
1

A wireless marker system to enable evoked

potential recordings using a wireless EEG

system (EPOC) and a portable computer

Johnson Thie

School of Electrical and Information Engineering

The University of Sydney, Australia

Abstract

As wireless EEG devices have become affordable at low cost, have a small form factor and

quick setup time, they can be deployed at universities and schools for teaching purposes. However

they have not been applied for evoked potential recording since they lack an option to receive

stimulus markers. Meanwhile evoked potential recording is required for functional assessment of

the sensory systems such as auditory and visual. This paper describes a wireless system that embeds

information about the stimulus in the EEG channels. The transmitter unit is connected to the stimulus

device to detect the stimulus and transmit the stimulus information to the receiver unit. The receiver

unit attached to two of the EEG electrodes decodes the information and generates a pulse across

the electrodes. The pulse width conveys the information about the stimulus. Hence the stimuli are

synchronised with the EEG data allowing users to evaluate the evoked potentials in the offline

processing. The wireless marker system was verified with audio stimuli consisting of 1000Hz and

1200Hz tones and reliably generated pulses with 100ms and 200ms width respectively. The delay

between the onset of the tone and the onset of the pulse was 19.3 ± 0.1ms. Since the variability

of the delay was under 1ms and so negligible, the evoked potentials could be evaluated reliably.

The evoked potential could be shifted back by 19.3ms to compensate for the delay. The system

was also verified with a black-and-white checkerboard pattern stimuli and reliably generated pulses

with 100ms width when the pattern reversed. The delay between the onset of the reversal and the

onset of the pulse was 6.4ms. Similarly the variability of the delay was negligible.

Index Terms

EEG, Emotiv, EPOC, evoked potential, Arduino

June 12, 2013 DRAFTPeerJ PrePrints | https://peerj.com/preprints/32v1/ | v1 received: 15 Jun 2013, published: 15 Jun 2013, doi: 10.7287/peerj.preprints.32v1

P
re
P
rin

ts

2

I. INTRODUCTION

Wireless devices for recording physiological signals have become available for general

consumer usage at a low cost. Recently wireless devices to record EEG were commercialized

by Neurosky and Emotiv for consumer applications, particularly in video games. Users are

provided with the software development kit that allows them to build their own software

applications, e.g. controlling an avatar’s action using their thoughts or practising meditation

to elevate the alpha wave (burst of 10Hz oscillations). Neurosky and Emotiv set up an online

store for users to offer their applications to public. Users also have access to the raw EEG

and so can learn how to analyse the EEG. Similarly they can build custom applications which

directly use the raw EEG.

The devices are suitable candidates for deployment at universities and schools for demon-

strating brain functions and hands-on applications of engineering and programming in biology

at a much lower cost. For example, students will not only be able to observe the presence

of alpha waves which indicate the alertness level but also develop custom signal processing

and pattern recognition algorithms to quantify the alertness level. In addition, more students

will be able to develop applications for brain computer interface and compete at the annual

competition.

To date, these devices have been primarily used for research. Examples include using the

Emotiv’s device to record steady-state visual evoked potential [1] and P300 potential [2], [3].

The Neurosky’s device has also been used to record steady-state visual evoked potential [4],

deduce a person’s emotion [5] and control a wheelchair [6]. In the Emotiv’s developer forum,

there have been discussions on using the device for school projects (e.g. http://emotiv.com/

forum/messages/forum4/topic935/message5585/#message5585 and http://emotiv.com/forum/

messages/forum15/topic649/message3721/#message3721).

Another important aspect of brain functions is the sensory response. For instance, the

auditory response can be obtained when the subject’s EEG is recorded while listening to

certain audio stimuli. Students can then learn the behaviour of the auditory and visual cortices

in response to various audio and visual stimuli respectively as well as writing programs to

evaluate and analyse the evoked potentials. They can explore various algorithms to analyse

and quantify the evoked potentials, build a database of evoked potential parameters and devise

an algorithm to automatically detect abnormal evoked potentials.

Recently, Babcock et al. [7] demonstrated that the Emotiv’s device can be used to record

June 12, 2013 DRAFTPeerJ PrePrints | https://peerj.com/preprints/32v1/ | v1 received: 15 Jun 2013, published: 15 Jun 2013, doi: 10.7287/peerj.preprints.32v1

P
re
P
rin

ts

3

auditory evoked potentials. They showed that the evoked potentials were comparable to those

obtained using a medical-grade EEG device such as Neuroscan. The same setup can also be

adapted for visual evoked potentials.

One significance in Babcock et al.’s work was the ability to synchronise the EEG recording

from the Emotiv’s device with the stimuli. The absence of synchronisation was a major

shortfall in the Emotiv’s device. Thie [8] developed the marker circuit for the Emotiv’s EEG

device that embedded the stimulus onset in the EEG channels thereby synchronizing them.

The circuit produced a pulse on two of the EEG electrodes when an auditory stimulus was

detected. The pulse had the same duration as the stimulus and a fixed amplitude of about

300µV. Since the pulses representing the stimulus onset were embedded with the EEG, the

EEG could be divided into epochs that were aligned to the pulses. Then the evoked potential

was evaluated by averaging the epochs. Unfortunately the marker circuit used wires to connect

to the EEG device and the computer that generated the stimuli. Hence the overall system

became no longer wireless.

This paper describes a wireless system to embed the stimulus onset to the EEG channels

such that the overall system remains wireless. The transmitter unit is attached to the computer

that produces the stimuli, detects the stimulus onset and sends the corresponding information

to the receiver unit via an infrared link. The receiver unit is mounted on the headset and

generates pulses on two of the EEG electrodes. The width of the pulses are configurable to

represent different types of stimulus. The system accommodates for both auditory and visual

evoked potentials. Though it was designed to work with Emotiv’s EEG device, it should

readily work with other wireless EEG devices too. This system offers several advantages

over Thie’s marker circuit [8], namely, (a) the overall system remains wireless, (b) it can

discriminate between different tones (audio frequencies) and in turn produce pulses with

different widths, (c) it can accommodate for auditory and visual evoked potentials. For

convenience, the system will be referred to as “wireless marker” and the pulses as “marker

pulses”.

The wireless marker was designed to be low cost, customisable, built using widely available

components and open source in order to support the application of the wireless EEG devices

for educational purposes. Given these constraints, the transmitter and receiver units employ

off-the-shelf Arduino boards which meet all the criteria above. The code editor and compiler

can be downloaded for free. The interface circuits, often called “shield” by the Arduino com-

munity, used generic electronic components which can be purchased from major electronic

June 12, 2013 DRAFTPeerJ PrePrints | https://peerj.com/preprints/32v1/ | v1 received: 15 Jun 2013, published: 15 Jun 2013, doi: 10.7287/peerj.preprints.32v1

P
re
P
rin

ts

4

vendors such as Farnell and Digikey. The schematics and board layout files are available

upon request.

