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Abstract
The development of methods to estimate rates of speciation and extinction from time-calibrated 

phylogenies has revolutionized evolutionary biology by allowing researchers to correlate 

diversification rate shifts with causal ecological factors. A growing number of researchers are 

interested in testing whether the evolution of a trait or a trait variant has influenced speciation 

rates, and three modelling methods – BiSSE, MEDUSA and BAMM – have been widely used in 

such studies. We simulated phylogenies with a single speciation rate shift each, and evaluated the 

power of the three methods to detect these shifts. We varied the degree of increase in speciation 

rate (rate asymmetry), the number of tips, the tip-ratio bias (ratio of number of tips with each 

character state) and the relative age in relation to overall tree age when the rate shift occurred. All

methods had good power to detect rate shifts when the rate asymmetry was strong and the sizes 

of the two lineages with the distinct speciation rates were large. Even when lineage size was 

small, power was good when rate asymmetry was high. In our simulated scenarios, small lineage 

sizes appear to affect BAMM most strongly. Tip-ratio influenced the accuracy of speciation rate 

estimation but did not have a strong effect on power to detect rate shifts. Based on our results, we

provide some suggestions to users of these methods.
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Introduction
Much as the advent of methods to infer phylogenies (Edwards & Cavalli-Sforza, 1963; Sokal & 

Sneath, 1963; Camin & Sokal, 1965; Hennig, 1965) led to a spectacular revolution in 

evolutionary biology, the arrival of mathematical methods to estimate divergence times from 

molecular phylogenies has offered unprecedented novel insights into macroevolution. More 

recently, a seminal innovation has been the development of tools to estimate rates of speciation 

and extinction from time-calibrated phylogenies (Nee, May & Harvey, 1994). Until such methods

became available, our understanding of macroevolutionary patterns and processes of 

diversification largely relied on the fossil record, which is incomplete for most taxa (Benton, 

Wills & Hitchin, 2000; Quental & Marshall, 2010) and virtually non-existent for many soft-

bodied life forms (Donoghue & Purnell, 2009). However, the possibility of using dated 

phylogenies of extant taxa to shed light on macroevolutionary history is appealing, and there has 

been a phenomenal interest in applying such methods to understand fundamental questions such 

as how the mode and tempo of diversification have been influenced by trait evolution (especially 

‘key innovations’)(e.g. Hunter & Jernvall, 1995; Hodges & Arnold, 1995; Near et al., 2012; 

Rainford et al., 2014; Peña & Espeland, 2015; Sahoo et al., 2017), biogeography (e.g. Kozak, 

Weisrock & Larson, 2006; Wahlberg et al., 2009; Dunn et al., 2009; Sanders, Mumpuni & Lee, 

2010; Sundue, Testo & Ranker, 2010), climate change (e.g.Jansson & Davies, 2008; Dunn et al., 

2009; Arakaki et al., 2011; Ezard et al., 2011; Near et al., 2012; Xiang et al., 2014), etc.

The diversification rate of a lineage is the difference between its speciation rate λ and extinction 

rate μ. Testing hypothesis of diversification rate variation is underpinned by the ability to 

decouple and accurately estimate these rates. Estimates of extinction rates from phylogenies of 

extant taxa appear to be error prone (Rabosky, 2010; Laurent, Robinson-Rechavi & Salamin, 

2015; May & Moore, 2016; but see Stadler, 2013; Beaulieu & O’Meara, 2016). On the other 

hand, speciation rate estimates are generally considered to be more robust. One of the most 

common themes in macroevolutionary studies over the last decade has been to test whether a trait

(or trait variant) has increased speciation rates (e.g.  Sundue, Testo & Ranker, 2010; Claramunt et 

al., 2012; Escudero et al., 2012; Litsios et al., 2012; Horn et al., 2014; Rainford et al., 2014; 

Xiang et al., 2014; Gubry-Rangin et al., 2015; Igea et al., 2017, Wiens et al., 2017; Sahoo et al., 

2017, Seeholtzer et al., 2017), with a suite of analytical tools providing the framework to infer 

speciation rate variation across the phylogeny.

