

A peer-reviewed version of this preprint was published in PeerJ
on 15 January 2018.

View the peer-reviewed version (peerj.com/articles/cs-144), which is the
preferred citable publication unless you specifically need to cite this
preprint.

Chard K, Dart E, Foster I, Shifflett D, Tuecke S, Williams J. 2018. The
Modern Research Data Portal: a design pattern for networked, data-
intensive science. PeerJ Computer Science 4:e144
https://doi.org/10.7717/peerj-cs.144

https://doi.org/10.7717/peerj-cs.144
https://doi.org/10.7717/peerj-cs.144

The Modern Research Data Portal: A design pattern for

networked, data-intensive science

Kyle Chard 1 , Eli Dart 2 , Ian Foster Corresp., 3, 4 , David Shifflett 1 , Steven Tuecke 1 , Jason Williams 1

1 University of Chicago, Chicago, Illinois, United States

2 Energy Sciences Network, Lawrence Berkeley National Laboratory, Berkeley, California, United States

3 Mathematics and Computer Science Division, Argonne National Laboratory, Lemont, Illinois, United States

4 Department of Computer Science, University of Chicago, Chicago, Illinois, United States

Corresponding Author: Ian Foster

Email address: foster@anl.gov

We describe best practices for providing convenient, high-speed, secure access to large

data via research data portals. We capture these best practices in a new design pattern,

the Modern Research Data Portal, that disaggregates the traditional monolithic web-based

data portal to achieve orders-of-magnitude increases in data transfer performance,

support new deployment architectures that decouple control logic from data storage, and

reduce development and operations costs. We introduce the design pattern; explain how it

leverages high-performance Science DMZs and cloud-based data management services;

review representative examples at research laboratories and universities, including both

experimental facilities and supercomputer sites; describe how to leverage Python APIs for

authentication, authorization, data transfer, and data sharing; and use coding examples to

demonstrate how these APIs can be used to implement a range of research data portal

capabilities. Sample code at a companion web site, https://docs.globus.org/mrdp, provides

application skeletons that readers can adapt to realize their own research data portals.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3194v1 | CC BY 4.0 Open Access | rec: 26 Aug 2017, publ: 26 Aug 2017

https://docs.globus.org/mrdp

The Modern Research Data Portal:1

A Design Pattern for Networked,2

Data-Intensive Science3

Kyle Chard1, Eli Dart2, Ian Foster1, David Shifflett1, Steven Tuecke1, and4

Jason Williams1
5

1The University of Chicago and Argonne National Laboratory6

2Energy Sciences Network, Lawrence Berkeley National Laboratory7

Corresponding author:8

Ian Foster9

Email address: foster@anl.gov10

ABSTRACT11

We describe best practices for providing convenient, high-speed, secure access to large data via research

data portals. We capture these best practices in a new design pattern, the Modern Research Data

Portal, that disaggregates the traditional monolithic web-based data portal to achieve orders-of-magnitude

increases in data transfer performance, support new deployment architectures that decouple control

logic from data storage, and reduce development and operations costs. We introduce the design pattern;

explain how it leverages high-performance Science DMZs and cloud-based data management services;

review representative examples at research laboratories and universities, including both experimental

facilities and supercomputer sites; describe how to leverage Python APIs for authentication, authorization,

data transfer, and data sharing; and use coding examples to demonstrate how these APIs can be

used to implement a range of research data portal capabilities. Sample code at a companion web site,

https://docs.globus.org/mrdp, provides application skeletons that readers can adapt to realize

their own research data portals.

12

13

14

15

16

17

18

19

20

21

22

23

INTRODUCTION24

The need for scientists to exchange data has led to an explosion over recent decades in the number25

and variety of research data portals: systems that provide remote access to data repositories for such26

purposes as discovery and distribution of reference data, the upload of new data for analysis and/or27

integration, and data sharing for collaborative analysis. Most such systems implement variants of a design28

pattern (Gamma et al., 1994) that we term the legacy research data portal (LRDP), in which a web29

server reads and writes a directly connected data repository in response to client requests.30

The relative simplicity of this structure has allowed it to persist largely unchanged from the first days31

of the web. However, its monolithic architecture—in particular, its tight integration of control channel32

processing (request processing, user authentication) and data channel processing (routing of data to/from33

remote sources and data repositories) has increasingly become an obstacle to performance, usability, and34

security, for reasons discussed below.35

An alternative architecture re-imagines the data portal in a much more scalable and performant form.36

In what we term here the modern research data portal (MRDP) design pattern, portal functionality is37

decomposed along two distinct but complementary dimensions. First, control channel communications38

and data channel communications are separated, with the former handled by a web server computer39

deployed (most often) in the institution’s enterprise network and the latter by specialized data servers40

connected directly to high-speed networks and storage systems. Second, responsibility for managing data41

transfers, data access, and sometimes also authentication is outsourced to external, often cloud-hosted,42

services. The design pattern thus defines distinct roles for the web server, which manages who is allowed43

to do what; data servers, where authorized operations are performed on data; and external services, which44

orchestrate data access.45

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3194v1 | CC BY 4.0 Open Access | rec: 26 Aug 2017, publ: 26 Aug 2017

Border Router

WAN

Firewall

Enterprise

perfSONAR perfSONAR Filesystem
(data store)

Portal Server

Portal server applications:

· web server

· search

· database

· authentication

· data service

Enterprise Network

Browsing path, Query path, Data path

Figure 1. The LRDP architecture. The portal web server both runs all portal services and handles all

data objects.

In this article, we first define the problems that research data portals address, introduce the legacy46

approach, and examine its limitations. We then introduce the MRDP design pattern and describe its real-47

ization via the integration of high-performance network architectures and cloud-based data management48

and authentication services, for which we use the Science DMZ (Dart et al., 2013) and Globus (Chard49

et al., 2014) as canonical examples, respectively. We then outline a reference implementation, also50

provided in its entirety on the companion web site, https://docs.globus.org/mrdp, that the51

reader can study—and, if they so desire, deploy and adapt to build their own MRDP. We also review52

various deployments to show how the MRDP approach has been applied in practice: examples like the53

National Center for Atmospheric Research’s Research Data Archive, which provides for high-speed data54

delivery to thousands of geoscientists; the Sanger Imputation Service, which provides for online analysis55

of user-provided genomic data; the Globus data publication service, which provides for interactive data56

publication and discovery; and the DMagic data sharing system for data distribution from light sources.57

We conclude with a discussion of related technologies and summary.58

THE RESEARCH DATA PORTAL59

The exchange of data among researchers is a fundamental activity in science (Borgman, 2012; Hey et al.,60

2009; Tenopir et al., 2011), and the use of computer networks for that purpose dates back to the earliest61

days of the Internet. Indeed, it was the need for convenient data exchange that drove Tim Berners-Lee62

to invent the web in 1989 (Berners-Lee, 1989). As is well known, he defined an architecture of extreme63

simplicity. A computer with access to both a data repository and the Internet runs a web server application64

that performs upload and download operations on its local data repository based on client requests. Users65

issue such requests using a client program—typically a web browser, which provides a graphical user66

interface (GUI). A uniform naming scheme for data objects makes it easy to share names, for example by67

embedding them in specially formatted documents (web pages).68

Web technologies have since evolved tremendously. For example, web servers can now support69

client authentication and authorization, link to databases for efficient navigation of large repositories, and70

support Common Gateway Interface (CGI) access to server-side computation. Web browsers run powerful71

Javascript and support asynchronous requests to remote servers.72

Yet as shown in Figure 1, most systems used to exchange research data today are not so different from73

that first web server. In particular, a single server handles request processing, data access, authentication,74

and other functions. It is the simple and monolithic architecture that characterizes this legacy research75

data portal (LRDP) design pattern that has allowed its widespread application and its adaptation to many76

purposes. Under names such as portals (Russell et al., 2001), science gateways (Wilkins-Diehr et al., 2008;77

Lawrence et al., 2015), and hubs (Klimeck et al., 2008; McLennan and Kennell, 2010), LRDP instances78

variously support access to small and large scientific data collections, data publication to community79

repositories, online data analysis and simulation, and other scientific workflows concerned with managing80

the flow of scientific data between remote clients and a central server.81

A confluence of three factors has now rendered the monolithic LRDP architecture increasingly82

problematic for its intended purpose, as we now discuss.83

The first concerns performance. Both data volumes and network speeds have grown tremendously84

2/22

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3194v1 | CC BY 4.0 Open Access | rec: 26 Aug 2017, publ: 26 Aug 2017

10GE10GE

10GE

10GE

Border Router

WAN

Science DMZ
Switch/Router

Firewall

Enterprise

perfSONAR

perfSONAR

10GE

10GE

10GE

10GE

DTN

DTN

API DTNs

(data access governed by portal)

DTN

DTN

perfSONAR

 Filesystem

 (data store)

10GE

Portal Server

Browsing path

Query path

Portal server applications:

· web server

· search

· database

· authentication

Data Path

Data Transfer Path

Portal Query/Browse Path

Figure 2. The MRDP design pattern from a network architecture perspective. The Science DMZ

includes multiple DTNs that provide for high-speed transfer between network and storage. Portal

functions run on a portal server, located on the institution’s enterprise network. The DTNs need only

speak the API of the data management service (Globus in this case).