Section II provides the technical description of the transmitter and receiver units of the

wireless marker and the methods to verify their usage in auditory and visual evoked po-

tential recording. Section III describes the verification results. Section IV concludes the

system design and verification. Appendices A and B outline the transmitter and receiver

code respectively.

II. METHODS

A. Transmitter

The transmitter unit consists of an Arduino Uno board and a shield. The shield’s schematics

is shown in Figure 1. The shield board was designed such that it could be mounted on top of

the Arduino board through the headers, PA1 to PA4. Details about the Arduino Uno board

can be found in http://www.arduino.cc/. The transmitter has three operating modes, namely,

analogue, digital and serial which are selected using a slide switch (S1).

In the analog mode, the shield expects an audio signal from a 3.5mm socket (J2), removes

its DC offset and amplifies the signal by 10×. Such a high gain ensures that the peak of the

audio signal will reach the supply rail of 5V. A 2.5V reference is used to bias the amplifier

since it operates on a single rail power supply. Then the Arduino microcontroller samples

the signal through the analog input A0 and determines its frequency through the function

run_audio_input_two_tones(). As the analog signal oscillates from 0 to 5V, the

digital samples will oscillate from 0 to 1023. The onset of the signal is detected when the

sample exceeds 560 (ANATH). The samples are stored in a buffer and whenever their values

increase and cross 511 (ANAREF), a counter is incremented. The counter corresponds to the

number of oscillations in the buffer. Given a buffer size of 100 samples and a sampling period

of about 0.1ms (the typical sampling period of analogRead()), the buffer contains 10ms

of the signal. Hence given 1000Hz and 1200Hz audio tones, the corresponding counter values

should be 10 and 12 respectively. However from experiment, the counter values turned out to

be 12 and 14 respectively. Hence the threshold to discriminate between these two frequencies

was set to 13. When the lower frequency tone is detected, the pulse width is set to 100ms.

Otherwise, the pulse width is 200ms. The pulse width was limited to 250ms and so can be

represented as a byte.

June 12, 2013 DRAFTPeerJ PrePrints | https://peerj.com/preprints/32v1/ | v1 received: 15 Jun 2013, published: 15 Jun 2013, doi: 10.7287/peerj.preprints.32v1

P
re
P
rin

ts

5

In the digital mode, users can use any of the Arduino’s digital pins (D2 to D8) which can

be accessed through pins 1 to 7 of the connector J3 respectively. When all pins are set as an

input, a unique pulse width can be transmitted when any individual pin or any combination

of the 7 pins changes its state. Hence up to 27−1 = 127 different pulse widths are available.

The digital mode is most likely used to detect changes in the visual stimuli for visual

evoked potential recording. The visual stimulus is a black and white checkerboard pattern

that reverses its pattern (black to white and white to black) periodically. A phototransistor

circuit, shown in Figure 2, is placed on the corner of the monitor screen so that it can detect

the reversal. The VCC and Out nodes were connected to pins D2 and D3 respectively where

pin D2 is configured as an output and set to high while pin D3 is configured as an input.

These pins are linked to pins 1 and 2 of the 8-pin mini DIN connector (J3) respectively.

When a white check is displayed in front of the phototransistor, it will be switched on

and its collector voltage drops to a very low voltage. This in turn switches off the MOSFET

and pulls its drain voltage to high. Hence a high state is detected at the digital input D3. On

the other hand when a black check is displayed, the phototransistor is switched off and its

collector voltage is pulled to high. In turn, the MOSFET is switched on pulling the drain

voltage to low. Hence a low state is detected. The function run_vep() detects the changes

at the digital input and sends a pulse width of 100ms when the stimulus reverses its pattern

occurs.

In the serial mode, the function run_serial_input() reads a byte from the UART

port available at the digital pins D0 and D1. The value is assigned to the pulse width directly

and sent to the receiver. The UART port can be connected to the PC’s serial port via a RS-232

to TTL converter.

B. Infrared link

An infrared (IR) link is used to send the value of the pulse width to the receiver unit. The

infrared (IR) link relies on an IR LED (TSAL6200, Vishay semiconductor) and IR receiver

(TSOP4P38, Vishay semiconductor). These components are inexpensive and suitable for a

short distance and low data rate transmission. The maximum expected transmission distance

is about 1m and the data rate is only 2000bit/s. The data transmission starts by sending a

start bit (low). Then the data is transmitted serially starting with the least significant bit. No

parity check is implemented. The duration of each bit is 0.5ms. So the overall transmission

of one byte only takes 4.5ms.

June 12, 2013 DRAFTPeerJ PrePrints | https://peerj.com/preprints/32v1/ | v1 received: 15 Jun 2013, published: 15 Jun 2013, doi: 10.7287/peerj.preprints.32v1

P
re
P
rin

ts

6

1

1

2

2

3

3

4

4

D D

C C

B B

A A

Title

Number RevisionSize

A

Date: 23-May-13 Sheet of
File: C:\Users\..\Wireless_trigger_tx.SchDoc Drawn By:

1
2
3
4
5
6
7
8

PA1

Header 8

1
2
3
4
5
6
7
8

PA2

Header 8

1
2
3
4
5
6

PA3

Header 6

1
2
3
4
5
6

PA4

Header 6

D0
D1
D2
D3
D4
D5
D6
D7

D8
D9
D10
D11
D12
D13

AREF

A0
A1
A2
A3
A4
A5

RESET

VIN

GND

GND

3V35V

2

3
11

4
11

U1A

LM324AN
100nF

C2

10K

R5

10K

R1

100K

R2

5V

REF

GNDREF

AudioIn
A0

10K
R7

5V

10K
R8

10K
R9

10K
R10

GND

A1

D0

D1
GND

GND

GND

470
R4

GND

D1
LED

D13

5V

100nF
C1

GND

100

R3

D2
IRLED, TSAL6200

GND

A1
AudioIn

HPFsig

HPFsig
A0

D2
D3
D4
D5
D6
D7
D8

D13

10K
R11

GND

5V

5

6
72

4
11

U1B

LM324AN

REF

1
2

3
4

S1

SP3T slide

1
2
3
4
5
6
7
8

J3

Mini DIN 8 poles PSG01570

3

1

2
J1

Socket 2.5mm PRO SIGNAL - MJ-2325

10K

R12

10K

COM1

R12

R23

R34

R45

R56

R67

R78

R89

R910

R6

ResArrayComm9

D0
D1
D2
D3
D4
D5
D6
D7
D8

2

1

3
J4

STSocket3.5 LUMBERG - 1502 01

2

1

3
J2

STSocket3.5 LUMBERG - 1502 01

10K

R13

5V

Q1
2N3906

1
2
3
4
5
6
7
8
9
10
11
12
13
14

P1

Header 14

TP1
TP2

TP3

TP4

GND

P
0
C
1
0
1

P
0
C
1
0
2

P0C201 P0C202

P
0
D
1
0
1

P
0
D
1
0
2

P
0
D
2
0
1

P
0
D
2
0
2

P0J101

P0J102

P0J103

P0J201

P0J202

P0J203

P0J301

P0J302

P0J303

P0J304

P0J305

P0J306

P0J307

P0J308

P0J401

P0J402

P0J403

P0P101

P0P102

P0P103

P0P104

P0P105

P0P106

P0P107

P0P108

P0P109

P0P1010

P0P1011

P0P1012

P0P1013

P0P1014

P0PA101

P0PA102

P0PA103

P0PA104

P0PA105

P0PA106

P0PA107

P0PA108

P0PA201

P0PA202

P0PA203

P0PA204

P0PA205

P0PA206

P0PA207

P0PA208

P0PA301

P0PA302

P0PA303

P0PA304

P0PA305

P0PA306

P0PA401

P0PA402

P0PA403

P0PA404

P0PA405

P0PA406

P
0
Q
1
0
1

P0Q102

P
0
Q
1
0
3

P0R101 P0R102 P0R201 P0R202

P0R301 P0R302

P
0
R
4
0
1

P
0
R
4
0
2

P
0
R
5
0
1

P
0
R
5
0
2

P0R601

P0R602

P0R603

P0R604

P0R605

P0R606

P0R607

P0R608

P0R609

P0R6010

P
0
R
7
0
1

P
0
R
7
0
2

P
0
R
8
0
1

P
0
R
8
0
2

P
0
R
9
0
1

P
0
R
9
0
2

P
0
R
1
0
0
1

P
0
R
1
0
0
2

P
0
R
1
1
0
1

P
0
R
1
1
0
2

P0R1201 P0R1202

P0R1301 P0R1302

P0S101

P0S102

P0S103

P0S104

P
0
T
P
1
0
1

P
0
T
P
2
0
1

P
0
T
P
3
0
1

P
0
T
P
4
0
1

P0U101

P0U102

P0U103

P
0
U
1
0
4

P
0
U
1
0
1
1

P
0
U
1
0
4

P0U105

P0U106

P0U107

P
0
U
1
0
1
1

P0PA402

P
0
C
1
0
2

P0PA403
P
0
Q
1
0
1

P0R601

P
0
R
7
0
2

P
0
R
1
1
0
2

P
0
U
1
0
4

P0P104

P0PA301

P0R201

P
0
T
P
2
0
1

P0U101 N0A0

N0A0

N0A0

P0P101

P0PA302

P0S103

P
0
T
P
3
0
1

N0A1

N0A1

N0A1

P0PA303
N0A2

P0PA304

N0A3

P0PA305
N0A4

P0PA306
N0A5

P0PA208
N0AREF

P0C201

P0J202

P0J203

P0P102

P
0
T
P
1
0
1

N0AUDIOIN

N0AUDIOIN

P0J403

P0PA101

P0R602

N0D0

N0D0

N0D0

P0J401

P0PA102

P0R603

N0D1

N0D1

N0D1

P0J301

P0P106

P0PA103

P0R604
N0D2

N0D2

N0D2

P0J302

P0P107

P0PA104

P0R605
N0D3

N0D3

N0D3

P0J303

P0P108

P0PA105

P0R606
N0D4

N0D4

N0D4

P0J304

P0P109

P0PA106

P0R607
N0D5

N0D5

N0D5

P0J305

P0P1010

P0PA107

P0R608
N0D6

N0D6

N0D6

P0J306

P0P1011

P0PA108

P0R609
N0D7

N0D7

N0D7

P0J307

P0P1012

P0PA201

P0R6010
N0D8

N0D8

N0D8

P0PA202
N0D9

P0PA203
N0D10

P0PA204
N0D11

P0PA205
N0D12

P0P1014

P0PA206

P0R1302
N0D13

N0D13

N0D13

P
0
C
1
0
1

P
0
D
1
0
2

P
0
D
2
0
2

P0J101

P0J201

P0J308

P0J402

P0P105

P0P1013

P0PA207

P0PA404

P0PA405

P
0
R
1
0
0
1

P0R1202

P
0
U
1
0
1
1

P0C202

P0P103

P
0
R
5
0
2
 P0U103 N0HPFSIG

N0HPFSIG

P
0
D
1
0
1
 P
0
R
4
0
2

P
0
D
2
0
1

P0J103

P0J102
P0R301

P0Q102 P0R1301

P
0
Q
1
0
3

P0R302

P
0
R
4
0
1

P
0
T
P
4
0
1

P0R101 P0R202

P0U102

P
0
R
7
0
1

P
0
R
8
0
2

P0S101

P
0
R
8
0
1

P
0
R
9
0
2
 P0S102

P
0
R
9
0
1

P
0
R
1
0
0
2

P0S104

P
0
R
1
1
0
1

P0R1201
P0U105

P
0
U
1
0
4

P
0
U
1
0
1
1

P0R102

P
0
R
5
0
1

P0U106

P0U107

P0PA401
N0RESET

P0PA406
N0VIN

P0PA402

P
0
C
1
0
2

P0PA403
P
0
Q
1
0
1

P0R601

P
0
R
7
0
2

P
0
R
1
1
0
2

P
0
U
1
0
4

N0A0

P0P104

P0PA301

P0R201

P
0
T
P
2
0
1

P0U101

N0A1

P0P101

P0PA302

P0S103

P
0
T
P
3
0
1

N0A2
P0PA303

N0A3

P0PA304
N0A4

P0PA305
N0A5

P0PA306

N0AREF
P0PA208

N0AUDIOIN
P0C201

P0J202

P0J203

P0P102

P
0
T
P
1
0
1

N0D0 P0J403

P0PA101

P0R602

N0D1 P0J401

P0PA102

P0R603

N0D2
P0J301

P0P106

P0PA103

P0R604

N0D3
P0J302

P0P107

P0PA104

P0R605

N0D4
P0J303

P0P108

P0PA105

P0R606

N0D5
P0J304

P0P109

P0PA106

P0R607

N0D6
P0J305

P0P1010

P0PA107

P0R608

N0D7
P0J306

P0P1011

P0PA108

P0R609

N0D8
P0J307

P0P1012

P0PA201

P0R6010

N0D9
P0PA202

N0D10
P0PA203

N0D11
P0PA204

N0D12
P0PA205

N0D13

P0P1014

P0PA206

P0R1302

P
0
C
1
0
1

P
0
D
1
0
2

P
0
D
2
0
2

P0J101

P0J201

P0J308

P0J402

P0P105

P0P1013

P0PA207

P0PA404

P0PA405

P
0
R
1
0
0
1

P0R1202

P
0
U
1
0
1
1

N0HPFSIG
P0C202

P0P103

P
0
R
5
0
2
 P0U103

P
0
D
1
0
1
 P
0
R
4
0
2

P
0
D
2
0
1

P0J103

P0J102
P0R301

P0Q102 P0R1301

P
0
Q
1
0
3

P0R302

P
0
R
4
0
1

P
0
T
P
4
0
1

P0R101 P0R202

P0U102

P
0
R
7
0
1

P
0
R
8
0
2

P0S101

P
0
R
8
0
1

P
0
R
9
0
2
 P0S102

P
0
R
9
0
1

P
0
R
1
0
0
2

P0S104

P
0
R
1
1
0
1

P0R1201
P0U105

P
0
U
1
0
4

P
0
U
1
0
1
1

P0R102

P
0
R
5
0
1

P0U106

P0U107

N0RESET
P0PA401

N0VIN
P0PA406

Fig. 1: Schematics of the transmitter shield.