For long, analyses testing the effect of a trait on diversification relied on comparisons of species 

richness of sister clades (e.g. Mitter, Farrell & Wiegmann, 1988; Zeh, Zeh & Smith, 1989). This 

method cannot distinguish between λ and μ , is prone to Type II error (non-detection of 

significant diversification rate differences), and does not effectively utilize information from 

clades with mixed character states (Maddison, Midford & Otto, 2007). The most recent methods 

aim to utilize information in the branching patterns of dated phylogenies to decouple λ from μ 

(Stadler, 2011). The BiSSE (Binary State Speciation and Extinction) (Maddison, Midford & Otto,

2007) modelling approach has been especially popular for hypothesis testing because it estimates 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3206v2 | CC BY 4.0 Open Access | rec: 30 Mar 2018, publ: 30 Mar 2018



λ and μ associated with character states, i.e state-dependent diversification rates. BISSE specifies 

a likelihood model where λ and μ can depend on the character state of a lineage at each time 

point, and the rates of character state change are allowed to vary ( Maddison, Midford & Otto, 

2007; Fitzjohn 2009). Likelihood scores are estimated simultaneously for character state-

dependent λ and μ as well as rates of character change. AIC (Akaike Information Criterion) based

model comparison allows the user to infer whether character state-dependent diversification best 

fits the data (Maddison et al., 2007; FitzJohn et al. 2009; FitzJohn 2010). BISSE requires a 

completely resolved dated phylogeny with information on character states of tips as input, and 

can take into account incomplete sampling (Fitzjohn et al., 2009).

While BiSSE only models binary discrete character states (for example presence or absence of a 

trait; two states of a trait), extensions of BiSSE can handle other types of data. MuSSE (Multiple 

SSE; FitzJohn, 2012) can deal with multiple discrete character states, while QuaSSE 

(Quantitative  SSE; FitzJohn, 2010) allows testing the effect of quantitative traits. GeoSSE 

(Geographic SSE; Goldberg, Lancaster & Ree, 2011) tests region-dependent diversification, 

while BiSSE-ness (BiSSE-node enhanced state shift; Magnuson-Ford & Otto, 2012) and 

Cladogenetic SSE (ClaSSE; Goldberg & Igić, 2012) integrate cladogenetic and anagenetic trait 

evolution. Beaulieu & O’Meara (2016) proposed the HiSSE (Hidden States SSE) model, which 

attempts to account for unmeasured (‘hidden’) factors impacting diversification rates of a known 

trait or character state.

In contrast to the BiSSE family of methods, character-independent diversification methods 

attempt to identify the number and location of rate shifts in speciation and extinction across the 

tree, without a priori information on the mechanism of rate variation. Once the locations of rate 

shifts are found, the researcher can test for associations with traits of interest. MEDUSA 

(Modeling Evolutionary Diversification Using Stepwise Akaike Information Criterion; Alfaro et 

al., 2009), is one such framework that has been very popular. MEDUSA incrementally assigns 

rate shifts to all branches of the tree, and uses stepwise AIC to determine the number and 

location(s) of rate shifts that best fit the data. Rate shifts estimates are thus agnostic of the cause 

of rate variation among lineages.

BAMM (Bayesian Analysis of Macroevolutionary Mixtures; Rabosky, 2014) is the most widely 

used character-independent diversification modelling method. BAMM assumes that  λ and μ are 

heterogenous across the phylogeny, and that changes in these parameters across branches occur 

under a compound Poisson process. It uses reversible-jump Markov Chain Monte Carlo to 

explore models varying in the number of shifts in diversification parameters. Estimates of λ and 

μ, and inferences on the number of rate shifts are based on posterior distributions. Both BAMM 

& MEDUSA require a dated phylogeny, and can accommodate incomplete sampling.

Although BiSSE, BAMM and MEDUSA have been very popular, recent critical evaluations of 

their performance have highlighted potential shortcomings particular to each method. Using 
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empirical datasets, Rabosky & Goldberg (2015) found that BiSSE is prone to high Type I error 

rates, wherein diversification-neutral traits are often found to be significantly associated with 

speciation rate. Surprisingly, such false associations appear to be detected even for traits with 

weak phylogenetic signal (Rabosky & Goldberg, 2015). BiSSE has been  shown to be affected by

tree size (number of tips) (Davis, Midford & Maddison, 2013; Gamisch, 2016) and tip-ratio bias 

(i.e. ratio of tips with one character state versus another) (Davis, Midford & Maddison, 2013). 

