
Parameters tuning boosts hyperSMURF predictions of rare
deleterious non-coding genetic variants

The regulatory code that determines whether and how a given genetic variant affects the

function of a regulatory element remains poorly understood for most classes of regulatory

variation. Indeed the large majority of bioinformatics tools have been developed to predict

the pathogenicity of genetic variants in coding sequences or conserved splice sites.

Computational algorithms for the prediction of non-coding deleterious variants associated

with rare genetic diseases are faced with special challenges owing to the rarity of

confirmed pathogenic mutations. Indeed in this context classical machine learning

methods are biased toward neutral variants that constitute the large majority of genetic

variation, and are not able to detect the potential deleterious variants that constitute only

a tiny minority of all known genetic variation. We recently proposed hyperSMURF, hyper-

ensemble of SMOTE Undersampled Random Forests, an ensemble approach explicitly

designed to deal with the huge imbalance between deleterious and neutral variants, and

able to significantly outperform state-of-the-art methods for the prediction of non-coding

variants associated with Mendelian diseases. Despite its successful application to the

detection of deleterious single nucleotide variants (SNV) as well as to small insertions or

deletions (indels), hyperSMURF is a method that depends on several learning parameters,

that strongly influence its overall performances. In this work we experimentally show that

by tuning hyperSMURF parameters we can significantly boost the performance of the

method, thus predicting with significantly better precision and recall rare SNVs associated

with Mendelian diseases.
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Introduction

The regulatory code that determines whether and how a given genetic variant

affects the function of a regulatory element remains poorly understood for most

classes of regulatory variation. Indeed the large majority of bioinformatics tools

have been developed to predict the pathogenicity of genetic variants in coding

sequences or conserved splice sites [Ritchie and Flicek, 2014].

Computational algorithms for the prediction of non-coding deleterious variants

associated with rare genetic diseases are faced with special challenges owing

to the rarity of confirmed pathogenic mutations. Indeed in this context classi-

cal machine learning methods are biased toward neutral variants that constitute

the large majority of genetic variation, and are not able to detect the potential

deleterious variants that constitute only a tiny minority of all known genetic varia-

tion [Smedley et al., 2016].

We recently proposed hyperSMURF, hyper-ensemble of SMOTE Undersam-

pled Random Forests, an ensemble approach explicitly designed to deal with the

huge imbalance between deleterious and neutral variants [Schubach et al., 2017],

and able to significantly outperform state-of-the-art methods for the prediction of

non-coding variants associated with Mendelian diseases.
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Despite its successful application to the detection of deleterious single nu-

cleotide variants (SNV) as well as to small insertions or deletions (indels), hyper-

SMURF is a method that depends on several learning parameters, that strongly

influence its overall performances. In this work we experimentally show that by

tuning hyperSMURF parameters we can significantly boost the performance

of the method, thus predicting with significantly better precision and recall rare

SNVs associated with Mendelian diseases.

Methods

HyperSMURF is a method specifically designed to provide genome-wide pre-

dictions of deleterious (e.g. disease-associated) variants explicitly taking into

account the imbalance that characterize the number of deleterious variants (pos-

itive examples) vs neutral variants (negative examples) in the non-coding human

genome.

To this end two main learning strategies are adopted: 1) Sampling tech-

niques and 2) Ensembling and hyper-ensembling approaches. By oversampling

the small set of available positive examples using SMOTE [Chawla et al., 2002]

and at the same subsampling the set of negative examples, we can balance the

data, thus avoiding the bias toward the majority class. By training a set of ran-

dom forests, each one on a different sampled and balanced set of the data, we

can obtain both accurate and diverse base learners and a large coverage of the

available training data: these features represent key factors for the success of

ensemble methods [Kuncheva, 2014]. Note that with hyperSMURF we have an

ensemble of ensembles, since each base learner is in turn a random forest (i.e.

an ensemble of decision trees), thus obtaining an hyper-ensemble (ensemble of

ensembles) approach. For a detailed description of the hyperSMURF algorithm,

please see [Schubach et al., 2017].

HyperSMURF is characterized by a set of learning parameters (i.e. the num-

ber of random forests n, the oversampling f and the subsampling factor m ) that

can significantly affect the overall performance of the method. Indeed these pa-

rameters have a high impact on the runtime and the training success, ranging

from the coverage of the training data, to the accuracy and diversity of the base

learner, to the balancing between the classes, and to the number of new synthetic

instances added via SMOTE [Chawla et al., 2002]. In other words it is not always

straightforward the proper choice of the learning parameters of hyperSMURF,
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since it also strongly depends on the underlying distribution of the data. In prin-

ciple, by properly tuning the learning parameters, we can better fit the data and

significantly boost the overall performances. Considering the complexity of a “a

priori” evaluating of the “optimal” hyperSMURF parameters, we adopted an un-

biased empirical approach by selecting through internal cross-validation on the

training data the parameters that lead to the beast estimated performance using

the Area Under the Precision Recall Curve (AUPRC) as the the metric to be max-

imized. In principle other metrics could be maximized, but we used the AUPRC,

since the data are highly imbalanced.