1

1

2

2

3

3

4

4

D D

C C

B B

A A

Title

Number RevisionSize

A

Date: 22-May-13 Sheet of
File: C:\Users\..\Phototransistor_board.SchDoc Drawn By:

Q1
TEPT5700

180K
R1

100
R2

10K

R3 Q2
2N7000

GND

VCC

Out 1
2
3

P1

Header 3

P0P101

P0P102

P0P103

P
0
Q
1
0
1

P
0
Q
1
0
3

P
0
Q
2
0
1

P0Q202

P
0
Q
2
0
3

P
0
R
1
0
1

P
0
R
1
0
2

P
0
R
2
0
1

P
0
R
2
0
2

P0R301 P0R302

P0P103

P
0
Q
1
0
3

P
0
Q
2
0
3

P
0
Q
1
0
1
 P
0
R
1
0
1

P0R302 P0Q202 P0R301

P0P102

P
0
Q
2
0
1
 P
0
R
2
0
1

N0OUT
P0P101

P
0
R
1
0
2

P
0
R
2
0
2

P0P103

P
0
Q
1
0
3

P
0
Q
2
0
3

P
0
Q
1
0
1
 P
0
R
1
0
1

P0R302 P0Q202 P0R301

N0OUT
P0P102

P
0
Q
2
0
1
 P
0
R
2
0
1

P0P101

P
0
R
1
0
2

P
0
R
2
0
2

Fig. 2: Schematics of the phototransistor circuit.

The output of the IR receiver in the receiver unit is 3.3V (high) when it does not receive

any 38kHz IR signal. When such IR signal is detected, its output switches to 0V (low).

The IR LED in the transmitter unit is driven by a PNP transistor (Q1), 2N3906, which is

controlled by the microcontroller’s digital output D13. The IR LED is switched on when a

38kHz pulse is produced at D13. The IR LED is programmed to be active low. That is when

June 12, 2013 DRAFTPeerJ PrePrints | https://peerj.com/preprints/32v1/ | v1 received: 15 Jun 2013, published: 15 Jun 2013, doi: 10.7287/peerj.preprints.32v1

P
re
P
rin

ts

7

the data bit is high, the IR LED is off so that the IR receiver’s output is high, and vice versa.

A regular LED is also driven by the same transistor as an indicator of the IR transmission.

The 38kHz signal is generated by the Timer2’s interrupt. Timer2 is operating in CTC mode

with a clock frequency of 16MHz. When its counter reaches 207, it executes the interrupt

subroutine which toggles the output at D13. The interrupt subroutine is then called every

13µs. Hence the period of the output signal at D13 is 26µs which is equivalent to 38kHz.

C. Receiver

The receiver unit consists of an Arduino Pro Mini board operating at 3.3V and a shield.

The shield’s schematic is shown in Figure 3. The headers P1 and P3 attach to the Arduino

board. The output of the IR receiver on the shield is attached to the digital pin D9 which is

configured as an input. The microcontroller reads the pulse width from the sequence of bits

and produces a pulse with the corresponding pulse width on the digital pin D2. The pulse is

subsequently attenuated by 10, 000× using a voltage divider circuit. The output of the voltage

divider is attached to one of the EEG electrodes and the other EEG electrode is attached to

the circuit ground through P2. Hence, the EEG device receives a pulse with an amplitude of

at most 330µV which is sufficiently low not to damage the EEG device. The receiver unit

is powered using a 1/2AA battery which has a typical voltage of 3.6V. For convenience, a

regular LED is also attached to D2 to indicate when the pulse is generated. The receiver unit

together with its enclosure (1593K, Hammond manufacturing) weighs about 200g and has

a dimension of 66mm(L) × 67mm(W) × 22mm(H). Hence the unit can be mounted on the

EEG headset.

D. Biasing the marker channels

The two electrodes connected to the receiver unit are biased to the DRL electrode in the

same way as in [8]. A 4.7kΩ resistor is attached between each of the two electrodes and

the DRL electrode. Hence these two electrodes do not need cotton felts inserted into the

electrode assemblies.

E. Verification of the analog mode

This section describes the methods to verify that the correct pulse width is transmitted and

the delay between the stimulus onset and the pulse onset is constant. A Matlab (Mathworks

Inc) code was written to play 1000Hz and 1200Hz audio tones every 400ms. Each tone lasted

June 12, 2013 DRAFTPeerJ PrePrints | https://peerj.com/preprints/32v1/ | v1 received: 15 Jun 2013, published: 15 Jun 2013, doi: 10.7287/peerj.preprints.32v1

P
re
P
rin

ts

8

1

1

2

2

3

3

4

4

D D

C C

B B

A A

Title

Number RevisionSize

A

Date: 22-May-13 Sheet of
File: C:\Users\..\Wireless_trigger_rx.SchDoc Drawn By:

1
2
3
4
5
6
7
8
9

10
11
12

P1

Header 12

1
2
3
4
5
6
7
8
9

10
11
12

P3

Header 12

TXD
RXD
RST

D2
D3
D4
D5
D6
D7
D8
D9

GND

D10
D11
D12
D13
A0
A1
A2
A3
VCC
RST

RAW

GND

BT1
Battery

GND

10uF
C1470

R4

D2

GND

OUT1

GND2

VS3

U1

TSOP4P38

D9

GND

VCC

D1
LED1

470
R1

D2

GND

10M
R2

1K
R3

1
2

P2

Header 2

GND

1
2

3

S1
SPDT-TH-mini-RA

TP1

TP2

RAW

Options for enclosure
- HB6005 (Jaycar): Clear jiffy box
- Hammond 1593K

P
0
B
T
1
0
1

P
0
B
T
1
0
2

P
0
C
1
0
1

P
0
C
1
0
2

P
0
D
1
0
1

P
0
D
1
0
2

P
0
D
2
0
1

P
0
D
2
0
2

P0P101

P0P102

P0P103

P0P104

P0P105

P0P106

P0P107

P0P108

P0P109

P0P1010

P0P1011

P0P1012

P0P201

P0P202

P0P301

P0P302

P0P303

P0P304

P0P305

P0P306

P0P307

P0P308

P0P309

P0P3010

P0P3011

P0P3012

P
0
R
1
0
1

P
0
R
1
0
2

P
0
R
2
0
1

P
0
R
2
0
2

P
0
R
3
0
1

P
0
R
3
0
2

P
0
R
4
0
1

P
0
R
4
0
2

P
0
S
1
0
1

P
0
S
1
0
2

P
0
S
1
0
3

P
0
T
P
1
0
1

P
0
T
P
2
0
1

P0U101

P0U102

P0U103

P0P305
N0A0

P0P306
N0A1

P0P307
N0A2

P0P308
N0A3

P0P108

P
0
R
1
0
2

P
0
R
2
0
1

P
0
T
P
2
0
1

N0D2

N0D2

P0P107
N0D3

P0P106
N0D4

P0P105
N0D5

P0P104
N0D6

P0P103
N0D7

P0P102
N0D8

P0P101 P
0
T
P
1
0
1

P0U101
N0D9 N0D9

P0P301
N0D10

P0P302
N0D11

P0P303
N0D12

P0P304
N0D13

P
0
B
T
1
0
2

P
0
C
1
0
2

P
0
D
1
0
2

P
0
D
2
0
2

P0P109

P0P202

P0P3011

P
0
R
3
0
2

P
0
S
1
0
1

P0U102

P
0
B
T
1
0
1

P
0
S
1
0
3

P
0
D
1
0
1
 P
0
R
1
0
1

P
0
D
2
0
1
 P
0
R
4
0
1

P0P201 P
0
R
2
0
2

P
0
R
3
0
1

P
0
C
1
0
1

P0P3012 P
0
R
4
0
2

P
0
S
1
0
2

N0RAW

N0RAW

P0P1010

P0P3010

N0RST

N0RST

P0P1011
N0RXD

P0P1012
N0TXD

P0P309

P0U103

N0VCC

N0VCC

N0A0
P0P305

N0A1
P0P306

N0A2
P0P307

N0A3
P0P308

N0D2
P0P108

P
0
R
1
0
2

P
0
R
2
0
1

P
0
T
P
2
0
1

N0D3
P0P107

N0D4
P0P106

N0D5
P0P105

N0D6
P0P104

N0D7
P0P103

N0D8
P0P102

N0D9
P0P101 P

0
T
P
1
0
1

P0U101

N0D10
P0P301

N0D11
P0P302

N0D12
P0P303

N0D13
P0P304

P
0
B
T
1
0
2

P
0
C
1
0
2

P
0
D
1
0
2

P
0
D
2
0
2

P0P109

P0P202

P0P3011

P
0
R
3
0
2

P
0
S
1
0
1

P0U102

P
0
B
T
1
0
1

P
0
S
1
0
3

P
0
D
1
0
1
 P
0
R
1
0
1

P
0
D
2
0
1
 P
0
R
4
0
1

P0P201 P
0
R
2
0
2

P
0
R
3
0
1

N0RAW

P
0
C
1
0
1

P0P3012 P
0
R
4
0
2

P
0
S
1
0
2

N0RST
P0P1010

P0P3010

N0RXD
P0P1011

N0TXD
P0P1012

N0VCC
P0P309

P0U103

Fig. 3: Schematics of the receiver shield.

for 160ms. The computer’s headphone socket was connected to the transmitter’s audio socket

(J2) using a 3.5mm to 3.5mm audio cable. The transmitter mode was switched to analog. The

audio tone and the output pulse at the receiver (digital pin D2) were displayed on a digital

scope (Tektronix MSO2012B) so that the delay between their onset could be measured.

F. Verification of the digital mode

Similar to Section II-E, this section describes the methods to verify the pulse width and the

delay between the stimulus and the pulse. The phototransistor circuit described in Section II-A

was connected to the digital input and the mode switch was set to digital. Two black-and-

white checkerboard patterns were created as image files where one pattern is a reverse version

of the other, following the guidelines in the ISCEV standard [9]. A Matlab code was written

to display the patterns alternatingly every 400ms. The phototransistor signal sent to the digital

June 12, 2013 DRAFTPeerJ PrePrints | https://peerj.com/preprints/32v1/ | v1 received: 15 Jun 2013, published: 15 Jun 2013, doi: 10.7287/peerj.preprints.32v1

P
re
P
rin

ts

9

input D3 was displayed together with the output pulse at the receiver (digital pin D2) on the

digital scope so that the delay between their onset could be measured.

III. RESULTS AND DISCUSSION

A. Results from the analog mode

Figures 4 and 5 display the 1000Hz and 1200Hz audio tones with their corresponding pulses

at the receiver unit respectively. The results show that 100ms-wide pulses were correctly

produced when the 1000Hz tone was detected. On the other hand, 200ms-wide pulses were

produced when the 1200Hz tone was detected. The delay between the onset of the 1000Hz

tone and the onset of the pulse was 19.3±0.1ms. The delay remained the same for the 1200Hz

tone. The significance of the results is that correct pulse width was produced according to

the audio tone and the variability of the delay was negligible. Hence the resulting evoked

potentials can be shifted back by 19.3ms in order to compensate for the delay.

Fig. 4: Plot of the 1000Hz tones (top) and the corresponding 100ms-wide marker pulses
(bottom) at the receiver unit.

B. Results from the digital mode

Figure 6 displays the output of the phototransistor circuit and the corresponding pulses

at the receiver unit. The output of the phototransitor was high when the phototransistor

detected light (i.e. a white check was presented in front of phototransistor) and low when the

phototransistor detected no or very low light (a black check was presented). The results show

that 100ms pulses were correctly produced whenever the phototransistor’s output changed its

state. The delay between the onset of the phototransistor’s output and the onset of the pulse

June 12, 2013 DRAFTPeerJ PrePrints | https://peerj.com/preprints/32v1/ | v1 received: 15 Jun 2013, published: 15 Jun 2013, doi: 10.7287/peerj.preprints.32v1

P
re
P
rin

ts

10

Fig. 5: Plot of the 1200Hz tones (top) and the corresponding 200ms-wide marker pulses
(bottom) at the receiver unit.

was 6.3±0.1ms. Similar to the analog mode, the variability of the delay was negligible. The

delay was much smaller than in the analog mode since there was no buffering. The delay

was dominated by the IR transmission.

Fig. 6: Plot of the phototransistor circuit output (top) and the corresponding 100ms-wide
marker pulses (bottom) at the receiver unit.

IV. CONCLUSIONS

The need for wirelessly transmitting stimulus markers has risen since the commercialisation

of wireless EEG devices. As the devices are targeted to the consumer and developer market

with a low cost, the system to transmit the stimulus markers should also be inexpensive,

customisable and preferably open source.