May & Moore (2016) used extensive simulations to understand the statistical behavior of 

MEDUSA, and showed that the method is prone to a very high rate of false inferences of rate 

shifts (ca. 30% on average), and that the estimated diversification parameters are biased. The 

probability of rate shift detection in MEDUSA depends on the number of terminals in the tree 

(Laurent, Robinson-Rechavi & Salamin, 2015). Moore et al. (2016) showed that the accuracy of 

BAMM is strongly affected by the priors specified, and that the estimates diversification rate 

parameters are unreliable (although see Rabosky et al., 2017).

Analyses of simulated phylogenies have proved to be a valuable tool to assess the performance of

the various modelling approaches. We simulated phylogenies with a single speciation rate shift 

each, and evaluated the power of of BiSSE, BAMM & MEDUSA to detect these shifts. We 

varied the degree of increase in speciation rate, the number of tips, the tip-ratio bias and the 

relative age in relation to tree age when the rate shift occurred. We found that all methods have 

good power to detect rate shifts under many conditions, but also identified some scenarios under 

which these methods have low power.

Materials and Methods

(1) Simulation of phylogenetic trees with single diversification rate shifts

(1a) General procedure

The basic workflow of the simulation process is outlined in Figure 1. To obtain a phylogeny with

a single shift in speciation rate, we first simulated two trees - a basetree and a subtree wherein the

subtree  had a greater speciation rate (λ1) compared to that of the  basetree (λ0). A subtree of a

given age (Sage) was grafted onto the basetree following pruning of a randomly chosen basetree

clade with approximately the same age (Sage ±2.5%) (Figure 1), using a custom written function

(available in Figshare). This generated a composite tree with a single speciation rate shift (λ0 to

λ1). Details of the subtree and basetree simulations are described in the next section. The relative

age of the subtree in relation to that of the overall tree was varied by varying the age of the

subtree. This procedure was followed to generate trees with fixed overall size, but with different

relative subtree ages (Sages), tip-ratios (no. of basetree tips: no. of subtree tips) and speciation rate

asymmetry (λ1/λ0 ) (Table 1).

(1b) Tree simulation    

We used the package TESS (Höhna, May & Moore, 2015) to simulate trees in R (R Core Team 

2016). The package implements tree simulation based on a global, time-dependent birth-death 
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process conditioned either on number tips or age of the tree (Höhna, May & Moore, 2015). In our

simulations, we generated phylogenetic trees under a constant birth-death process by 

conditioning on age using the function tess.sim.age, which simulates trees given the age 

(basetree age Bage & Sage) and diversification rate parameters (speciation rate λ and extinction rate

µ). As this method produces trees with varying number of tips, we simulated 1000 trees each time

and used the function tess.nTaxa.expected from the same package to select the best tree out of the

1000 trees. This was done by comparing the expected number of tips for every 1 unit time with 

the simulated tree using a correlation test. The tree with the maximum correlation coefficient was 

chosen as the best tree.

(2) Systematic simulation of composite trees

(2a) Simulation Set 1: Rate asymmetry and relative subtree ages

We fixed λ0 at 0.20, and varied speciation rate asymmetry (λ1/λ0) by altering λ1, while keeping

extinction rates  constant  (µ0=µ1).  Thus,  higher  asymmetry values  indicate a  greater  degree of

speciation rate increase in the subtree. Bage was allowed to vary between 5 and 35 units to obtain

the targeted tree sizes. To estimate the influence of tree size, we eliminated all trees that did not

fit within the targeted tree size classes (50±10, 100±10, 150±10, 200±10, 300±10 and 500±10).

We simulated 50 composite trees each for all combinations of tree size classes and six λ1/λ0 ratios

ranging from 1.5X to 5.5X This was done for Sages 20%, 40% and 60% relative to basetree age

(Table 1). Therefore, this simulation set comprised 1500 trees each for three Sages. Simulated trees

were subsequently used in  the diversification analyses where BAMM, MEDUSA and BiSSE

were used to detecte the simulated rate shifts (Section 3).

