
Declutter your R workflow with tidy tools

Zev Ross ∗

ZevRoss Spatial Analysis
and

Hadley Wickham
RStudio
and

David Robinson
Stack Overflow

Abstract

The R language has withstood the test of time. Forty years after it was initially
developed (in the form of the S language) R is being used by millions of programmers
on workflows the inventors of the language could never have imagined. Although
base R packages perform well in most settings, workflows can be made more efficient
by developing packages with more consistent arguments, inputs and outputs and
emphasizing constantly improving code over historical code consistency. The universe
of R packages known as the tidyverse, including dplyr, tidyr and others, aim to
improve workflows and make data analysis as smooth as possible by applying a set of
core programming principles in package development.

Keywords: tidy tools, tidyverse, dplyr, tidyr, tidytext, ggplot2, readr, workflow, pipe, piping,
R, base R

∗Contact - ZevRoss Spatial Analysis, 120 N. Aurora St, Suite 3A; Ithaca, NY; zev@zevross.com. The
authors gratefully acknowledge the constructive feed back from reviewers Jenny Bryan, Amelia McNamara
and Stefan Holst Milton Bache.

1

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3180v1 | CC BY 4.0 Open Access | rec: 23 Aug 2017, publ: 23 Aug 2017

mailto:zev@zevross.com

Introduction

The process of preparing programs for a digital computer . . . can be an aesthetic

experience much like composing poetry or music. — Knuth (1973)

For more than 15 years base R has provided a strong, stable coding foundation. This

stability has huge benefits: you can write R code with confidence, knowing that others, now

and in the future, can understand and execute the code.

But there is also a cost associated with this stability: base R is weighed down with a number

of historical inefficiencies and idiosyncrasies. These are design decisions that made sense at

the time, but are not well suited to today’s computation environment, today’s R user, or

today’s data. In the last 20 years, computers have grown dramatically more powerful, the

users of R have become substantially more diverse, and the types and amounts of data have

expanded.

To meet these new demands, we need new tools. It’s hard to fundamentally change R

without breaking a huge amount of code. That means that most innovation in the data

analysis process now occurs in the package ecosystem. The goal of this paper is to show off

one part of that ecosystem known as the tidyverse.

The tidyverse

The tidyverse refers to a set of packages that share interfaces and data structures. These

commonalities make the packages easier to learn (because there are fewer special cases to

memorize), and allow data analyses to flow naturally from one task to the next (because

you don’t change the “shape” of your data). The philosophy of the tidyverse is similar to

and inspired by the “unix philosophy” (Raymond 2003), a set of loose principles that ensure

most command line tools play well together.

The packages of the tidyverse are built on and in base R. The differences between the two

are subtle, in fact for every idiom in the tidyverse, there’s likely a function in base R that is

similar. There are two main differences in philosophy:

2

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3180v1 | CC BY 4.0 Open Access | rec: 23 Aug 2017, publ: 23 Aug 2017

http://tidyverse.org/

1. Less emphasis on historical code consistency. While adjustments to base R tend to be

relatively small and incremental to ensure backward compatibility and overall stability,

packages in the tidyverse aim for perfection – even if this means “breaking” links with

earlier code.

2. Shared vision for package development with an emphasis on uniformity of function

syntax, inputs and outputs. Since the inception of R more than 10,000 R packages have

been developed by thousands of R coders. Packages have tended to be developed in

isolation which can lead to important innovations. At the same time, the inconsistency

in arguments, syntax, object types and others can make stringing together operations

inneficient and occasionally painful.

These two factors have led to a small number of consistent principles that are used again

and again throughout the tidyverse:

1. Use consistent data structures so the output from one function can easily be fed

into the next. The data structure used most commonly in the tidyverse is tidy data

(Wickham et al. 2014): a rectangular structure where the columns are variables and

the rows are cases.

2. Each function should solve one small and well-defined class of problems. To solve

more complex problems, you combine simple pieces in a standard way.

3. Rely on function composition to simplify data science workflows by using, as an

example, the magrittr pipe thus enhacing readability and avoiding the need to name

interim objects.

All in all, there are few things that you can do with the tidyverse that you cannot do with

base R. The big difference is the level of friction.

A case study

To illustrate the value of the tidyverse in a modern context we work through an example

using a database of Shakespeare’s word usage available through Google’s BigQuery database

3

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3180v1 | CC BY 4.0 Open Access | rec: 23 Aug 2017, publ: 23 Aug 2017

(Google 2017). The data was originally retrieved from BigQuery using the bigrquery

package, and cached locally.

Import with readr

Base R has workhorse import and export functions that have served the R coding com-

munity for more than a decade (e.g., read.table(), write.table(), read.csv() and

write.csv()). These functions perform well under a majority of settings but have limi-

tations that have become a source of frustration for modern R users. Most notably, by

default, these functions automatically convert strings to factors. This conversion made

sense at the time (when the relative efficiency of factors versus strings often mattered).