June 12, 2013 DRAFTPeerJ PrePrints | https://peerj.com/preprints/32v1/ | v1 received: 15 Jun 2013, published: 15 Jun 2013, doi: 10.7287/peerj.preprints.32v1

P
re
P
rin

ts

11

This paper has described a wireless system that detects stimuli (audio or visual), transmits

the information to the receiver unit which in turn embeds a pulse in the EEG data. The

information of the stimuli is conveyed in the width of the pulse. The system has been verified

for audio and visual evoked potential recordings. It can reliably produce pulses with correct

widths according to the audio tones and whenever the visual stimulus reverses its pattern.

Though a delay between the onset of the stimuli and the onset of the marker pulses is present,

its variability is negligible. Hence the evaluated evoked potentials could be shifted back by

the delay to compensate for the delay.

REFERENCES

[1] Y. Liu, X. Jiang, T. Cao, F. Wan, P. U. Mak, P.-I. Mak, and M. I. Vai, “Implementation of SSVEP based BCI

with Emotiv EPOC,” in Proceedings of IEEE International Conference on Virtual Environments, Human-Computer

Interfaces, and Measurement Systems,VECIMS, Tianjin, 2012, pp. 34–37.

[2] S. Debener, F. Minow, R. Emkes, K. Gandras, and M. D. E. Vos, “How about taking a low-cost, small, and wireless

EEG for a walk?” Psychophysiology, vol. 49, pp. 1449–1453, 2012.

[3] M. Duvinage, T. Castermans, T. Dutoit, M. Petieau, T. Hoellinger, C. Saedeleer, K. Seetharaman, and G. Cheron, “A

P300-based quantitative comparison between the emotiv epoc headset and a medical EEG device,” in Proceedings of

the 9th IASTED International Conference on Biomedical Engineering, BioMed 2012, Innsbruck, 2012, pp. 37–42.

[4] A. Luo and T. J. Sullivan, “A user-friendly SSVEP-based brain-computer interface using a time-domain classifier.”

Journal of neural engineering, vol. 7, no. 2, p. 26010, Apr. 2010.

[5] Y. Maki, G. Sano, Y. Kobashi, T. Nakamura, M. Kanoh, and K. Yamada, “Estimating subjective assessments using a

simple biosignal sensor,” in IEEE International Conference on Fuzzy Systems, ser. 2012 IEEE International Conference

on Fuzzy Systems, FUZZ 2012, Nagoya Institute of Technology, Japan, 2012.

[6] H. A. Lamti, M. M. Ben Khelifa, A. M. Alimi, and P. Gorce, “A brain eyes WHEELchair interface for

severely disabled people assistance,” REGIM: REsearch Group on Intelligent Machines, University of Sfax, National

Engineering School of Sfax (ENIS), BP 1173, Sfax, 3038, Tunisia, pp. 686–694, 2011.

[7] N. A. Badcock, P. Mousikou, Y. Mahajan, P. D. Lissa, J. Thie, and G. Mcarthur, “Validation of the Emotiv EPOC

EEG gaming system for measuring research quality auditory ERPs,” PeerJ, vol. 38, no. 1, pp. 1–17, 2013.

[8] J. Thie, “A marker circuit to enable recording of auditory evoked potential using a wireless EEG system (EPOC) and

a portable computer,” PeerJ PrePrints, vol. 1, p. e2v1, 2013. http://dx.doi.org/10.7287/peerj.preprints.2v1

[9] J. V. Odom, M. Bach, M. Brigell, G. E. Holder, D. L. McCulloch, A. P. Tormene, and Vaegan, “ISCEV standard for

clinical visual evoked potentials (2009 update).” Documenta ophthalmologica. Advances in ophthalmology, vol. 120,

no. 1, pp. 111–9, Feb. 2010. http://www.ncbi.nlm.nih.gov/pubmed/19826847

APPENDIX A

TRANSMITTER CODE

/***

June 12, 2013 DRAFTPeerJ PrePrints | https://peerj.com/preprints/32v1/ | v1 received: 15 Jun 2013, published: 15 Jun 2013, doi: 10.7287/peerj.preprints.32v1

P
re
P
rin

ts

12

** Transmitter unit of the wireless marker system

***/

#define set_bit(sfr, bit) (sfr |= (1 << bit))

#define clear_bit(sfr, bit) (sfr &= ˜(1 << bit))

// Pin of the output pulse to the IR LED

#define outPulsePin 13

#define AUDIO_MODE_LEVEL 256

#define DIGITAL_MODE_LEVEL 512

#define SERIAL_MODE_LEVEL 768

#define INPUT_MODE_DEV 128

#define DIGITAL_INPUT_1 2

#define DIGITAL_INPUT_2 3

#define DIGITAL_INPUT_3 4

#define DIGITAL_INPUT_4 5

#define DIGITAL_INPUT_5 6

#define DIGITAL_INPUT_6 7

#define DIGITAL_INPUT_7 8

#define testPin 9

#define PULSE_WIDTH_1 50

#define PULSE_WIDTH_2 100

#define PULSE_WIDTH_3 150

#define PULSE_WIDTH_4 175

#define PULSE_WIDTH_5 200

#define PULSE_WIDTH_6 225

#define PULSE_WIDTH_7 250

// The IR emitter is operating at 38 kHz

#define IRFrequency 38000

// Settings for achieving a bit duration of 0.5 ms

// In practice the duration is set less than 500 us

#define IRDurationMicro 125

#define NUMCOUNT 40

June 12, 2013 DRAFTPeerJ PrePrints | https://peerj.com/preprints/32v1/ | v1 received: 15 Jun 2013, published: 15 Jun 2013, doi: 10.7287/peerj.preprints.32v1

P
re
P
rin

ts

13

int outPulse = LOW;

volatile int toggleCount = 0;

// Declare global variables for the audio stimulus

// Analogue reference which corresponds to

// 2.5V (half of the power supply rail)

#define ANAREF 511

// Analogue threshold

#define ANATH 560

// Buffer size of the analogue samples

#define BUFSIZE 100

// Buffer to store the analogue samples

int audio_buffer[BUFSIZE];

// The threshold number of zero-crossings of the audio tones

// to differentiate between two tones

#define CROSS_THRESHOLD (13*BUFSIZE/100)

// Declare global variables for the visual stimulus

int vep_stim = LOW;

// Declare the variable type: InputMode and

// the functions associated with the variable type.