(2b) Simulation Set 2: Tip-ratio bias and number of tips

To differentiate between the effects of subtree size, basetree size and tip-ratio, we simulated trees 

with three tip-ratio values (basetree:subtree number of tips; 1:9, 9:1 and 1:19), all with a 2X 

speciation rate asymmetry. We chose 2X because our pilot simulations indicated that power was 

neither very high nor very low. For each tip-ratio value, we simulated trees with different overall 

tree sizes (50±10, 100±10, 200±10, 400±10 and 800±10). In order to achieve the target tip 

numbers and tip-ratios, Bage was allowed vary between 5 and 35 units, and Sage between 30 and 

70%. We were unable to simulate trees with 1:9 ratio for the 100±10 size class, and we therefore 

used a 1:8 ratio as an approximation.

(3) Estimation of diversification rate parameters and power of modelling approaches

We used BiSSE, MEDUSA and BAMM to estimate diversification rate parameters (λ0, µ0, λ1 and

µ1  )  of  the  simulated  composite  trees  and  detect  rate  shifts.  Power  was  calculated  as  the

proportion of trees in which a significant rate shift was detected at the node where the  subtree

was attached to the basetree.

(3a) BiSSE
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For the BiSSE analysis, a character was assigned to be present in all subtree tips, but absent in all

basetree  tips.  Therefore,  diversification  rate  estimates  of  the  BiSSE  model  will  reflect  the

speciation and extinction rate estimates of the subtree (i.e. λ1 and µ1) and basetree (λ0 and µ0). We

then  compared  the  unrestricted  full  model  (λ1≠λ0;  µ0≠µ1;  unequal  rates  of  character  state

transition)  to  a  model  with  restricted  speciation  rates  (λ1=λ0)  using  likelihood  ratio  tests.  If

P<0.05,  the  rate  shift  was  considered  to  have  been  detected,  while  the  rate  shift  was  not

considered detected if P≥0.05.

 

(3b) MEDUSA

We performed MEDUSA analyses using the function MEDUSA (available from the GitHub as an 

R package https://github.com/josephwb/turboMEDUSA). We specified the model of tree 

evolution to be a birth-death process to estimate the diversification rate parameters. We recorded 

the node where the rate shift was detected and the estimated diversification rates.

(3c) BAMM

We  performed  BAMM  analyses  with  the  default  parameter  settings  using  the  control  file

available  from  the  BAMM  website  (http://bamm-project.org/quickstart.html#control-file

accessed:  August  2017).  The priors used to estimate the speciation and extinction rates were

generated using the setBAMMpriors for each tree using the BAMMtools package (Rabosky et al.,

2014) in R. We ran the MCMC analysis for 2 million iterations and checked for convergence

using ESS metrics (>200). The bammdata object was generated using the getEventData function

from the BAMMtools package after discarding the first 10% of samples as burnin. The bammdata

object was then used to calculate the diversification rates.

We estimated speciation and extinction rates for the subtree (λ1 and µ1) as the average rate of the 

clade using the function getCladeRates from the BAMMtools package (Rabosky et al., 2014). We

estimated λ0 and µ0 using the same function by specifying the common ancestor node of the 

composite tree, but excluding the rates of the subtree.

(4) Accuracy of estimated asymmetry and speciation rates

To compare the difference between the expected and estimated asymmetry, we calculated the 

estimated asymmetry ratio as the median of the estimated subtree/basetree speciation rates for a 

given set of trees. The estimated asymmetry ratio was calculated independently for the various 

combinations of tree size class, Sage and simulated rate asymmetry in Simulation Set 1. Therefore,

each estimated asymmetry value was the median of the estimates of 50 trees.

We also calculated the error in estimation of λ0 and  λ1 for trees in Simulation Set 2. Error was 

calculated as the median of expected/estimated λ for each combination of tree size class and tip-

ratio. Thus, a value of 1 represents no error, values >1 indicate overestimation of λ, and values < 

1 indicate underestimation.
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Results

Effect of speciation rate asymmetry

In analyses of trees from Simulation Set 1, power increased both with asymmetry and tree size 

across all three subtree ages and for all methods (Figure 2), but the overall effect of asymmetry 

and tree size depended on subtree age (Sage). We first discuss results for Sages 20% and 40%, 

which showed very similar trends (Figure 2A-F). Power was close to zero for an asymmetry of 

1.5X, irrespective of tree size, and power was very high (nearly 1) for all tree size classes when 

asymmetry was 4.5X or 5.5X. The exception was the set of BAMM analyses on trees of Sage 40% 

(Figure 2F), where 4.5X and 5.5X asymmetries had low power (less than 0.5) for very small tree 

sizes. For intermediate asymmetries (2.5X and 3.5X), power correlated strongly with tree size for

all methods.

