	Bayes	parameters:	k-mer	range,	confidence	750	
cRDP	parameters:	confidence	751	
dBLAST+/vsearch	parameters:	max	accepts,	minimum	consensus,	minimum	percent	752	
identity	753	
eUCLUST	parameters:	minimum	consensus,	similarity,	max	accepts	754	
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fThreshold	describes	the	score	cutoffs	used	to	define	optimal	method	ranges,	in	the	format:	755	
[metric	=	(mock	score,	cross-validated	score,	novel-taxa	score)].	If	two	cutoffs	are	given,	756	
the	second	indicates	a	higher	cutoff	used	to	select	parameters	for	the	developmental	NB-757	
bespoke	method,	and	the	configurations	listed	are	the	union	of	the	two	cutoffs:	the	second	758	
cutoff	for	selecting	NB-bespoke,	the	first	for	selecting	all	other	methods.	759	
	760	

	761	

Table	3.	Naive	Bayes	broad	grid	search	parameters	762	

Step Parameter Values 

sklearn.feature_extraction.text.HashingVectorizer n_features 1024, 8192, 65536 

 ngram_range [4,4], [8, 8], [16, 16], [4,16] 

sklearn.feature_extraction.text.TfidfTransformer norm l1', 'l2', None 

 usd_idf True, False 

sklearn.naive_bayes.MultinomialNB alpha 0.001, 0.01, 0.1 

 class_prior None, array of class weights 

post processing confidence 0, 0.2, 0.4, 0.6, 0.8 

	763	

	764	

	765	
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Figure	1.	Classifier	performance	on	mock	community	datasets	for	16S	rRNA	sequences	(left	768	

column)	and	fungal	ITS	sequences	(right	column).	A,	Average	F-measure	for	each	taxonomy	769	

classification	method	(averaged	across	all	configurations	and	all	mock	community	770	

datasets)	from	class	to	species	level.	Error	bars	=	95%	confidence	intervals.	B,	Average	F-771	

measure	for	each	optimized	classifier	(averaged	across	all	mock	communities)	at	species	772	

level.	C,	Average	taxon	accuracy	rate	for	each	optimized	classifier	(averaged	across	all	mock	773	

communities)	at	species	level.	D,	Average	Bray-Curtis	distance	between	the	expected	mock	774	

community	composition	and	its	composition	as	predicted	by	each	optimized	classifier	775	

(averaged	across	all	mock	communities)	at	species	level.	Violin	plots	show	median	(white	776	

point),	quartiles	(black	bars),	and	kernel	density	estimation	(violin)	for	each	score	777	

distribution.	Violins	with	different	lower-case	letters	have	significantly	different	means	778	

(paired	t-test	false	detection	rate-corrected	P	<	0.05).	779	
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	780	

Figure	2.	Classifier	performance	on	cross-validated	sequence	datasets	for	16S	rRNA	781	

sequences	(left	column)	and	fungal	ITS	sequences	(right	column).	A,	Average	F-measure	for	782	

each	taxonomy	classification	method	(averaged	across	all	configurations	and	all	cross-783	

validated	sequence	datasets)	from	class	to	species	level.	Error	bars	=	95%	confidence	784	

intervals.	B,	Average	F-measure	for	each	optimized	classifier	(averaged	across	all	cross-785	

validated	sequence	datasets)	at	species	level.	Violins	with	different	lower-case	letters	have	786	

significantly	different	means	(paired	t-test	false	detection	rate-corrected	P	<	0.05).	787	
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Figure	3.	Classifier	performance	on	novel-taxa	simulated	sequence	datasets	for	16S	rRNA	789	

sequences	(left	column)	and	fungal	ITS	sequences	(right	column).	A-F,	Average	F-measure	790	

(A),	precision	(B),	recall	(C),	overclassification	(D),	underclassification	(E),	and	791	

misclassification	(F)	for	each	taxonomy	classification	method	(averaged	across	all	792	

configurations	and	all	novel	taxa	sequence	datasets)	from	phylum	to	species	level.	Error	793	

bars	=	95%	confidence	intervals.	B,	Average	F-measure	for	each	optimized	classifier	794	

(averaged	across	all	novel	taxa	sequence	datasets)	at	species	level.	Violins	with	different	795	

lower-case	letters	have	significantly	different	means	(paired	t-test	false	detection	rate-796	

corrected	P	<	0.05).	797	
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	798	

Figure	4.	Classification	accuracy	comparison	between	mock	community,	cross-validated,	799	

and	novel	taxa	evaluations.	Scatterplots	show	mean	F-measure	scores	for	each	method	800	

configuration,	averaged	across	all	samples,	for	classification	of	16S	rRNA	at	genus	level	(A)	801	

and	species	level	(B),	and	fungal	ITS	sequences	at	genus	level	(C)	and	species	level	(D).	802	
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	803	

Figure	5.	Runtime	performance	comparison	of	taxonomy	classifiers.	Runtime	(s)	for	each	804	

taxonomy	classifier	either	varying	the	number	of	query	sequences	and	keeping	a	constant	805	

10000	reference	sequences	(A)	or	varying	the	number	of	reference	sequences	and	keeping	806	

a	constant	1	query	sequence	(B).		807	

	808	

	809	
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