// If the function declaration is not included here,

// the compiler will return an error:

// InputMode does not name a type.

enum InputMode { AUDIO_INPUT, DIGITAL_INPUT, SERIAL_INPUT };

InputMode trigger_mode;

InputMode read_input_mode();

/***

** Initialisation function

***/

void setup()

{

Serial.begin(9600);

// Setup Timer2 which is used to create the 38 kHz pulse to drive the IR emitter

June 12, 2013 DRAFTPeerJ PrePrints | https://peerj.com/preprints/32v1/ | v1 received: 15 Jun 2013, published: 15 Jun 2013, doi: 10.7287/peerj.preprints.32v1

P
re
P
rin

ts

14

Setup_timer2();

// Setup the inputs

setup_input();

setup_vep();

}

/***

** The main loop function

***/

void loop()

{

// Determine the input mode using the analogue input A1

trigger_mode = read_input_mode();

// Determine the pulse_width according to the stimulus type

byte pulse_width = 0;

switch (trigger_mode)

{

case AUDIO_INPUT:

pulse_width = run_audio_input_two_tone();

break;

case DIGITAL_INPUT:

pulse_width = run_vep();

break;

case SERIAL_INPUT:

pulse_width = run_serial_input();

break;

}

if (pulse_width > 0)

{

Serial.println(pulse_width);

// Write the pulse width to IR

writeToIR(pulse_width);

// Wait for a while

June 12, 2013 DRAFTPeerJ PrePrints | https://peerj.com/preprints/32v1/ | v1 received: 15 Jun 2013, published: 15 Jun 2013, doi: 10.7287/peerj.preprints.32v1

P
re
P
rin

ts

15

delay(500);

}

}

/***

** Generic initialisation of the pins and buffer

***/

void setup_input()

{

pinMode(DIGITAL_INPUT_1, INPUT);

pinMode(DIGITAL_INPUT_2, INPUT);

pinMode(DIGITAL_INPUT_3, INPUT);

pinMode(DIGITAL_INPUT_4, INPUT);

pinMode(DIGITAL_INPUT_5, INPUT);

pinMode(DIGITAL_INPUT_6, INPUT);

pinMode(DIGITAL_INPUT_7, INPUT);

pinMode(testPin, OUTPUT);

for (int n=0; n<BUFSIZE; ++n)

audio_buffer[n] = 0;

}

/***

** Specific initialisation of the pins for the visual stimulus

***/

void setup_vep()

{

pinMode(DIGITAL_INPUT_1, OUTPUT);

pinMode(DIGITAL_INPUT_2, INPUT);

digitalWrite(DIGITAL_INPUT_1, HIGH);

}

/***

** writeToIREmitter sends a byte of data to the IR emitter.

** The LSB is sent out first.

** Bit 0 switches on the IR emitter while bit 1 switches it off. (active low)

** The duration of each bit is 3 ms.

June 12, 2013 DRAFTPeerJ PrePrints | https://peerj.com/preprints/32v1/ | v1 received: 15 Jun 2013, published: 15 Jun 2013, doi: 10.7287/peerj.preprints.32v1

P
re
P
rin

ts

16

** The start and stop bits are 0.

***/

void writeToIR(byte data)

{

// Write the start bit = 0 -> IR emitter ON

// The ISR is called every 13 us.

// If the duration is 3 ms and the signal period is 26 us, there must be 115 pulses.

// Therefore the number of toggles is 115*2 = 230.

IRon();

// Write the data bits

for (int i=0; i<8; ++i)

{

if ((data & 0x01) == true)

{

IRoff();

}

else

{

IRon();

}

data >>= 1;

}

}

/***

** Switches on the IR emitter.

** The duration is determined by toggleCount.

***/

void IRon()

{

toggleCount = NUMCOUNT;

while(toggleCount > 0);

}

/***

** Switches off the IR emitter by setting toggleCount

** to zero and using delayMicroseconds(IRDurationMicro).

June 12, 2013 DRAFTPeerJ PrePrints | https://peerj.com/preprints/32v1/ | v1 received: 15 Jun 2013, published: 15 Jun 2013, doi: 10.7287/peerj.preprints.32v1

P
re
P
rin

ts

17

***/

void IRoff()

{

toggleCount = 0;

delayMicroseconds(IRDurationMicro);

}

/***

** The main function for detecting the checkerboard visual stimulus.

** When the check reverses its pattern, it returns

** the specified pulse width.

** The function is blocking.

***/

byte run_vep()

{

while(vep_stim == digitalRead(DIGITAL_INPUT_2)); // Wait until the stimulus changes

vep_stim ˆ= 0x1; // Toggle the stimulus state

return PULSE_WIDTH_2;

}

/***

** The generic main function for detecting the digital inputs.

** The digital inputs are assumed to be active low.

***/

byte run_digital_input()

{

if (digitalRead(DIGITAL_INPUT_1) == LOW)

{

return PULSE_WIDTH_1;

}

else if (digitalRead(DIGITAL_INPUT_2) == LOW)

{

return PULSE_WIDTH_2;

}

else if (digitalRead(DIGITAL_INPUT_3) == LOW)

{

return PULSE_WIDTH_3;

}

June 12, 2013 DRAFTPeerJ PrePrints | https://peerj.com/preprints/32v1/ | v1 received: 15 Jun 2013, published: 15 Jun 2013, doi: 10.7287/peerj.preprints.32v1

P
re
P
rin

ts

18

else if (digitalRead(DIGITAL_INPUT_4) == LOW)

{

return PULSE_WIDTH_4;

}

else if (digitalRead(DIGITAL_INPUT_5) == LOW)

{

return PULSE_WIDTH_5;

}

else if (digitalRead(DIGITAL_INPUT_6) == LOW)

{

return PULSE_WIDTH_6;

}

else if (digitalRead(DIGITAL_INPUT_7) == LOW)

{

return PULSE_WIDTH_7;

}

else

{

return 0;

}

}

/***

** The main function for detecting audio stimuli

** with only one tone

***/

byte run_audio_input_one_tone()

{

audio_buffer[0] = analogRead(A0);

if (audio_buffer[0] > ANATH)

{

return PULSE_WIDTH_2;

}

else

{

return 0;

}

}

June 12, 2013 DRAFTPeerJ PrePrints | https://peerj.com/preprints/32v1/ | v1 received: 15 Jun 2013, published: 15 Jun 2013, doi: 10.7287/peerj.preprints.32v1

P
re
P
rin

ts

19

/***

** The main function for detecting audio stimuli with two tones.

** When the tone is detected, the samples are stored in a buffer

** for counting the number of oscillations.

***/

byte run_audio_input_two_tone()

{

// Store the most recent sample to the buffer

audio_buffer[0] = analogRead(A0);

// Check if the amplitude exceeds the threshold.

// If so, an audio tone has been detected and it will start acquiring a frame

// of samples for analysis.

if (audio_buffer[0] > ANATH)

{

digitalWrite(testPin, HIGH);

int num_cross = 0;

// Fill the buffer with the samples

for (int n=1; n<BUFSIZE; ++n)

{

audio_buffer[n] = analogRead(A0);

// Analyse the samples to determine the type of tones

// Evaluate the number of times the signal crosses the analogue reference

// as an estimate to the frequency.