over the past decade, at rates far faster than can be supported by monolithic web services applications85

running on individual servers connected to enterprise networks and secured by enterprise firewalls.86

In response, network architectures are proliferating to allow high-speed access to research data over87

separate data channels that are specifically engineered for high-performance data services. However, these88

developments do not mesh well with the LRDP architecture. The LRDP server typically cannot be moved89

outside the institutional firewall because it is a complex web services application with sensitive information90

(e.g., user databases) that must be defended using correspondingly complex security protections. Also,91

the LRDP model forces all data objects through the web server software stack, limiting performance and92

scalability.93

The second is an increasing demand for high data transfer reliability. When download or upload94

requests involve just a few small files, transient errors are rare and can be handled by having users resubmit95

requests. When requests involve thousands or more files and gigabytes or terabytes, errors are more96

problematic. Increasingly, researchers expect the high reliability offered by transfer services such as97

Globus (Chard et al., 2014), which use specialized techniques to minimize the impact of errors. But98

retrofitting such mechanisms into the LRDP model is challenging.99

The third challenge is operational complexity, which in turn can negatively impact development100

costs, reliability, capabilities offered, and security. Conventional LRDP implementations are developed,101

deployed, and operated in silos, with each establishing and operating its own implementations of user102

management, authentication, authorization, and data transfer. This siloed approach is sub-optimal103

and inefficient, and often results in limited functionality relative to state-of-the-art. For example, few104

legacy portals enable authentication and authorization with standard web protocols such as OpenID105

Connect (Sakimura et al., 2014) and OAuth 2 (Hardt, 2012), instead preferring to manage local user and106

authorization databases. The siloed approach makes it difficult to ensure that best practices, especially107

with respect to security, are followed. It also increases the burden on administrators to ensure that not108

only is the portal available but also that updates and security patches are applied quickly.109

In summary, while the LRDP model has served the scientific community well for many years, it110

suffers from fundamental limitations, with the result that portals based on the LRDP model serve the111

3/22

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3194v1 | CC BY 4.0 Open Access | rec: 26 Aug 2017, publ: 26 Aug 2017

scientific community less well than they otherwise could.112

THE MRDP DESIGN PATTERN113

This discussion of LRDP limitations brings us to the core of this article, namely, the modern research114

data portal (MRDP) design pattern. This new approach to building research data portals became feasible115

in around 2015, following the maturation of two independent efforts aimed at decoupling research data116

access from enterprise networks, on the one hand, and research data management logic from storage117

system access, on the other. These developments inspired a new approach to the construction of research118

data portals based on a decomposition of the previously monolithic LRDP architecture into three distinct119

components:120

1. The portal server (a web server like any other) which handles data search and access, mapping121

between users and datasets, and other web services tasks;122

2. A high-performance network enclave that connects large-scale data servers directly to high-123

performance networks (we use the Science DMZ as an example here); and124

3. a reliable, high-performance external data management service with authentication and other125

primitives based on standard web APIs (we use Globus as an example here).126

In the remainder of this section, we describe the role of the Science DMZ and the data servers that127

reside within it, the role of Globus as a provider of outsourced data management and security services,128

and the integration of these components to form the MRDP design pattern.129

Science DMZ and DTNs130

A growing number of research institutions are connected to high-speed wide area networks at high speeds:131

10 gigabits per second (Gb/s) or faster. Increasingly, these wide area networks are themselves connected132

to cloud providers at comparable speeds. Thus, in principle, it should be possible to move data between133

any element of the national research infrastructure—between institutions, laboratories, instruments, data134

centers, supercomputer centers, and clouds—with great rapidity.135

In practice, real transfers often achieve nothing like these peak speeds. Common reasons for poor136

performance are the complexity and architectural limitations of institutional networks, as well as complex137

and inefficient configurations on monolithic server computers. Commodity network devices, firewalls,138

and other limitations cause performance bottlenecks in the network between the data service and the139

outside world where clients are located.140

Two constructs, the Science DMZ and the Data Transfer Node, are now widely deployed to overcome141

this problem. As shown in Figure 2, the Science DMZ overcomes the challenges associated with multi-142

purpose enterprise network architectures by placing resources that need high-performance connectivity143

in a special subnetwork that is close (from a network architecture perspective) to the border router that144

connects the institution to the high-speed wide area network. (The term DMZ, short for demilitarized145

zone, is commonly used in computer networking to indicate an intermediate role between external and146

internal networks.) Traffic between those resources and the outside world then has a clean path to the147

analogous high-performance resources at collaborating institutions.148

A Data Transfer Node (DTN) is a specialized device dedicated to data transfer functions. These149

devices are typically PC-based Linux servers constructed with high quality components, configured for150

both high-speed wide area data transfer and high-speed access to local storage resources, and running151

high-performance data transfer tools such as Globus Connect data transfer software. General-purpose152

computing and business productivity applications, such as email clients and document editors, are not153

installed; this restriction produces more consistent data transfer behavior and makes security policies154

easier to enforce.155

The Science DMZ design pattern also includes other elements, such as integrated monitoring devices156

for performance debugging, specialized security configurations, and variants used to integrate super-157

computers and other resources. For example, Figure 2 shows perfSONAR (Hanemann et al., 2005)158

performance monitoring devices. But this brief description provides the essential information required for159

our discussion here. The US Department of Energy’s Energy Sciences Network has produced detailed160

configuration and tuning guides for Science DMZs and DTNs (ESnet, 2017).161

4/22

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3194v1 | CC BY 4.0 Open Access | rec: 26 Aug 2017, publ: 26 Aug 2017

Globus services162

Globus provides data and identity management capabilities designed for the research community. These163

capabilities are delivered via a cloud-hosted software- and platform-as-a-service model, enabling users to164

access them through their web browser and developers to invoke them via powerful APIs. We describe165

here Globus capabilities that meet MRDP needs for managing and transferring data (Chard et al., 2014)166

and for authenticating users and authorizing access (Tuecke et al., 2015).167

Globus allows data to be remotely managed across its pool of more than 10,000 accessible storage168

systems (called “endpoints”). A storage system is made accessible to Globus, and thus capable of high169

performance and reliable data transfer, by installing Globus Connect software. Globus Connect is offered170

in two versions: Globus Connect Personal for single-user deployments (e.g., a laptop or PC) and Globus171

Connect Server for multi-user deployments (e.g., a shared server or DTN). Globus Connect Server can172

be deployed on multiple DTNs associated with a storage system; Globus then uses the pool of DTNs to173

increase transfer performance, with dynamic failover for increased reliability.174

Globus Transfer capabilities provide high performance and reliable third party data transfer. The175

Globus service manages the entire transfer process, including coordinating authentication at source and176

destination; establishing a high performance data channel using the GridFTP (Allcock et al., 2005) proto-177

col, with configuration optimized for transfer; ensuring data integrity by comparing source/destination178

checksums; and recovering from any errors during the transfer. Globus also provides secure (authorized)179

HTTPS access to (upload/download) data via a web browser or an HTTP command line client (e.g., for180

small files, inline viewers, or transitional support of LRDP usage models). Globus, by default, enforces181

the data access permissions represented by the underlying system; however, it also allows these access182

decisions to be managed through the cloud service. In the latter mode, called Globus Sharing (Chard183

et al., 2014), users may associate user- or group-based access control lists (ACLs) with particular file184

paths. Globus checks and enforces these ACLs when other users attempt to read or write to those paths.185

Globus Auth provides identity and access management platform capabilities. It brokers authentication186

and authorization interactions between end-users, identity providers, resource servers (services), and187

clients (e.g., web, mobile, desktop, and command line applications, and other services). It implements188

standard web protocols, such as OAuth 2 and OpenID Connect, that allow it to be integrated easily with189

external applications using standard client libraries. These protocols enable third-party applications to190

authenticate users (using their preferred identity) directly with the chosen identity provider. Globus Auth191

then returns access tokens that the third-party application can use to validate the user’s identity and to192

perform actions on behalf of that user, within an agreed upon scope. Globus Auth implements an identity193

federation model via which diverse identities can be linked, and such that presentation of one identity194

may support authorization for the set of identities. Integration with Globus Groups (Chard et al., 2016)195

supports group-based authorization using user-managed groups.196

REST APIs allow Globus capabilities to be used as a platform. These APIs are used by client libraries,197

such as the Globus Python SDK, to support integration in external applications. We leverage the Globus198

Python SDK in the MRDP reference implementation that we describe in this paper, and in the code199

examples presented in subsequent sections.200

The design pattern in practice201

The MRDP design pattern improves on the LRDP architecture in three important ways. While these202

improvements involve relatively minor changes to the web server logic, they have big implications for203

how data accesses and transfers are performed.204

First, data references. An important interaction pattern in a research data portal is the redirect, in205

which a client request for information leads to the return of one or more URLs for data files. In the LRDP206

pattern, these are web URLs that reference files served by the same web server that runs the portal GUI.207

In the MRDP pattern, the portal instead returns references to data objects served by DTNs located in a208

Science DMZ separate from the portal web server, as shown in Figure 2. This approach allows the data209

objects to be transferred using infrastructure that matches their scale. Also, because the DTN cluster can210

be expanded (e.g., by adding more or faster DTNs) without changing the interface that it provides to the211

portal, it can easily be scaled up as datasets and traffic volumes grow, without modifying the portal code212

at all.213

Second, data access. In the LRDP pattern, the references to data objects are returned to the user in a214

web page. The user must then access the data objects by clicking on links or by using a web command215