In the case of Sage 60%, no asymmetry level resulted in uniformly high or low power across all 

tree sizes. Rather, there was a strong association between power and tree size for all asymmetries 

(Figure 2G-I).

The number of basetree tips, subtree tips and the ratio of basetree:subtree tips (tip-ratio bias) for 

a given tree size class depended on Sage (Supplemental Information S1). Both the number of 

basetree tips and tip-ratio bias decreased, but subtree size increased, with increasing Sage. The 

effect of these three parameters was explored further in Simulation 2.

Figure 3 depicts the relationship between expected (i.e. simulated) and estimated asymmetry 

ratios. The estimated asymmetry ratio was generally correlated with the expected ratios, but there 

was a trend for the estimated ratio to be smaller than the expected when trees were small. This 

trend was particularly strong for BAMM. Power tended to be positively correlated with the 

estimated asymmetry ratio (comparing Figures 2 & 3)

Effect of tip-ratio bias and the number of tips in the basetree/subtree

Figure 4 depicts results from analyses of trees simulated in Set 2, all of which had a 2X 

asymmetry, overall size ranging from 50 to 800, and one of three tip-ratios, either biased towards 

the basetree (9:1) or the subtree (1:9 and 1:19). Panels D-I depict the error in estimation of λ0 (D-

F) and λ1 (G-I).

a) BiSSE (Figure 4A): Among trees of 1:9 tip ratio (red bars), power ranged from ca. 0.2 

to ca. 1 depending on tip number, and from ca. 0.30 to ca. 0.8 among trees with 1:19 tip ratio 

(green bars). Power always increased when basetree size (5, 10, 20, 40 or 80) increased, but did 

not increase when basetree size remained constant and only the subtree size increased 

(comparisons between adjacent green and red bars). When tip-ratio was basetree biased (blue 

bars), power ranged from ca. 0.4 to 1. Power was marginally higher for tip-ratio 9:1 than for 9:1 

(comparison of adjacent blue and red bars).
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BiSSE had a strong tendency to overestimate λ0 (error >1) when the ratio was 1:19. Error was 

relatively low for other ratios (Figure 4D).

b) MEDUSA (Figure 4B): Power was strongly correlated with overall tree size for all 

three tip-ratios. Power ranged from ca. 0.2 to 1 for the 1:9 tip-ratio (red bars), and from ca. 0.5 to 

1 for  the 1:19 tip-ratio (green bars). For smaller tree sizes, power increased when basetree size 

remained constant and subtree size increased, for e.g. comparison of trees with 5-45 and 5-90 

basetree-subtree tips, or 20-180 and 20-380. Power ranged from ca. 0.1 to ca. 1 for the basetree 

biased tip-ratio (blue bars), and was overall higher for tip-ratio 1:9 compared to 9:1 (comparison 

of adjacent blue and red bars).

MEDUSA had a strong tendency to overestimate λ0 (error >1) for larger trees with 1:19 tip-ratio 

and to underestimate λ0 for smaller trees at 1:9 ratio (Figure 4E).

c) BAMM (Figure 4C): Power remained at ca. 0.25 for both subtree biased tip-ratios when tree 

size ≤ 200 tips (red and green bars). For trees of the 400 size class, power was ca. ca. 0.4 when 

there were 20 subtree tips, but increased to ca 0.5 when there were 40 subtree tips. Power was 

low (>0.25) for the basetree biased tip-ratio irrespective of tree size (blue bars). Power was 

highest for trees with 800 tips and subtree biased tip-ratios (0.75 or 1). Power was overall higher 

for tip-ratio 1:9 than for 9:1 (comparison of adjacent blue and red bars).