// Only use positive-going edge.

// Assume that the sampling rate is 10 ksamp/sec. Hence 1kHz tone should have

// 10 positive-going edge.

// In practice, 12 edges were returned for 1kHz tone and 14 edges for 1.2kHz.

if ((audio_buffer[n] >= ANAREF) && (audio_buffer[n-1] < ANAREF))

{

num_cross++;

}

}

digitalWrite(testPin, LOW);

if (num_cross < CROSS_THRESHOLD)

{

return PULSE_WIDTH_2;

June 12, 2013 DRAFTPeerJ PrePrints | https://peerj.com/preprints/32v1/ | v1 received: 15 Jun 2013, published: 15 Jun 2013, doi: 10.7287/peerj.preprints.32v1

P
re
P
rin

ts

20

}

else

{

return PULSE_WIDTH_5;

}

}

return 0;

}

/***

** The main function for reading the pulse width

** from the serial input.

***/

byte run_serial_input()

{

// Read data from the serial port if it is available

if (Serial.available() > 0)

{

byte indata = Serial.read();

return indata;

}

return 0;

}

/***

** Detect the input mode (audio, digital or serial)

** specified by the toggle switch.

***/

InputMode read_input_mode()

{

// Read the raw input mode from the switch (analogue input A1)

int inputModeRaw = analogRead(A1);

if (abs(inputModeRaw - AUDIO_MODE_LEVEL) < INPUT_MODE_DEV)

{

return AUDIO_INPUT;

}

else if (abs(inputModeRaw - DIGITAL_MODE_LEVEL) < INPUT_MODE_DEV)

{

June 12, 2013 DRAFTPeerJ PrePrints | https://peerj.com/preprints/32v1/ | v1 received: 15 Jun 2013, published: 15 Jun 2013, doi: 10.7287/peerj.preprints.32v1

P
re
P
rin

ts

21

return DIGITAL_INPUT;

}

else if (abs(inputModeRaw - SERIAL_MODE_LEVEL) < INPUT_MODE_DEV)

{

return SERIAL_INPUT;

}

}

/***

** Definition of Setup_timer2() function

** The clock prescaler is set to 1.

** The waveform generation mode is set to CTC.

** According to the datasheet (page 148), fOC2A = fclk / (2*N*(1+OCR2A)

** where N is the prescaler and OCR2A the counter limit.

** The counter clock frequency is then 16MHz/1 = 16 MHz.

** The corresponding clock period is then 1/16 us.

** The desired signal frequency is 38 kHz and the corresponding period is 26 us.

** Then the toggle period needs to be 13 us which is the interval of the ISR call.

** Therefore, OCR2A must be 13/(1/16) - 1 = 207.

**

***/

void Setup_timer2()

{

pinMode(outPulsePin, OUTPUT);

outPulse = LOW;

toggleCount = 0;

// Set the prescaler to 8

// Set CS22:0 = b010

// Set the prescaler to 1 -> CSS2:0 = b001

set_bit (TCCR2B, CS20);

clear_bit (TCCR2B, CS21);

clear_bit (TCCR2B, CS22);

// CTC timer operation

// Compare Output Mode = Toggle OC2A on Compare Match for non-PWM mode

// Set COM2A1:0 = b01

June 12, 2013 DRAFTPeerJ PrePrints | https://peerj.com/preprints/32v1/ | v1 received: 15 Jun 2013, published: 15 Jun 2013, doi: 10.7287/peerj.preprints.32v1

P
re
P
rin

ts

22

set_bit (TCCR2A, COM2A0);

clear_bit (TCCR2A, COM2A1);

clear_bit (TCCR2A, COM2B0);

clear_bit (TCCR2A, COM2B1);

// Waveform Generation Mode = CTC

// Set WGM22:0 = b010

clear_bit (TCCR2A, WGM20);

set_bit (TCCR2A, WGM21);

clear_bit (TCCR2B, WGM22);

// Set the counter limit

OCR2A = 207;

// Turn on timer2

set_bit (TIMSK2, OCIE2A);

}

/***

** Definition of the Output Compare Match A Interrupt subroutine of Timer2

** The routine is called every 13 us given the timer configuration above.

***/

ISR(TIMER2_COMPA_vect)

{

if (toggleCount > 0)

{

outPulse ˆ= HIGH;

--toggleCount;

}

else

{

outPulse = HIGH;

}

digitalWrite(outPulsePin, outPulse);

}

June 12, 2013 DRAFTPeerJ PrePrints | https://peerj.com/preprints/32v1/ | v1 received: 15 Jun 2013, published: 15 Jun 2013, doi: 10.7287/peerj.preprints.32v1

P
re
P
rin

ts

23

APPENDIX B

RECEIVER CODE

/***

** Receiver unit of the wireless marker system

***/

#define IRFrequency 38000 // The IR emitter is operating at 38 kHz

#define IRDurationMicro 500 // bit duration of 0.5 ms

#define IRSensorPin 9

#define markerPin 2

int prev_sensor_output;

void setup()

{

Serial.begin(115200);

pinMode(IRSensorPin, INPUT);

pinMode(markerPin, OUTPUT);

prev_sensor_output = LOW;

}

void loop()

{

// Check if the transmitter sends data

byte pulse_width = 0;

int sensor_output = digitalRead(IRSensorPin);

if ((sensor_output == LOW) && (prev_sensor_output == HIGH)) // A start bit is detected

{

// If the start bit is detected, read the data

pulse_width = IRread();

Serial.println(pulse_width);

// Send the marker signal

digitalWrite(markerPin, HIGH);

delay(pulse_width);

digitalWrite(markerPin, LOW);

June 12, 2013 DRAFTPeerJ PrePrints | https://peerj.com/preprints/32v1/ | v1 received: 15 Jun 2013, published: 15 Jun 2013, doi: 10.7287/peerj.preprints.32v1

P
re
P
rin

ts

24

}

// Keep track of the sensor output

prev_sensor_output = sensor_output;

}

/***

** Transmitter unit of the wireless marker system

** IRread detects the state of the IR sensor and interprets it to bits.

** After reading 8 bits and detecting the stop bit, the data is returned.

***/

byte IRread()

{

// Skip the start bit and jump to the middle of the first bit

delayMicroseconds(IRDurationMicro*1000*1.5);

// Start reading the 8 bits

byte data = 0;

byte mask = 1;

for (int i=0; i<8; ++i)

{

int inbit = digitalRead(IRSensorPin);

if (inbit == HIGH)

{

data |= mask;

}

mask <<= 1;

delayMicroseconds(IRDurationMicro);

}

return data;

}

June 12, 2013 DRAFTPeerJ PrePrints | https://peerj.com/preprints/32v1/ | v1 received: 15 Jun 2013, published: 15 Jun 2013, doi: 10.7287/peerj.preprints.32v1

P
re
P
rin

ts