5/22

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3194v1 | CC BY 4.0 Open Access | rec: 26 Aug 2017, publ: 26 Aug 2017

line client like wget. Neither approach is convenient or reliable when dealing with many files. In the216

MRDP pattern, references are encapsulated in a data transfer job which can be managed by a cloud-based217

data transfer service such as Globus. Thus the user can hand off the complexity of managing the correct218

transfer of perhaps many thousands of files to a data management service that is designed to handle such219

tasks reliably.220

Third, user and group management, and authentication and authorization. In the LRDP pattern,221

these functions are typically all hosted on the web server. Portal developers must therefore implement222

workflows for authenticating users, requesting access to data, assembling datasets for download, dy-223

namically authorizing access to data, and checking data integrity (e.g., by providing checksums). In the224

MRDP pattern, these functions can be outsourced via standard interfaces to external services that provide225

best-practices implementations.226

An important feature of the MRDP design pattern is the use of web service (REST) APIs when227

accessing external services that provide data management and other capabilities. This approach makes228

it straightforward to retrofit advanced MRDP features into an existing data portal without requiring a229

rewrite of the data portal software from scratch.230

Variants of the basic pattern231

In the following, we present a reference implementation of the MRDP design pattern that enables232

download of data selected on a web page. Many variants of this basic MRDP design pattern have been233

constructed. For example, the data that users access may come from an experimental facility rather than234

a data archive, in which case they may be deleted after download. Access may be granted to groups of235

users rather than individuals. Data may be publicly available; alternatively, access may require approval236

from portal administrators. A portal may allow its users to upload datasets for analysis and then retrieve237

analysis results. A data publication portal may accept data submissions from users, and load data that238

pass quality control procedures or curator approval into a public archive. We give examples of several239

such variants below, and show that each can naturally be expressed in terms of the MRDP design pattern.240

Similarly, while we have described the research data portal in the context of a Science DMZ, in241

which (as shown in Figure 2) the portal server and data store both sit within a research institution, other242

distributions are also possible and can have advantages. For example, the portal can be deployed on the243

public cloud for high availability, while data sit within a research institution’s Science DMZ to enable244

direct access from high-speed research networks and/or to avoid cloud storage charges. Alternatively, the245

portal can be run within the research institution and data served from cloud storage. Or both components246

can be run on cloud resources.247

A REFERENCE MRDP IMPLEMENTATION248

We have developed a reference implementation of the MRDP design pattern, for which open source code249

is available on the companion web site. This code includes:250

• A complete, working portal server, implemented with the Python Flask framework and comprising a251

web service and web interface, and that uses Globus APIs to outsource data transfer, authentication,252

and authorization functions.253

• Integration with Globus Auth for authentication and authorization.254

• Integration with Globus Transfer for browsing and downloading datasets.255

• Use of a decoupled Globus endpoint for serving data securely via HTTP or GridFTP.256

• An independent analysis service, accessed via a REST API, to demonstrate how a data portal can257

outsource specific functionality securely.258

We review some highlights of this reference implementation here; more details are available on the259

companion web site.260

Figure 3 shows the essential elements of this reference implementation. In addition to the Science261

DMZ and portal server already seen in Figure 2, we see the user’s desktop computer or other device262

on which they run the web browser (or other client) used to access the data portal, plus other elements263

(identity providers, Globus cloud, other services) that we introduce in the following. Note the “Globus264

6/22

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3194v1 | CC BY 4.0 Open Access | rec: 26 Aug 2017, publ: 26 Aug 2017

Other Globus
endpoints

Science DMZ

Firewall

Desktop

Globus
cloud

HTTPS

GridFTP

REST Other
services

Identity
provider

Globus web
helper pages

Globus Auth
Globus
TransferBrowser

User9s Globus
endpoint
(optional)

Portal web
server (Client)

Portal Globus
endpoint

Other Globus
endpoints

Login

Figure 3. MRDP basics. Clients (left) authenticate with any one of many identity providers (top) and

connect to the portal web server (center) that implements the domain-specific portal logic. The web

server sits behind the institutional firewall (red). The portal responds to client requests by using REST

APIs to direct Globus cloud services (top) to operate on research data in the Science DMZ (bottom center)

and/or to interact with other services (center right). Data flows reliably and securely between Globus

endpoints without traversing the firewall.

endpoints” (Globus Connect servers) located in the Science DMZ, on other remote storage systems, and265

(optionally) on the user’s desktop. The cloud-hosted Globus transfer service orchestrates high-speed,266

reliable GridFTP transfers among these endpoints, under the direction of the portal server.267

As already noted, the portal server is at the heart of the MRDP implementation. It sits behind the268

institutional firewall, from where it serves up web pages to users, responds to HTTP requests, and issues269

REST communications to Globus services and optionally other services to implement MRDP behaviors.270

The latter REST communications are central to the power of the MRDP design pattern, as it is they that271

let the web server outsource many of the complex tasks associated with portal operations. Only the web272

server component needs to be provided for a specific MRDP implementation.273

Overview of key points274

The MRDP design pattern employs a collection of modern approaches to delivering critical capabilities.275

We review some important points here, with comments on how they can be realized with Globus276

mechanisms. More specifics are on the companion web site.277

Outsource responsibility for determining user identities. Operating an identity provider should not278

need to be a core competency for a portal administrator. Globus Auth support for the OAuth 2 and279

OpenID protocols allows for the validation of credentials from any one of a number of identity providers280

deemed acceptable by the portal: for example, institutional credentials via InCommon (Barnett et al.,281

2011), ORCID, or Google identities.282

Outsource control over who can access different data and services within the portal. Nor should the283

portal developer or administrator need to be concerned with implementing access control mechanisms.284

The Globus transfer service can be used to control who is allowed to access data.285

Outsource responsibility for managing data uploads and downloads between a variety of locations286

and storage systems. Reliable, efficient, and secure data transfer between endpoints is a challenging task287

to do well. Again, simple APIs allow this task to be handed off to the Globus transfer service. (A portal288

can also leverage Globus HTTPS support to provide web-based download and inline viewers.) Thus, the289

portal does not need to provide its own (typically unreliable and/or slow) data download client, as some290

7/22

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3194v1 | CC BY 4.0 Open Access | rec: 26 Aug 2017, publ: 26 Aug 2017

portals do.291

Leverage standard web user interfaces for common user actions. The implementation of the portal’s292

web interface can be simplified via the use of standard components. Globus provides web helper pages293

for such tasks as selecting endpoints, folders, and files for transfers; managing group membership; and294

logging out.295

Dispatch tasks to other services on behalf of requesting users. Good programming practice often296

involves decomposing a complex portal into multiple services. Globus Auth dependent grant flows (an297

OAuth concept) enable a portal to allow other services to operate on managed data. We discuss below how298

the reference implementation uses this mechanism to allow an external data analysis service to access a299

user’s data.300

Log all actions performed by users for purposes of audit, accounting, and reporting. The portal should301

stores a historical log of all actions performed by the portal and its users such that others can determine302

what data has been accessed, when, and by whom. Again, these functions can be outsourced to a cloud303

service.304

Diving into code305

The reference implementation code is for a portal that allows users to browse for data of interest and then306

request those data for download. The portal makes the data available via four simple steps: (1) create a307

shared endpoint; (2) copy the requested data to that shared endpoint; (3) set permissions on the shared308

endpoint to enable access by the requesting user, and email the user a URL that they can use to retrieve309

data from the shared endpoint; and ultimately (perhaps after days or weeks), (4) delete the new shared310

endpoint.311

Listing 1 presents a function rdp that uses the Globus Python SDK to implement these actions. This312

code is somewhat simplified: it does not perform error checking and does not integrate with the web313

server that our data portal also requires, but otherwise it is a complete implementation of the core portal314

logic—in just 42 lines of code. In the following, we first review some Globus background and then315

describe some elements of this program.316

Endpoints317

Figure 3 shows several Globus endpoints. These are Globus Connect servers deployed next to storage318

systems to enable high-speed, reliable, and secure access to those storage systems. They may be deployed319

within a Science DMZ, on a user’s personal computer, on a cloud system, or elsewhere. Each endpoint320

implements the GridFTP protocol (thick green arrows) for high-speed endpoint-to-endpoint data transfer321

and the HTTPS protocol (blue arrows) to enable access to endpoint storage from a web client. Endpoints322

are managed by the Globus Transfer cloud service via the GridFTP control channel: the thin green dashed323

lines.324

In order for Globus Transfer to perform operations on an endpoint filesystem, it must have a credential325

to authenticate to the endpoint as a specific local user. The process of providing such a credential to326

the service is called endpoint activation. Endpoints typically require credentials from one or more327

specific identity providers (IdPs). A Globus Connect Server can be configured with a co-located MyProxy328

OAuth (Basney and Gaynor, 2011) server to allow local user accounts to be used for authentication.329

Alternatively, endpoints may be configured to use one of the supported Globus Auth identity providers. In330

this case, endpoints contain a mapping between identity provider identities and local user accounts. Each331

Globus endpoint (and each user) is named by a universally unique identifier (UUID).332