Error in speciation rate estimates

BAMM tended to understimate λ0 for all tree sizes and tip-ratios, but this effect was strongest at 

the 1:9 tip-ratio (Figure 4F). All three methods tended to underestimate  λ1 when the tip-ratio was

1:9, and overestimate this for the 9:1 and 1:19 tip-ratios (Figures 4G-I).

Discussion

Previous studies have identified shortcomings specific to particular modelling approaches for 

estimation of rate shifts in phylogenies (Rabosky, 2010; Davis, Midford & Maddison, 2013; 

Laurent, Robinson-Rechavi & Salamin, 2015; Rabosky & Goldberg, 2015; Gamisch, 2016; 

Moore et al., 2016; May & Moore, 2016; Meyer & Wiens, 2017). We simulated large sets of trees

where speciation and extinction rates remained constant throughout the tree (basetree), apart 

from an increase in speciation rate at a single node (subtree), and analyzed these trees using three 

widely used modelling approaches. We are therefore able to assess the relative performance of the

three methods, and identify issues that are common to these methods. We find that the power to 

detect speciation rate shifts was strongly influenced by rate asymmetry and tip number for all 

methods.

Effect of rate asymmetry

Not surprisingly, power increased as the speciation rate asymmetry increased, which has also 

been reported in other studies (e.g. Davis, Midford & Maddison, 2013; Laurent, Robinson-

Rechavi & Salamin, 2015). All methods performed poorly when the subtree speciation rate 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3206v2 | CC BY 4.0 Open Access | rec: 30 Mar 2018, publ: 30 Mar 2018



increased by only 50% (1.5X) relative to the basetree, suggesting that moderate rate increases are

difficult to detect. However, even with a high asymmetry of 5X, a significant proportion of rate 

shifts were undetected by all methods (Type II error), especially in smaller trees. Davis, Midford 

& Maddison (2013) and Gamisch (2016) showed that BiSSE analyses on small trees are prone to 

high Type II error. They simulated complex evolutionary scenarios with multiple increases and 

decreases in diversification parameters at random points across the tree, and only assessed the 

effect of overall tree size. Laurent, Robinson-Rechavi & Salamin (2015) tested the performance 

of MEDUSA for both simple scenarios with a single speciation rate shift and more complex 

scenarios with multiple shifts and mass extinctions. Interestingly, they found that overall tree size

had a positive influence in the complex scenarios (their Figure 5a), but not for the single rate shift

scenario (their Figure 3b). In their single rate shift scenario, power increased with the size of the 

lineage in which the rate shift occurred (i.e., the subtree). This suggests that power may be 

affected not by the overall tip number, but by the number of tips in the basetree or the subtree, 

both of which are correlated with overall tip number. We discuss this in more detail in the section 

‘Effects of lineage tip number and tip-ratio bias’.

The performance of all three methods was comparable at most asymmetry values. However, 

BiSSE and MEDUSA appear to perform better than BAMM when asymmetry is not high. When 

Sage was 20%, BAMM rarely detected a rate shift at 2.5X asymmetry even in the largest trees. At 

40% Sage, BAMM had lower power than the other two methods at 2.5X asymmetry, irrespective 

of tree size. Furthermore, BAMM performed worse than the other two when the second set of 

simulations with 2X asymmetry were analyzed (Figure 4). On the other hand, power was 

negligible for all methods at the weakest asymmetry (1.5X ) in Simulation Set 1. Power tended to

be correlated with estimated asymmetry ratios for all methods (Figure 2 & 3). Thus, our results 

indicate that BiSSE and MEDUSA perform better when speciation rate asymmetry is between ca.

2X to 2.5X, and all methods fail to detect rate shifts when the rate increase is 1.5X or lesser.

Effect of subtree age

The power of all methods was lower at Sage 60% compared to Sages 40% and 20%. This is not due 

to tree size, because the simulated tree sizes were the same for all Sages. However, for a given 

asymmetry value and overall tree size, subtree sizes are necessarily larger for higher Sages 

(Supplemental Information S1), and therefore basetree sizes need to be smaller to accommodate 

the larger subtrees. Thus, subtree size, basetree size and tip-ratio bias were all influenced by Sage, 

and one or all of these factors may explain why power was compromised at Sage 60% compared to

the younger Sages.