Today, the combination of relatively powerful computers, inexpensive digital storage and

fewer computing tasks that use factors make the default conversion of strings to factors

unnecessary and cumbersome.

The readr functions such as read_csv and read_delim improve upon legacy functions

by keeping input types as is (no conversion to factor), creating a tibble rather than a

data.frame by default (thus tidying console printing) and providing a dramatic improvement

in speed – reading text files 4-5 times faster than the original text reading functions.

library(readr)

shakespeare <- read_csv("data/shakespeare.csv")

#> Parsed with column specification:

#> cols(

#> word = col_character(),

#> word_count = col_integer(),

#> work = col_character(),

#> work_date = col_integer()

#>)

shakespeare

#> # A tibble: 164,656 x 4

#> word word_count work work_date

4

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3180v1 | CC BY 4.0 Open Access | rec: 23 Aug 2017, publ: 23 Aug 2017

#> <chr> <int> <chr> <int>

#> 1 hive 1 loverscomplaint 1609

#> 2 plaintful 1 loverscomplaint 1609

#> 3 Are 1 loverscomplaint 1609

#> 4 Than 1 loverscomplaint 1609

#> 5 attended 1 loverscomplaint 1609

#> 6 That 7 loverscomplaint 1609

#> 7 moisture 1 loverscomplaint 1609

#> 8 praised 1 loverscomplaint 1609

#> 9 particular 1 loverscomplaint 1609

#> 10 tend 1 loverscomplaint 1609

#> # ... with 164,646 more rows

Wrangle and reshape with dplyr and tidyr

The core data wrangling functions in the tidyverse were developed by Hadley Wickham in

2014 and included in the packages dplyr (Wickham & Francois 2016) and tidyr (Wickham

2017). The dplyr package contains verbs that correspond to the most common data

manipulation tasks and act as replacements for base R data manipulation functions like

aggregate(), subset(), sort/order() and merge() (Wickham & Grolemund 2017). The

tidyr package can be used to reshape data from wide to long or from long to wide, providing

a tidyverse alternative to the base R function reshape(). Both packages were designed

with ease-of-use and clarity in mind with consistent inputs and outputs – the goal is that

even those unfamiliar with R could recognize what code is doing.

In addition to simplifying common workflow tasks such as subsetting and arranging data

the dplyr package also provides a powerful new way of performing analysis on groups.

The base solutions for group-level computations often tend to involve chopping data into

pieces, working on the parts and gluing them back together. Instead, with dplyr we can

use group_by combined with mutate or do, for example, as a powerful and streamlined

approach to group-level computations.

5

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3180v1 | CC BY 4.0 Open Access | rec: 23 Aug 2017, publ: 23 Aug 2017

We illustrate the use of these packages in our example by summarizing the raw Shakespeare

data into word counts by year and then reshaping into wide format. We take advantage of

the so-called “pipe” operator, %>%, from the magrittr package (Bache & Wickham 2014),

to eliminate the need to create and name interim objects. The pipe, combined with the

consistency of function inputs and outputs (the first argument is always a data frame and

the output is likewise a data frame) also allows us to avoid typing an object name more

than once. For example, in the following code examples using hypothetical data you can

see that without the pipe we have to name two objects and we also need to type grp twice –

the pipe simplifies the code even in this small example.

Without the pipe

grp <- group_by(data, variable1)

fin <- summarize(grp, avg = mean(variable2))

With the pipe

fin <- group_by(data, variable1) %>%

summarize(avg = mean(variable2))

Wrangle with dplyr

In the toy example above the extra work is minimal but in a real-world setting the additional

naming and typing could be significant. To illustrate the advantages of using dplyr + the

pipe, we begin our analysis of the Shakespeare data.

In this block, we convert the words to lowercase and then count the number of times a word

occurs within each work (e.g., how many times does “question” occur in Hamlet).

library(dplyr)

shakespeare <- shakespeare %>%

mutate(word = str_to_lower(word)) %>%

group_by(word, work) %>%

summarize(word_count = sum(word_count))

Now we can compute the total number of times a word occurs across all the works of

6

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3180v1 | CC BY 4.0 Open Access | rec: 23 Aug 2017, publ: 23 Aug 2017

Shakespeare and the number of distinct works each word occurs in.

words <- shakespeare %>%

group_by(word) %>%

summarize(n = sum(word_count), works = n_distinct(work)) %>%

arrange(desc(n))

words

#> # A tibble: 26,928 x 3

#> word n works

#> <chr> <int> <int>

#> 1 the 29801 42

#> 2 and 27529 42

#> 3 i 21029 42

#> 4 to 20957 42

#> 5 of 18514 42

#> 6 a 15370 42

#> 7 you 14010 42

#> 8 my 12936 42

#> 9 in 11722 42

#> 10 that 11519 42

#> # ... with 26,918 more rows

As you can see, the most common words are not a good representation of the breadth of

Shakespeare’s considerable vocabulary so we will eliminate less interesting words like “the”

and “to” using a list of stop words from the tidytext package (discussed later). We will

also focus on words that don’t appear in every work and contain at least four letters.