Identities and credentials333

We see from Figure 3 that the MRDP design pattern involves interactions among numerous entities: user,334

web client, Globus services, portal server, Globus endpoints, and perhaps other services as well. Each335

interaction requires authentication to determine the originator of the request and access management to336

determine whether the request should be granted.337

The first challenge is the need to allow users to authenticate with the portal. To reduce identity prolif-338

eration, it is desirable that the portal allow for authentication using existing accounts (e.g., an institution339

account). This is also advantageous to the portal as it need not implement an identity management system,340

keep up with best-practices security models, store user passwords, and facilitate identity management341

workflows (e.g., password reset). While supporting existing identities is indeed desirable, the task is342

8/22

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3194v1 | CC BY 4.0 Open Access | rec: 26 Aug 2017, publ: 26 Aug 2017

/~/

&
shared_dir

Files	for	user

Regular	

endpoint

Shared	

endpoint
Bob

Jane

Figure 4. A shared endpoint scenario.

complicated by the ever growing set of providers, and the wide variety of protocols designed to allow343

users to verify ownership of an identity.344

Access management decisions are complicated by the fact that a single user may possess, and345

need to use, multiple identities from different IDPs. For example, a user Jane Doe with an identity346

jane@uni.edu at her university and another identity jdoe@lab.gov at a national laboratory may need347

to use both identities when transferring a file from endpoint A at uni.edu to endpoint B at lab.gov.348

The Globus Auth identity and access management service manages these complexities. It can be used349

as an identity broker, allowing users to authenticate using one of hundreds of supported identity providers350

(IDPs) and enabling integration in third-party services via a single standard protocol (e.g., OAuth 2). It351

also allows users to link their different identities. When Jane uses a web client to log in to Globus, Globus352

Auth requests that she verify her identity via one of her linked identity providers (e.g., by obtaining and353

checking a password). This verification is performed via a redirection workflow (e.g., OAuth 2) to ensure354

that the password used for verification is never seen by Globus Auth. Upon successful authentication,355

Globus Auth creates a set of unique, fixed-term access tokens and returns them to the requesting client.356

Each access token specifies the time period and purpose for which it can be used (e.g., transferring357

data, accessing profile information). The web client can then associate a token with subsequent HTTP358

requests—for example a transfer request to Globus Transfer—to demonstrate that Jane has verified her359

identity.360

Let’s say that Jane now uses the Globus Transfer web client to request a file transfer from endpoint361

A at uni.edu to endpoint B at lab.gov. Endpoint A requires a uni.edu access token, which the web362

client can provide due to the initial authentication. Endpoint B requires a lab.gov access token, which363

the web client does not possess. The Globus Transfer web client will then ask Globus Auth to invoke a364

further OAuth 2 operation to verify that identity and obtain a second access token.365

The MRDP implementation employs a Globus capability called the shared endpoint, a dynamically366

created construct that enables a folder on an existing endpoint to be shared with other Globus users. To367

use this feature, a user authorized to operate on the existing endpoint first creates a shared endpoint,368

designating the existing endpoint and folder; then grants read and/or write permissions on the shared369

endpoint to the Globus user(s) and/or group(s) that they want to access it. Those users can then access370

that endpoint like any other endpoint, but do not need a local account.371

This construct is illustrated in Figure 4. Bob has enabled sharing of folder ˜/shared dir on Regular372

endpoint to create Shared endpoint, and then granted Jane access to that shared endpoint. Jane can373

then use Globus to read and/or write files in the shared folder, depending on what rights she has been374

granted.375

The rdp function376

The three arguments to the function rdp in Listing 1 can be understood in terms of Figure 4. Those377

arguments are, in turn, the UUID for the endpoint on which the shared endpoint is to be created, the name378

of the folder on that endpoint from which the contents of the shared folder are to be copied, and the email379

address for the user who is to be granted access to the shared endpoint. In this case we use the Globus380

endpoint named “Globus Tutorial Endpoint 1” and sample data available on that endpoint.381

rdp('ddb59aef-6d04-11e5-ba46-22000b92c6ec',

'˜/share/godata/',

'jane@uni.edu'

9/22

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3194v1 | CC BY 4.0 Open Access | rec: 26 Aug 2017, publ: 26 Aug 2017

The code in Listing 1 uses the Globus Python SDK to create, manage access to, and delete the shared382

endpoint, as follows. It first creates a TransferClient and an AuthClient object—classes provided383

by the Globus Python SDK for accessing the Globus Transfer and Globus Auth services, respectively.384

Each class provides a rich set of methods for accessing the various resources defined in the REST APIs.385

We then use the SDK function endpoint autoactivate to ensure that the portal has a credential that386

permits access to the endpoint identified by host id.387

In Step 1(a), we use the Globus SDK function operation mkdir to create a directory (named, in our388

example call, by a UUID) on the endpoint with identifier host id. Then, in Step 1(b), the SDK function389

create shared endpoint is used to create a shared endpoint for the new directory. At this point, the390

new shared endpoint exists and is associated with the new directory, but only the creating user has access.391

In Step 3, we first use the Globus SDK function get identities to retrieve the user identifier392

associated with the supplied email address; this is the user for whom sharing is to be enabled. (If this user393

is not known to Globus, an identity is created.) We then use the function add endpoint acl rule to394

add to the new shared endpoint an access control rule that grants the specified user read-only access to the395

endpoint.396

As our add endpoint acl rule request specifies an email address, an invitation email is sent to the397

user. At this point, the user is authorized to download data from the new shared endpoint. The shared398

endpoint is typically left operational for some period and then deleted, as shown in Step 4. Note that399

deleting a shared endpoint does not delete the data that it contains. The portal admin may want to retain400

the data for other purposes. If not, we can use the Globus SDK function submit delete to delete the401

folder.402

Data transfer403

We skipped over Step 2 of Listing 1 in the preceding discussion. That step requests Globus to transfer the404

contents of the folder source path to the new shared endpoint. (The transfer in the code is from the405

endpoint on which the new shared endpoint has been created, but it could be from any Globus endpoint406

that the portal administrator is authorized to access.) The code assembles and submits the transfer request,407

providing the endpoint identifiers, source and destination paths, and (as we want to transfer a directory)408

the recursive flag. It then waits for either the transfer to complete or for a specified timeout to elapse. In409

practice, the code should check for the response code from the task wait call and then repeat the wait410

or terminate the transfer on error or timeout.411

Web and command line interfaces412

Having received an email invitation to access the new shared endpoint, the user can click on the embedded413

URL to access that endpoint via the Globus web interface. Users can then transfer the data from that414

endpoint to any other endpoint to which they are authorized to transfer.415

The Globus web interface also provides access to all other Globus functions, allowing users to create416

shared endpoints, manage access control to those endpoints, and delete a shared endpoint when it is417

no longer needed. Users may also use the Python SDK or REST APIs to perform these same actions418

programmatically. In addition, a Globus command line interface (CLI), implemented via the Python SDK,419

can be used to perform the operations just described.420

Completing the MRDP portal server421

Our MRDP reference implementation consists of a simple research data portal server that allows users422

to sign up, log in, select datasets from a set of temperature record datasets, and then either download423

or request the creation of graphs for the selected datasets. This complete implementation is some 700424

lines of code, plus 500 lines for an example service that we discuss in the next section. A screenshot of a425

deployed version of this code is shown in Figure 5.426

The portal server implementation uses the Python Flask web framework, a system that makes it427

easy to create simple web servers. The core Flask code defines, via @-prefixed decorators, what actions428

should be performed when a user accesses specific URLs. These views support both authentication and429

the core MRDP logic as well as additional functionality for managing profiles. Several views generate430

template-based web pages that are customized for user interactions.431

The OAuth 2 authentication workflow proceeds as follows. When logging in, (login()) the user is432

redirected to Globus Auth to authenticate with their identity provider. The resulting access code is returned433

to the portal, where it is exchanged for access tokens that can be used to interact with Globus Auth or434

10/22

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3194v1 | CC BY 4.0 Open Access | rec: 26 Aug 2017, publ: 26 Aug 2017

Listing 1. Globus code to implement MRDP design pattern

from globus_sdk import TransferClient, TransferData

from globus_sdk import AuthClient

import sys, random, uuid

def rdp(host_id, # Endpoint for shared endpoint

source_path, # Directory to copy data from

email): # Email address to share with

tc = TransferClient()

ac = AuthClient()

tc.endpoint_autoactivate(host_id)

(1) Create shared endpoint:

(a) Create directory to be shared

share_path = '/˜/' + str(uuid.uuid4()) + '/'

tc.operation_mkdir(host_id, path=share_path)

(b) Create shared endpoint on directory

shared_ep_data = {

'DATA_TYPE': 'shared_endpoint',

'host_endpoint': host_id,

'host_path': share_path,

'display_name': 'RDP shared endpoint',

'description': 'RDP shared endpoint'

}

r = tc.create_shared_endpoint(shared_ep_data)

share_id = r['id']

(2) Copy data into the shared endpoint

tc.endpoint_autoactivate(share_id)

tdata = TransferData(tc, host_id, share_id,

label='RDP copy', sync_level='checksum')

tdata.add_item(source_path, '/', recursive=True)

r = tc.submit_transfer(tdata)

tc.task_wait(r['task_id'], timeout=1000,

polling_interval=10)

(3) Enable access by user

r = ac.get_identities(usernames=email)

user_id = r['identities'][0]['id']

rule_data = {

'DATA_TYPE': 'access',

'principal_type': 'identity', # Grantee is

'principal': user_id, # a user.