Effects of lineage tip number and tip-ratio bias

The second set of simulations explicitly attempted to tease apart the effects of overall tree size, 

subtree size, basetree size and and tip-ratio bias. We simulated three tip ratios, two of which were

subtree biased (1:9 and 1:19) and the third, basetree biased (9:1). We varied basetree and subtree 
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size from 5-720, and the overall tree size from 50-800. We were thus able to not only test whether

tip-ratio bias affected power, but also compare power for trees with the same subtree or basetree 

size, but varying overall tree size. As expected, overall tree size generally correlated positively 

with power for all methods. However, although both 1:9 and 9:1 tip ratios had the same tip-ratio 

bias, these ratios differed in power within the same tree size class; this was the case for all 

methods (Figure 4A-C; comparison of red and blue bars). For BiSSE, there was either no 

difference in power between these two tip-ratios or power tended to be greater at 9:1, but power 

was always greater at 1:9 for MEDUSA and BAMM.  Furthermore, power varied significantly 

among tree sizes for any given tip-ratio. This was so even when tree sizes were very large, and 

therefore when power may be expected to be uniformly high. This indicates that the number of 

tips in the lineages with distinct speciation rates (i.e. basetree and subtree) may play a stronger 

role than tip-ratio bias per se. Indeed, both subtree and basetree sizes had a strong effect on 

power for all three methods.

However, the methods differed in terms of how influential subtree and basetree size were. For 

BiSSE, power did not increase when tree size doubled at the same basetree size, for e.g, when 

basetree was 10 and subtree size changed to 190 from 90. If lineages on a tree differ in speciation

rates, estimates of these rates should be more error prone, because the size of these lineages is 

smaller. Generally, if lineages differ in diversification rates, the size of such lineages with distinct

diversification parameters will be larger in larger trees. This may explain why power increases 

with tree size, as has been found here and in other studies (e.g. Davis, Midford & Maddison, 

2013; Laurent, Robinson-Rechavi & Salamin, 2015; Gamisch et al., 2016). The effect of lineage 

size also explains results in Davis et al. (2013), where power initially increased with increasing 

asymmetry but later decreased with further asymmetry increase, and this pattern was consistent 

for all overall tree sizes (their Figure 1a). They concluded that the positive effect of asymmetry 

was counteracted by the negative effect of increasing tip-ratio bias as asymmetry increased. 

However, at higher asymmetries (and thus at stronger tip-ratios bias), the number of tips available

for parameter estimation is likely to have been the limiting factor. For e.g., a tree with 500 tips 

(the largest tree size they simulated) and an asymmetry of 10X had a tip-ratio of 90:1, and thus 

one of the lineages would have had <6 tips. Therefore, we suggest that their results are better 

explained by the effect of lineage size rather than tip-ratio per se (although we do not argue that 

tip-ratio does has not effect), and that stronger asymmetries will always improve power of 

detection by BISSE as long as there are enough tips in each lineage with a distinct speciation 

rate.

For MEDUSA, there was a tendency for increase in power when subtree size increased without a 

change in basetree size (Figure 4B; comparison of red and green bars), indicating that overall tree

size may partially offset the deleterious effect of small lineage size. This effect was also seen in 

the BAMM analyses, where the basetree remained at 40, but subtree size doubled.
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Inferences can be drawn on the relative importance of subtree and basetree sizes by comparing 

9:1 and 1:9 tip-ratios (Figure 4; comparison of red and blue bars for the same tree size). For 

BiSSE, power tended to be higher for 9:1, suggesting small basetree size is more detrimental 

compared to small subtree size. This is probably because parameter estimation is more accurate 

for the monophyletic subtree compared to the paraphyletic basetree. On the other hand, power 

was lower at 9:1 for both MEDUSA and BAMM, which suggests that the three methods are 

differently affected by basetree and subtree sizes. Surprisingly, BAMM rarely detected rate shifts 

at this tip-ratio, even in the largest trees, and this maybe related to inaccurate estimates of 

speciation rates. However, we find no other clear correlations between error and power for 

Simulation Set 2.