Results

We subdivided the Mendelian data that include 406 manually annotated “pos-

itive” deleterious SNV and more than 14 millions of neutral “negative” SNVs in a

training set including about 9/10 of the available data and a separated test set

including the remaining 1/10 of data, using the same set of genomic features

described in [Smedley et al., 2016]. We then compared the hyperSMURF results

obtained by using the default parameters (i.e. n = 100, f = 2, m = 3) with the hy-

perSMURF results obtained by selecting the “best” learning parameters through

cross-validation on the training data. More precisely we considered all the possi-

ble combinations of the parameters n ∈ {10,50,100,300}, f ∈ {1,2,3,5,10} and

m ∈ {1,2,3,5,10}. The resulting 100 hyperSMURF models have been cross-

validated on the training set using the Marconi cluster available at CINECA Su-

percomputing Applications and Innovation Department. It is worth noting that we

did not tune the random forest learning parameters, using always for each forest

10 trees and randomly selecting for each node of the trees 5 features, in order to

reduce the complexity of the overall parameter search space.

Fig 1 a) shows the distribution of the cross-validated results across 100 com-

binations of (n, f ,m) triplets of the learning parameters on the training set. The

results widely vary, depending on the choice of the parameters, from a minimum

of the Area Under the Precision Recall Curve (AUPRC) equal to 0.1741 to a maxi-

mum AUPRC equal to 0.4529, achieved with parameters n= 300, f = 1,m= 10, i.e.

with 300 random forests trained on samples having a doubled number of positive

examples ( f = 1), and a number of negatives 10 times larger than that of positives

(m = 10), thus reducing in the training set the original imbalance between positive

and negatives from about 1 : 36000 to 1 : 10.

Fig 1 b) shows the precision/recall curves obtained on the test set by us-
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Figure 1: (a): Distribution across 100 different choices of hyper-

SMURFparameters (n, f ,m) of the AUPRC values obtained by cross-validation

on the training data; (b) Comparison of precision-recall curves obtained by hy-

perSMURF with default parameters (red curve) and with the selected “best” pa-

rameters (cyan curve).

ing the default parameters and the best parameters selected by cross-validation

on the training data. Here we obtain a significant increment of the AUPRC

from 0.3568 to 0.4156 (the difference is statistically significant according to the

Wilcoxon rank sum test, p− value = 10
−16). These results are also confirmed

by the AUROC50,AUROC100, and AUROC1000 results, where hyperSMURF with

tuned parameters largely and significantly outperforms hyperSMURF with de-

fault parameters (Table 1). Note that we do not report AUROC results, since

in this highly imbalanced context pure AUROC results are not as significant as

AUPRC or AUROC limited to the top ranked SNVs [Saito and Rehmsmeier, 2015].
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Table 1: Comparison of hyperSMURF results obtained respectively with default

parameters (n = 100, f = 2,m = 3) and with the best parameters obtained by in-

ternal cross-validation on the training data (n = 300, f = 1,m = 10).

AUPRC AUROC50 AUROC100 AUROC500 AUROC1000

hyperSMURF default par. 0.3568 0.8600 0.9300 0.9091 0.8868

hyperSMURF best par. 0.4156 0.9220 0.9610 0.9407 0.9460

We outline that we previously showed that hyperSMURF with default parame-

ters just significantly outperforms existing state-of-the-art methods [Kircher et al., 2014,

Zhou and Troyanskaya, 2015, Ionita-Laza et al., 2016] on the prediction of dele-

terious variants in Mendelian diseases [Schubach et al., 2017]. Our results sum-

marized in Table 1 show that the proper selection of hyperSMURF learning pa-

rameters can further significantly improve the overall performance of the method.

Conclusions

This work shows the potentialities of hyperSMURF parameters tuning in the con-

text of the detection and prioritization of deleterious genetic variants associated

with Mendelian diseases, but we guess that also in other genomic contexts char-

acterized by high imbalance between deleterious and neutral variants fine tuning

of hyperSMURF parameters may lead to improved results.

Nevertheless the training and testing of hyper-ensembles trained and tested

on millions of genetic variants is highly time-consuming: in the context of Mendelian

disease, where we used low-dimensional features (more precisely 26 genomic

features) training and testing a hyperSMURF model required from about 2 to

20 hours of computation with an Intel Xeon Processor E5− 2697v4, with a clock

of 2.30 GHz and 128 GB of memory. By enlarging the number of features to

thousands (e.g. by using features extracted from DNA with deep convolutional

networks [Zhou and Troyanskaya, 2015]), the computational time can further dra-

matically increase. To overcome these drawbacks, a full parallel implementation

of hyperSMURF by exploiting High Performance Computing architectures is a

research line to be pursued to deeply explore the learning parameters of hyper-

SMURF, as well as the learning parameters of the random forests that constitute

the base learners of the hyper-ensemble. On the other hand a parallel implemen-

tation could make feasible the automatic adaptation of hyperSMURF to different
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learning tasks and different analyses of genomic big data, ranging from the detec-

tion of deleterious variants in genetic diseases to the detection of somatic driver

mutations in cancer.
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