'path': '/', # Path is /

'permissions': 'r', # Read-only

'notify_email': email, # Email invite

'notify_message': # Invite msg

'Requested data are available.'

}

tc.add_endpoint_acl_rule(share_id, rule_data)

(4) Ultimately, delete the shared endpoint

tc.delete_endpoint(share_id)

11/22

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3194v1 | CC BY 4.0 Open Access | rec: 26 Aug 2017, publ: 26 Aug 2017

Figure 5. Example MRDP showing a list of computed graphs for a user and (inset) one of these graphs.

other dependent services (e.g., Globus Transfer). Access tokens are then validated and introspected to435

obtain user information.436

The portal then provides two methods for accessing data. The first method allows users to download437

raw datasets from a list of available datasets. In this case, it makes a call to Globus Transfer to retrieve a438

real-time listing of directories in its associated endpoint. The second method allows users to dynamically439

create graphs based on selected datasets (by year and id), as described in the following subsection. The440

resulting graph is stored in the portal’s shared endpoint in a directory accessible only to the requesting user.441

Irrespective of which method is used, users may download data (i.e., raw datasets or computed graphs)442

via HTTP (using a direct URL to the object on the portal’s endpoint) or by transferring them to another443

endpoint. In the later case, the user is prompted for a destination endpoint. Rather than re-implement444

endpoint browsing web pages already offered by Globus, the portal instead uses Globus “helper pages” to445

allow users to browse the endpoint. The helper page returns the endpoint ID and path to the portal. The446

portal then starts the transfer using the Globus Transfer API.447

The following code, from the portal implementation file portal/view.py, specifies that when a user448

visits http://localhost:5000/login, the user should be redirected to the authcallback URL449

suffix.450

@app.route('/login', methods=['GET'])451

def login():452

"""Send the user to Globus Auth."""453

return redirect(url_for('authcallback'))454

The URL http://localhost:5000/authcallback in turn calls the authcallback function,455

shown in Listing 2, which uses the OAuth 2 protocol to obtain access tokens that the portal can sub-456

sequently use to interact with Globus Auth or dependent services (e.g., Globus Transfer or the graph457

service.) The basic idea is as follows. First, the web server redirects the user to authenticate using Globus458

Auth. The redirect URL includes the URL to return to (http://localhost:5000/authcallback)459

after the user has authenticated. The response includes a auth code parameter which can be unpacked460

and then swapped for access tokens by contacting Globus Auth and specifying the scopes needed by the461

portal. Finally, the resulting access tokens are returned to the portal in a JSON object which also includes462

information about the user’s identity.463

The last line returns, redirecting the web browser to the portal’s transfer page, as shown in Figure 6.464

A request to transfer files requires that the user first select the dataset(s) to be transferred and then465

specify the destination endpoint and location for the dataset(s). Listing 3 implements these behaviors.466

First, the code checks that the user has selected datasets on the transfer web page. Then, the code redirects467

the user to https://www.globus.org/app/browse-endpoint, one of the web helper pages that468

Globus operates to simplify MRDP implementation. The browse endpoint helper page returns the endpoint469

12/22

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3194v1 | CC BY 4.0 Open Access | rec: 26 Aug 2017, publ: 26 Aug 2017

Listing 2. The authcallback function interacts with Globus Auth to obtain access tokens for the

server.

@app.route('/authcallback', methods=['GET'])

def authcallback():

Handles the interaction with Globus Auth

Set up our Globus Auth/OAuth 2 state

redirect_uri = url_for('authcallback', _external=True)

client = load_portal_client()

client.oauth2_start_flow_authorization_code(redirect_uri,refresh_tokens=True)

If no "code" parameter, we are starting

the Globus Auth login flow

if 'code' not in request.args:

auth_uri = client.oauth2_get_authorize_url()

return redirect(auth_uri)

else:

If we have a "code" param, we're coming

back from Globus Auth and can exchange

the auth code for access tokens.

code = request.args.get('code')

tokens = client.oauth2_exchange_code_for_tokens(code)

id_token = tokens.decode_id_token(client)

session.update(

tokens=tokens.by_resource_server,

is_authenticated=True,

name=id_token.get('name', ''),

email=id_token.get('email', ''),

project=id_token.get('project', ''),

primary_username=id_token.get('preferred_username'),

primary_identity=id_token.get('sub'),

)

return redirect(url_for('transfer'))

13/22

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3194v1 | CC BY 4.0 Open Access | rec: 26 Aug 2017, publ: 26 Aug 2017

Figure 6. A portion of the MRDP reference implementation, showing the five user options at top (each

mapped to a “route” in the code) and two of the available datasets.

ID and path to which the user wants to transfer the selected dataset(s). The submit transfer function470

(not shown here) uses the endpoint ID and path to execute a Globus transfer request using code similar to471

Step 2 in Listing 1.472

Invoking other services473

The final element of the MRDP design pattern that we discuss here is the invocation of other services, as474

shown by the arrow labeled REST from the portal server to Other services in Figure 3. Such calls might475

be used in an MRDP instance for several reasons. You might want to organize your portal as a lightweight476

front end (e.g., pure Javascript) that interacts with one or more remote backend (micro)services. You477

might want to provide services that perform subsetting, quality control, data cleansing, or other analyses478

before serving data. Another reason is that you might want to provide a public REST API for the main479

portal machinery, so that other app and service developers can integrate with and build on your portal.480

Our reference implementation illustrates this capability. The data portal skeleton allows a client to481

request that datasets be graphed (graph()). It does not perform those graphing operations itself but482

instead sends a request to a separate Graph service. The request provides the names of the datasets to be483

graphed. The Graph service retrieves these datasets from a specified location, runs the graphing program,484

and uploads the resulting graphs to a dynamically created shared endpoint for subsequent retrieval. The485

reference implementation includes a complete implementation of the Graph service, showing how it486

manages authentication and data transfer with Globus APIs.487

EXAMPLES OF THE MRDP DESIGN PATTERN488

We briefly present five examples of large-scale implementations of the MRDP design pattern. We present489

performance results for several of these examples in the next section.490

The NCAR Research Data Archive491

The Research Data Archive (RDA) operated by the US National Center for Atmospheric Research at492

http://rda.ucar.edu contains more than 600 data collections, ranging in size from megabytes to493

tens of terabytes. These collections include meteorological and oceanographic observations, operational494

and reanalysis model outputs, and remote sensing datasets to support atmospheric and geosciences495

research, along with ancillary datasets, such as topography/bathymetry, vegetation, and land use. The496

RDA data portal allows users to browse and search data catalogs, and then download selected datasets to497

their personal computer or HPC facility.498

RDA users are primarily researchers at federal and academic research laboratories. In 2016 alone,499

more than 24,000 people downloaded more than 1.9 petabytes. The RDA portal thus requires robust,500

scalable, maintainable, and performant implementations of a range of functions, some domain-independent501

(e.g., user identities, authentication, and data transfer) and others more domain-specific (e.g., a catalog of502

environmental data collections).503

RDA uses the techniques described previously to implement the MRDP design pattern, except that504

they do not currently outsource identity management. The use of the MRDP design pattern for RDA505

14/22

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3194v1 | CC BY 4.0 Open Access | rec: 26 Aug 2017, publ: 26 Aug 2017

Listing 3. The transfer() function from the web server reference implementation.

@app.route('/transfer', methods=['GET', 'POST'])

@authenticated

def transfer():

if request.method == 'GET':

return render_template('transfer.jinja2', datasets=datasets)

if request.method == 'POST':

Check that file(s) have been selected for transfer

if not request.form.get('dataset'):

flash('Please select at least one dataset.')

return redirect(url_for('transfer'))

params = {

'method': 'POST',

'action': url_for('submit_transfer', _external=True, _scheme='https'),

'filelimit': 0,

'folderlimit': 1

}

browse_endpoint =

'https://www.globus.org/app/browse-endpoint?{}'.format(urlencode(params))

Save submitted form to session

session['form'] = {

'datasets': request.form.getlist('dataset')

}

Send to Globus to select a destination endpoint using

the Browse Endpoint helper page.

return redirect(browse_endpoint)

allows for vastly increased scalability in terms of dataset size, and much lower human effort for managing506

the transfer of multi-terabyte datasets to computing centers for analysis.507

Sanger Imputation Service508

This service, operated by the Wellcome Trust Sanger Institute at https://imputation.sanger.509

ac.uk, allows you to upload files containing genome wide association study (GWAS) data from the510

23andMe genotyping service and receive back the results of imputation and other analyses that identify511

genes that you are likely to possess based on those GWAS data (McCarthy et al., 2016). This service uses512

Globus APIs to implement a variant of the MRDP design pattern, as follows.513

A user who wants to use the service first registers an imputation job. As part of this process, they are514

prompted for their name, email address, and identity, and the type of analysis to be performed. The portal515

then requests Globus to create a shared endpoint, share that endpoint with the identity provided by the516

user, and email a link to this endpoint to the user. The user clicks on that link to upload their GWAS data517

file and the corresponding imputation task is added to the imputation queue at the Sanger Institute. Once518

the imputation task is completed, the portal requests Globus to create a second shared endpoint to contain519

the output and to email the user a link to that new endpoint for download. The overall process differs520

from that of Listing 1 only in that a shared endpoint is used for data upload as well as download.521