Recommendations

In practice, a researcher intending to analyze diversification rate shifts may only have 

information about overall tree size, and not the sizes of lineages with distinct rates. In such cases, 

we agree with recommendations of Davis and colleagues (Davis, Midford & Maddison, 2013) 

who suggested inferences based on BiSSE analyses of trees with fewer than 300 tips should be 

made very cautiously. We extend the same recommendation to BAMM and MEDUSA. Thus, if 

no rate shift is detected when using BiSSE, BAMM or MEDUSA on small phylogenies, users 

should be careful when concluding that speciation rate has been constant.

When testing hypotheses of character-dependent diversification, users typically have information 

through ancestral state reconstructions on the size of lineages that potentially have distinct 

diversification rates. Davis and colleagues (Davis, Midford & Maddison, 2013) recommended 

cautious interpretation when analyzing datasets where <10% of species are of one character state.

We conclude that the number of tips with a particular character state are a better predictor of 

power, rather than proportion, especially when using BiSSE. For instance, if 5% of the tips have a

character state (1:20 when there are only two character states), power of detection may not be 

compromised as long as there is strong rate asymmetry, there are at least 100 tips with the 

character state and the character state is not polyphyletic. Generally, we suggest that tip-ratio may

not be a big problem when analyzing very large trees (>1000 tips).

Data availability

Data files and codes supporting the article can be accessed from Figshare via 

https://figshare.com/s/cb85b1db6a64328b36f9
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Table 1: Parameter values of variables in Simulation Set 1

Range of parameter values of variables during simulation of trees for Simulation Set 1

Variables Variable name Values

Basetree age Bage 3-35

Subtree age Sage 20,40,60 % of basetree

Basetree speciation rate λ0 0.20

Asymmetry (λ1 / λ0) λ1 1.5, 2.5, 3.5, 4.5, 5.5

Basetree extinction rate µ0 0.05

Subtree extinction rate µ1 0.05

Overall tree size class Ts 50,100,150,200,300,500
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Figures

Figure 1: Flowchart of the simulation process

Flowchart of the simulation process used to generate a composite tree with a single speciation

rate shift. A basetree with a target age (Bage) and speciation rate λ0 was simulated using TESS,

and pruned at a target subtree age (Sage). A subtree with speciation rate λ1 and the target Sage was

simulated independently and grafted on to the basetree at the pruned node.
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Figure 2: Effect of rate asymmetry and tree size

Power,  measured  as  the  proportion  of  shifts  detected,  for  BiSSE (first  column),  MEDUSA

(second column) and BAMM (third column), in trees from the Simulation Set 1. All trees had the

same  basetree speciation rate of λ0, but  subtree speciation rate λ1, Sage, and tree size differed.

Trees were of the following size classes: 50±10, 100±10, 150±10, 200±10, 300±10 and 500±10.

Speciation rate asymmetry varied from 1X to 5.5X. Sage was 20% (Row 1), 40% (Row 2) or 60%

(Row 3).
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Figure 3: Relationship between expected and estimated speciation rate asymmetry

Relationship  between  expected  and  estimated  speciation  rate  asymmetry  for  trees  from

Simulation Set 1; BiSSE (first column), MEDUSA (second column) and BAMM (third column).

Estimated speciation rate  asymmetry was calculated as the median of the estimated ratios of

subtree/basetree speciation rates for a given set of trees.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3206v2 | CC BY 4.0 Open Access | rec: 30 Mar 2018, publ: 30 Mar 2018



Figure 4: Effect of lineage size, tree size and tip-ratio

Power, measured as the proportion of shifts detected, for BiSSE (A), MEDUSA (B) and BAMM

(C), in trees from the Simulation Set 2. All trees had a 2X asymmetry, but belonged to one of five

size  classes (50±10,  100±10,  200±10,  400±10  and  800±1)  and  three  tip-ratios,  i.e.,

basetree:subtree tips. Bars are colour coded based on the tip-ratio. X axis labels indicate overall

tree size and number of tips in the  basetree and  subtree separated by a hyphen. For e.g 45-5

indicates 45 basetree and 5 subtree tips. Error in estimation of basetree speciation rate λ0  (D-F)

and  subtree speciation  rate λ1  (G-I).  A value  of  1  represents  no  error,  values  >1  indicate

overestimation and values < 1 indicate underestimation of λ. Note:  We were unable to simulate

trees with 1:9 ratio for 100±10 size class, and therefore used a 1:8 ratio as an approximation.
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