User-managed data sharing portals522

Argonne National Laboratory’s Petrel (http://petrel.alcf.anl.gov/) implements a special-523

ized research data portal that allows users to request a space allocation and then upload, download,524

organize, and share data within that allocated space.525

Petrel uses Globus to implement the MRDP model on top of storage provided by Argonne. It526

implements a simple workflow (based on Globus Groups) for users to request an allocation. It then,527

using code similar to Listing 1, creates a directory for the allocation and a shared endpoint to manage the528

allocation, and assigns the requesting user as the “manager” of that shared endpoint. The user can then529

manage their allocation as if it were storage on their personal resources, uploading and downloading data,530

15/22

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3194v1 | CC BY 4.0 Open Access | rec: 26 Aug 2017, publ: 26 Aug 2017

and selecting who may access (read/write) paths in that storage.531

Scalable data publication532

Globus data publication (Chard et al., 2015) enables researchers to publish and access data in user-533

managed collections. Following the MRDP design pattern, the system is implemented as a cloud-hosted534

service with data storage provided by decoupled Globus endpoints. Users define their own publication535

collections by specifying a Globus endpoint on which data are to be stored. The publication service then536

manages the workflows for submitting a dataset, associating a persistent identifier with the dataset, and537

recording user-supplied metadata. Permitted users can then publish data in the collection by following538

this workflow. Once published, other users are then able to discover and download published data.539

The service uses Globus transfer to manage data. Upon submission of a new dataset, the publication540

service creates a unique directory in the collection’s shared endpoint and shares it (with write access)541

to the submitting user. After the submission is complete, the service removes the write permission (in542

effect making the endpoint immutable) and proceeds through the submission and curation workflows, by543

changing permissions on the directory. When the submission is approved for publication, the service544

modifies permissions to match the collection’s policies. It now acts as a typical MRDP, providing access545

to published data for discovery and download.546

Data delivery at Advanced Photon Source547

The Advanced Photon Source (APS) at Argonne National Laboratory, like many experimental facilities548

worldwide, serves thousands of researchers every year, many of whom collect data and return to their549

home institution. In the past, data produced during an experiment was invariably carried back on physical550

media. However, as data sizes have grown and experiments have become more collaborative, that approach551

has become less effective. Data transfer via network is preferred; the challenge is to integrate data transfer552

into the experimental workflow of the facility in a way that is automated, secure, reliable, and scalable.553

The DMagic system (De Carlo, 2017) implements a MRDP to do just that. DMagic integrates with554

APS administrative and facility systems to deliver data to experimental users. Before the experiment555

begins, it creates a shared endpoint on a large storage system maintained by Argonne’s computing facility.556

DMagic then retrieves the list of approved users for the experiment and adds permissions for those users557

to the shared endpoint. It then monitors the experiment data directory at the APS experimental facility and558

copies new files automatically to that shared endpoint, from which they can be retrieved by any approved559

user.560

EVALUATION OF MRDP ADOPTION561

The advantages of using high performance data transfer protocols over traditional protocols (e.g., HTTP,562

SCP) have been well explored (Mattmann et al., 2006; Rao et al., 2016; Subramoni et al., 2010). The563

benefits of building upon a professionally managed platform are also well established (Cusumano, 2010).564

Thus, rather than comparing MRDP performance with that of legacy approaches, we examine adoption of565

the MRDP pattern in real-world deployments. Specifically, we explore usage of five MRDPs: 1) NCAR’s566

Research Data Archive; 2) the Sanger imputation service; 3) Petrel data sharing service; 4) Globus data567

publication (Publish); and 5) the Cornell Advanced Computing (CAC) Archive.568

Table 1 presents for each portal the number of transfers, number of unique users, total amount of data569

transferred, and average transfer rates. Figure 7 and Figure 8 show the total data transferred per day and570

file size vs. transfer rate for individual transfers, respectively, for three of these MRDPs. These results571

highlight the large amounts of data that can be handled by such portals. In fact, all but one moves in572

excess of 1 TB per day. (The peak transfer volume of more than 1 PB recorded for Petrel arises because573

transfer volumes are assigned to the day on which a transfer completes.) These graphs also highlight the574

wide range of MRDP characteristics that we encounter “in the wild”: for example, whether source or sink,575

the scales of data handled, and the network bandwidths available.576

We comment on a few specifics of the different portals shown in the figures. The Sanger portal accepts577

user-uploaded datasets and returns processed datasets that are roughly an order of magnitude larger. Its578

average transfer rates are lower than for the other portals as it is used by individual users with varied579

connectivity.580

Petrel handles extremely large data and provides high-speed data access via its many DTNs and581

high-speed networks that connect it to users within Argonne and at other labs.582

16/22

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3194v1 | CC BY 4.0 Open Access | rec: 26 Aug 2017, publ: 26 Aug 2017

Table 1. Usage summary for five MRDP deployments: total operations, unique users, total data, and

average transfer rate, each for both outgoing and incoming transfers.

Operations Users Data (TB) Rate (mbps)

Name Out In Out In Out In Out In

RDA 6,677 84 399 1 596.6 0.0 16.5 1.1

Sanger 5,667 4,757 328 346 298.9 49.6 25.6 13.6

Petrel 35,941 18,015 225 100 1,630.0 3,320.0 110.7 213.4

Publish 3,563 3,243 124 84 8.5 7.9 3.8 30.1

CAC 477 3,190 30 49 359.5 705.3 173.2 37.5

The RDA portal primarily serves data of modest size (10s of GBs) and at modest rates to many583

endpoints (likely as consumers are using a variety of destinations). Nevertheless, it can achieve high584

performance when a destination endpoint has suitable capacity, as is shown in Figure 8b, which extracts585

from Figure 8a the transfers from RDA to the National Energy Research Supercomputing Center (NERSC),586

a high performance computing center In Berkeley, California, with a substantial Globus deployment.587

Globus data publication is a unique portal in that its storage is distributed across 300 different Globus588

endpoints. Its transfer rate is therefore variable and usage is sporadic.589

Finally, CAC is used by institutional users as an archival service. As such, it is primarily used as a590

destination, and transfer rates are high as users share a high-speed internal network.591

RELATED WORK592

The MRDP design pattern that we have presented here codifies the experience of many groups who have593

deployed and applied research data portals. Our discussion of implementation techniques reflects this594

experience. However, the design pattern could also be implemented with other technologies, as we now595

discuss.596

The Globus transfer service typically employs the Globus implementation of the GridFTP transfer pro-597

tocol (Allcock et al., 2005) for file transfers, which uses techniques such as multiple TCP channels (Hacker598

et al., 2004) to optimize transfer performance. Other protocols and tools that can be used for this purpose599

include Fast TCP (Jin et al., 2005), Scalable TCP (Kelly, 2003), UDT (Gu and Grossman, 2007), and600

bbcp (Hanushevsky et al., 2001).601

PhEDEx (Egeland et al., 2010) and the CERN File Transfer Service (Laure et al., 2006) are two602

examples of services that support management of file transfers. Both are designed for use in high energy603

physics experiments. The EUDAT (Lecarpentier et al., 2013) project’s B2STAGE service supports604

the transfer, via the GridFTP protocol, of research data between EUDAT storage resources and high-605

performance computing (HPC) workspaces. None of these systems provide APIs for integration with data606

portals and Science DMZs.607

Apache Airavata (Pierce et al., 2015) provides general-purpose middleware for building science608

gateways, but does not address data movement or integration with Science DMZs. CyVerse (Goff et al.,609

2011) provides a scalable data store, built on iRODS (Rajasekar et al., 2010), and specialized APIs (Dooley610

et al., 2012) to access its storage services. It supports Cyberduck, amongst other tools, for transferring611

data using an array of protocols (e.g., HTTP, FTP, WebDAV) directly to Windows and Mac PCs. Thus,612

while it may separate control and data channels, it does not support third-party or high performance data613

transfer nor does it integrate with Science DMZs and DTNs.614

Many services support scientific data publication, including Dataverse (Crosas, 2011), figshare, and615

Zenodo. Increasingly, these services are incorporating support for large amounts of data. For example,616

the developers of the Structural Biology Data Grid (Morin et al., 2013) are working to integrate Globus617

with Dataverse (Meyer et al., 2016). Similarly, publication repositories such as figshare now support data618

storage on institutional or cloud storage, thereby achieving some separation of control and data channels.619

While these implementations follow some aspects of the MRDP design pattern, they do not integrate with620

Science DMZs and their implementations are proprietary and cannot be easily generalized and adopted by621

others.622

The MRDP design pattern could also be implemented using commercial cloud services, such as623

those provided by Amazon, Google, and Microsoft. Indeed, many public scientific datasets are now624

17/22

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3194v1 | CC BY 4.0 Open Access | rec: 26 Aug 2017, publ: 26 Aug 2017

(a) RDA (b) Sanger

(c) Petrel

Figure 7. Input/output transfer volumes per day for three MRDP instances. The numbers on the x axis

represent days prior to March 9, 2017.

hosted on cloud platforms and researchers are increasingly leveraging cloud services for managing and625

analyzing data (Babuji et al., 2016). Cloud services provide scalable data management, rich identity626

management, and secure authentication and authorization, all accessible via APIs—a complete set of627

capabilities needed to implement the MRDP design pattern. However, each cloud provider is a walled628

garden, not easily integrated with other systems, and cloud provider business models require that MRDP629

administrators develop methods to recoup service costs related to data storage and egress. In contrast, our630

MRDP reference implementation allows data to be stored and retrieved from many locations.631

SUMMARY632

We have described the state of the practice for delivering scientific data through what we call the modern633

research data portal (MRDP) design pattern. The MRDP pattern addresses the shortcomings of the634

monolithic legacy research data portal by improving transfer performance, security, reliability, and ease of635

implementation while also reducing operational complexity.636

We have shown how high performance networks and cloud service APIs can be used to create637

performant and particularly simple implementations of this design pattern. In a typical deployment, as638

shown in Figure 3, the control logic of Listing 1 runs on a protected computer behind the institutional639

firewall, to protect that sensitive logic against attack, while the storage system(s) on which data reside sit640

inside the Science DMZ, with Globus endpoint(s) deployed on DTNs for high-speed access. The control641

logic makes REST API calls to the Globus cloud service to create shared endpoints, transfer files, manage642

permissions, and so forth.643

The sample code we have presented shows how developers can automate data management tasks by644

using modern cloud-based data services to create powerful research data portals (accessible via Web,645

mobile, custom applications, and command line) that leverage Science DMZ paths for data distribution,646

staging, replication, and other purposes. In our example we leverage Globus to outsource all identity647

management and authentication functions. The MRDP needs simply to provide service-specific au-648

18/22

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3194v1 | CC BY 4.0 Open Access | rec: 26 Aug 2017, publ: 26 Aug 2017

(a) RDA (b) RDA to NCAR subset

(c) Sanger (d) Petrel

Figure 8. Transfer rate vs. data size for MRDP instances. The two upper figures show (a) all transfers

for the RDA instance and (b) only transfers from RDA to NERSC, with points in a larger size, as there are

fewer of them. The two lower figures show all transfers for the Sanger and Petrel instances, respectively.

Each point in each scatter plot represents a single transfer request, which may involve many files.

Incoming and outgoing transfers are distinguished; RDA has only one incoming transfer.

thorization, which can be performed on the basis of identity or group membership. And because all649

interactions are compliant with OAuth 2 and OpenID Connect standards, any application that speaks650

these protocols can use the MRDP service like they would any other; the MRDP service can seamlessly651

leverage other services; and other services can leverage MRDP service. The use of best-practice and652

standards-compliant implementations for data movement, automation, authentication, and authorization is653

a powerful combination.654

The benefits of the MRDP approach lie not only in the separation of concerns between control logic655

and data movement. In addition, the data portal developer and admin both benefit from the ability to hand656

off the management of file access and transfers to the Globus service. In the last three years we have657

observed steady adoption of the MRDP design pattern. We described five illustrative implementations658

that variously serve research data, support analysis of uploaded data, provide flexible data sharing, enable659

data publication, and facilitate data archival. Collectively, these deployments have performed more than660

80,000 transfers totaling almost seven petabytes over the past three years.661

ACKNOWLEDGMENTS662

We thanks the Globus team for the development of the technologies described here, and participants in663

“Building the Modern Research Data Portal” workshops for their feedback. This work was supported in664

part by NSF grant ACI-1148484 and by the DOE under contract DE-AC02-06CH11357.665

REFERENCES666

Allcock, W., Bresnahan, J., Kettimuthu, R., Link, M., Dumitrescu, C., Raicu, I., and Foster, I. (2005). The667

Globus striped GridFTP framework and server. In ACM/IEEE Conference on Supercomputing, page 54.668

19/22

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3194v1 | CC BY 4.0 Open Access | rec: 26 Aug 2017, publ: 26 Aug 2017

Babuji, Y. N., Chard, K., Gerow, A., and Duede, E. (2016). Cloud Kotta: Enabling secure and scalable669

data analytics in the cloud. In IEEE International Conference on Big Data, pages 302–310.670

Barnett, W., Welch, V., Walsh, A., and Stewart, C. A. (2011). A roadmap for using NSF cyberinfrastructure671

with InCommon. http://hdl.handle.net/2022/13024.672

Basney, J. and Gaynor, J. (2011). An OAuth service for issuing certificates to science gateways for673

TeraGrid users. In TeraGrid Conference: Extreme Digital Discovery, page 32. ACM.674

Berners-Lee, T. (1989). Information management: A proposal. https://www.w3.org/History/675

1989/proposal.html.676

Borgman, C. L. (2012). The conundrum of sharing research data. Journal of the American Society for677

Information Science and Technology, 63(6):1059–1078.678

Chard, K., Lidman, M., McCollam, B., Bryan, J., Ananthakrishnan, R., Tuecke, S., and Foster, I. (2016).679

Globus nexus: A platform-as-a-service provider of research identity, profile, and group management.680

Future Generation Computer Systems, 56:571 – 583.681

Chard, K., Pruyne, J., Blaiszik, B., Ananthakrishnan, R., Tuecke, S., and Foster, I. (2015). Globus682

data publication as a service: Lowering barriers to reproducible science. In 11th IEEE International683

Conference on e-Science (e-Science), pages 401–410.684

Chard, K., Tuecke, S., and Foster, I. (2014). Efficient and secure transfer, synchronization, and sharing of685

big data. IEEE Cloud Computing, 1(3):46–55.686

Crosas, M. (2011). The Dataverse network: An open-source application for sharing, discovering and687

preserving data. D-lib Magazine, 17(2).688

Cusumano, M. (2010). Cloud computing and SaaS as new computing platforms. Communications of the689

ACM, 53(4):27–29.690

Dart, E., Rotman, L., Tierney, B., Hester, M., and Zurawski, J. (2013). The Science DMZ: A network691

design pattern for data-intensive science. In International Conference on High Performance Computing,692

Networking, Storage and Analysis, SC ’13, pages 85:1–85:10, New York, NY, USA. ACM.693

De Carlo, F. (2017). DMagic data management system. http://dmagic.readthedocs.io.694

Dooley, R., Vaughn, M., Stanzione, D., Terry, S., and Skidmore, E. (2012). Software-as-a-service: the695

iPlant foundation API. In 5th IEEE Workshop on Many-Task Computing on Grids and Supercomputers.696

Egeland, R., Wildishb, T., and Huang, C.-H. (2010). PhEDEx data service. Journal of Physics: Conference697

Series, 219.698

ESnet (2017). ESnet Fasterdata Knowledge Base. http://fasterdata.es.net.699

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1994). Design Patterns: Elements of Reusable700

Object-oriented Software. Addison-Wesley.701

Goff, S. A., Vaughn, M., McKay, S., Lyons, E., Stapleton, A. E., Gessler, D., Matasci, N., Wang, L.,702

Hanlon, M., Lenards, A., Muir, A., Merchant, N., Lowry, S., Mock, S., Helmke, M., Kubach, A., Narro,703

M., Hopkins, N., Micklos, D., Hilgert, U., Gonzales, M., Jordan, C., Skidmore, E., Dooley, R., Cazes,704

J., McLay, R., Lu, Z., Pasternak, S., Koesterke, L., Piel, W. H., Grene, R., Noutsos, C., Gendler, K.,705

Feng, X., Tang, C., Lent, M., Kim, S.-J., Kvilekval, K., Manjunath, B. S., Tannen, V., Stamatakis, A.,706

Sanderson, M., Welch, S. M., Cranston, K. A., Soltis, P., Soltis, D., O’Meara, B., Ane, C., Brutnell, T.,707

Kleibenstein, D. J., White, J. W., Leebens-Mack, J., Donoghue, M. J., Spalding, E. P., Vision, T. J.,708

Myers, C. R., Lowenthal, D., Enquist, B. J., Boyle, B., Akoglu, A., Andrews, G., Ram, S., Ware, D.,709

Stein, L., and Stanzione, D. (2011). The iPlant collaborative: Cyberinfrastructure for plant biology.710

Frontiers in Plant Science, 2:34.711

Gu, Y. and Grossman, R. L. (2007). UDT: UDP-based data transfer for high-speed wide area networks.712

Comput. Netw., 51(7):1777–1799.713

Hacker, T. J., Noble, B. D., and Athey, B. D. (2004). Improving throughput and maintaining fairness714

using parallel TCP. In IEEE InfoCom.715

Hanemann, A., Boote, J. W., Boyd, E. L., Durand, J., Kudarimoti, L., Łapacz, R., Swany, D. M., Trocha,716

S., and Zurawski, J. (2005). perfSONAR: A service oriented architecture for multi-domain network717

monitoring. In International Conference on Service-Oriented Computing, pages 241–254. Springer.718

Hanushevsky, A., Trunov, A., and Cottrell, L. (2001). Peer to peer computing for secure high performance719

data copying. Technical Report SLAC-PUB-8908, Stanford Linear Accelerator Center.720

Hardt, D. (2012). OAuth 2.0 authorization framework specification. http://tools.ietf.org/721

html/rfc6749.722

Hey, T., Tansley, S., and Tolle, K. (2009). The fourth paradigm. Microsoft Research.723

20/22

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3194v1 | CC BY 4.0 Open Access | rec: 26 Aug 2017, publ: 26 Aug 2017

Jin, C., Wei, D., Low, S. H., Bunn, J., Choe, H. D., Doylle, J. C., Newman, H., Ravot, S., Singh, S., and724

Paganini, F. (2005). FAST TCP: From theory to experiments. IEEE Network, 19(1):4–11.725

Kelly, T. (2003). Scalable TCP: Improving performance in highspeed wide area networks. ACM726

SIGCOMM Computer Communication Review, 33(2):83–91.727

Klimeck, G., McLennan, M., Brophy, S. P., Adams III, G. B., and Lundstrom, M. S. (2008). nanohub.org:728

Advancing education and research in nanotechnology. Computing in Science & Engineering, 10(5):17–729

23.730

Laure, E., Fisher, S., Frohner, A., Grandi, C., Kunszt, P., Krenek, A., Mulmo, O., Pacini, F., Prelz, F.,731

White, J., Barroso, M., Buncic, P., Hemmer, F., Di Meglio, A., and Edlund, A. (2006). Programming the732

grid with gLite. Technical Report EGEE-TR-2006-001, CERN. http://cds.cern.ch/record/733

936685.734

Lawrence, K. A., Zentner, M., Wilkins-Diehr, N., Wernert, J. A., Pierce, M., Marru, S., and Michael, S.735

(2015). Science gateways today and tomorrow: Positive perspectives of nearly 5000 members of the736

research community. Concurrency and Computation: Practice and Experience, 27(16):4252–4268.737

Lecarpentier, D., Wittenburg, P., Elbers, W., Michelini, A., Kanso, R., Coveney, P., and Baxter, R. (2013).738

EUDAT: A new cross-disciplinary data infrastructure for science. International Journal of Digital739

Curation, 8(1):279–287.740

Mattmann, C. A., Kelly, S., Crichton, D. J., Hughes, J. S., Hardman, S., Ramirez, P., and Joyner, R. (2006).741

A classification and evaluation of data movement technologies for the delivery of highly voluminous742

scientific data products. Technical report, Jet Propulsion Laboratory.743

McCarthy, S., Das, S., Kretzschmar, W., Delaneau, O., Wood, A. R., Teumer, A., Kang, H. M., Fuchsberger,744

C., Danecek, P., Sharp, K., Luo, Y., Sidore, C., Kwong, A., Timpson, N., Koskinen, S., Vrieze, S.,745

Scott, L. J., Zhang, H., Mahajan, A., Veldink, J., Peters, U., Pato, C., van Duijn, C. M., Gillies, C. E.,746

Gandin, I., Mezzavilla, M., Gilly, A., Cocca, M., Traglia, M., Angius, A., Barrett, J. C., Boomsma, D.,747

Branham, K., Breen, G., Brummett, C. M., Busonero, F., Campbell, H., Chan, A., Chen, S., Chew,748

E., Collins, F. S., Corbin, L. J., Smith, G. D., Dedoussis, G., Dorr, M., Farmaki, A.-E., Ferrucci, L.,749

Forer, L., Fraser, R. M., Gabriel, S., Levy, S., Groop, L., Harrison, T., Hattersley, A., Holmen, O. L.,750

Hveem, K., Kretzler, M., Lee, J. C., McGue, M., Meitinger, T., Melzer, D., Min, J. L., Mohlke, K. L.,751

Vincent, J. B., Nauck, M., Nickerson, D., Palotie, A., Pato, M., Pirastu, N., McInnis, M., Richards,752

J. B., Sala, C., Salomaa, V., Schlessinger, D., Schoenherr, S., Slagboom, P. E., Small, K., Spector, T.,753

Stambolian, D., Tuke, M., Tuomilehto, J., den Berg, L. H. V., Rheenen, W. V., Volker, U., Wijmenga,754

C., Toniolo, D., Zeggini, E., Gasparini, P., Sampson, M. G., Wilson, J. F., Frayling, T., de Bakker, P.755

I. W., Swertz, M. A., McCarroll, S., Kooperberg, C., Dekker, A., Altshuler, D., Willer, C., Iacono, W.,756

Ripatti, S., Soranzo, N., Walter, K., Swaroop, A., Cucca, F., Anderson, C. A., Myers, R. M., Boehnke,757

M., McCarthy, M. I., Durbin, R., Abecasis, G., and Marchini, J. (2016). A reference panel of 64,976758

haplotypes for genotype imputation. Nature genetics, 48(10):1279–1283.759

McLennan, M. and Kennell, R. (2010). HUBzero: A platform for dissemination and collaboration in760

computational science and engineering. Computing in Science & Engineering, 12(2).761

Meyer, P. A., Socias, S., Key, J., Ransey, E., Tjon, E. C., Buschiazzo, A., Lei, M., Botka, C., Withrow,762

J., Neau, D., Rajashankar, K., Anderson, K. S., Baxter, R. H., Blacklow, S. C., Boggon, T. J., Bonvin,763

A. M. J. J., Borek, D., Brett, T. J., Caflisch, A., Chang, C.-I., Chazin, W. J., Corbett, K. D., Cosgrove,764

M. S., Crosson, S., Dhe-Paganon, S., Cera, E. D., Drennan, C. L., Eck, M. J., Eichman, B. F., Fan,765

Q. R., Ferré-D’Amaré, A. R., Fromme, J. C., Garcia, K. C., Gaudet, R., Gong, P., Harrison, S. C.,766

Heldwein, E. E., Jia, Z., Keenan, R. J., Kruse, A. C., Kvansakul, M., McLellan, J. S., Modis, Y., Nam,767

Y., Otwinowski, Z., Pai, E. F., Pereira, P. J. B., Petosa, C., Raman, C. S., Rapoport, T. A., Roll-Mecak,768

A., Rosen, M. K., Rudenko, G., Schlessinger, J., Schwartz, T. U., Shamoo, Y., Sondermann, H., Tao,769

Y. J., Tolia, N. H., Tsodikov, O. V., Westover, K. D., Wu, H., Foster, I., Fraser, J. S., Maia, F. R. N. C.,770

Gonen, T., Kirchhausen, T., Diederichs, K., Crosas, M., and Sliz, P. (2016). Data publication with the771

Structural Biology Data Grid supports live analysis. Nature Communications, 7.772

Morin, A., Eisenbraun, B., Key, J., Sanschagrin, P. C., Timony, M. A., Ottaviano, M., and Sliz, P. (2013).773

Collaboration gets the most out of software. eLife, 2:e01456.774

Pierce, M. E., Marru, S., Gunathilake, L., Wijeratne, D. K., Singh, R., Wimalasena, C., Ratnayaka, S., and775

Pamidighantam, S. (2015). Apache Airavata: Design and directions of a science gateway framework.776

Concurrency and Computation: Practice and Experience, 27(16):4282–4291.777

Rajasekar, A., Moore, R., Hou, C.-y., Lee, C. A., Marciano, R., de Torcy, A., Wan, M., Schroeder, W.,778

21/22

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3194v1 | CC BY 4.0 Open Access | rec: 26 Aug 2017, publ: 26 Aug 2017

Chen, S.-Y., Gilbert, L., Tooby, P., and Zhu, B. (2010). iRODS Primer: Integrated rule-oriented data779

system. Synthesis Lectures on Information Concepts, Retrieval, and Services, 2(1):1–143.780

Rao, N. S., Liu, Q., Sen, S., Hinkel, G., Imam, N., Foster, I., Kettimuthu, R., Settlemyer, B. W., Wu, C. Q.,781

and Yun, D. (2016). Experimental analysis of file transfer rates over wide-area dedicated connections.782

In IEEE 18th International Conference on High Performance Computing and Communications, pages783

198–205. IEEE.784

Russell, M., Allen, G., Daues, G., Foster, I., Seidel, E., Novotny, J., Shalf, J., and Von Laszewski, G.785

(2001). The Astrophysics Simulation Collaboratory: A science portal enabling community software786

development. In 10th IEEE International Symposium on High Performance Distributed Computing,787

pages 207–215.788

Sakimura, N., Bradley, J., Jones, M., de Medeiros, B., and Mortimore, C. (2014). OpenID Connect Core789

1.0. http://openid.net/specs/openid-connect-core-1_0.html.790

Subramoni, H., Lai, P., Kettimuthu, R., and Panda, D. K. (2010). High performance data transfer in grid791

environment using GridFTP over InfiniBand. In 10th IEEE/ACM International Conference on Cluster,792

Cloud and Grid Computing, pages 557–564. IEEE.793

Tenopir, C., Allard, S., Douglass, K., Aydinoglu, A. U., Wu, L., Read, E., Manoff, M., and Frame, M.794

(2011). Data sharing by scientists: Practices and perceptions. PLOS ONE, 6(6):e21101.795

Tuecke, S., Ananthakrishnan, R., Chard, K., Lidman, M., McCollam, B., and Foster, I. (2015). Globus796

Auth: A research identity and access management platform. In 12th IEEE International Conference on797

e-Science (e-Science).798

Wilkins-Diehr, N., Gannon, D., Klimeck, G., Oster, S., and Pamidighantam, S. (2008). TeraGrid science799

gateways and their impact on science. Computer, 41(11).800

22/22

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3194v1 | CC BY 4.0 Open Access | rec: 26 Aug 2017, publ: 26 Aug 2017