As part of the filter() example below we use the useful anti_join() function which is

essentially the opposite of the inner_join() function – it identifies and returns all records

in the left-side table that do not occur in the right-side table based on a common ID (in

this case the word variable).

7

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3180v1 | CC BY 4.0 Open Access | rec: 23 Aug 2017, publ: 23 Aug 2017

words <- words %>%

anti_join(tidytext::stop_words, by = "word") %>%

filter(works < 42, nchar(word) > 4) %>%

arrange(desc(n))

words

#> # A tibble: 23,890 x 3

#> word n works

#> <chr> <int> <int>

#> 1 enter 2406 39

#> 2 henry 1311 13

#> 3 speak 1194 40

#> 4 exeunt 1061 37

#> 5 queen 1005 35

#> 6 night 933 41

#> 7 death 933 41

#> 8 father 868 40

#> 9 scene 825 38

#> 10 master 803 39

#> # ... with 23,880 more rows

This sort of filtering and minor transformation is a vital early part of every data analysis.

Because every function in dplyr inputs and outputs data in the same basic format, early

exploration can be performed in fast and fluent ways. The pipe frees us from naming

unimportant intermediates.

Reshape with tidyr

The results from the code above provide a good summary of the relative frequency of

words across the entire works of Shakespeare. If we want to dive deeper into the usage of,

say, the five most common words we could join the top five records from words with our

shakespeare dataset to get the counts by individual work.

8

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3180v1 | CC BY 4.0 Open Access | rec: 23 Aug 2017, publ: 23 Aug 2017

Our counts by work

head(shakespeare)

#> Source: local data frame [6 x 3]

#> Groups: word [1]

#>

#> # A tibble: 6 x 3

#> word work word_count

#> <chr> <chr> <int>

#> 1 ' 1kinghenryiv 33

#> 2 ' 1kinghenryvi 14

#> 3 ' 2kinghenryiv 38

#> 4 ' 2kinghenryvi 22

#> 5 ' 3kinghenryvi 26

#> 6 ' allswellthatendswell 23

Our total counts

head(words)

#> # A tibble: 6 x 3

#> word n works

#> <chr> <int> <int>

#> 1 enter 2406 39

#> 2 henry 1311 13

#> 3 speak 1194 40

#> 4 exeunt 1061 37

#> 5 queen 1005 35

#> 6 night 933 41

To do this join we use another novel join function from dplyr, semi_join(). The

semi_join() function performs identically to inner_join() except that does not keep any

columns from the table on the right hand side.

9

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3180v1 | CC BY 4.0 Open Access | rec: 23 Aug 2017, publ: 23 Aug 2017

shakespeare %>%

semi_join(head(words, 5), by = "word")

#> Source: local data frame [164 x 3]

#> Groups: word [?]

#>

#> # A tibble: 164 x 3

#> word work word_count

#> <chr> <chr> <int>

#> 1 enter 1kinghenryiv 63

#> 2 enter 1kinghenryvi 83

#> 3 enter 2kinghenryiv 65

#> 4 enter 2kinghenryvi 84

#> 5 enter 3kinghenryvi 78

#> 6 enter allswellthatendswell 56

#> 7 enter antonyandcleopatra 112

#> 8 enter asyoulikeit 54

#> 9 enter comedyoferrors 40

#> 10 enter coriolanus 94

#> # ... with 154 more rows

This table provides us with the pieces we need to compare occurrences of words by work

but this table is visually difficult to interpret. Many data science-related tasks such as this

require us to change the shape of our date (long to wide or wide to long). Our data, for

example, might be more easily understood if each word were a column – tidyr provides

tools like spread() and gather() to perform the reshaping.

In this example, we still perform the the join as above, but we add one more step. We use

spread() from tidyr to create a much more readable “wide” table that makes it easier to

visually inspect the relative frequency of words by work. This table makes it easy to see,

for example, that the word “henry” occurs frequency in the King Henry works but the word

“queen” is much less common.

10

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3180v1 | CC BY 4.0 Open Access | rec: 23 Aug 2017, publ: 23 Aug 2017

library(tidyr)

shakespeare %>%

semi_join(head(words, 5), by = "word") %>%

spread(word, word_count, fill = 0)

#> # A tibble: 41 x 6

#> work enter exeunt henry queen speak

#> * <chr> <dbl> <dbl> <dbl> <dbl> <dbl>

#> 1 1kinghenryiv 63 28 255 3 29

#> 2 1kinghenryvi 83 36 103 10 18

#> 3 2kinghenryiv 65 32 133 1 40

#> 4 2kinghenryvi 84 40 162 103 22

#> 5 3kinghenryvi 78 34 176 131 45

#> 6 allswellthatendswell 56 26 0 3 42

#> 7 antonyandcleopatra 112 55 0 47 38

#> 8 asyoulikeit 54 27 0 1 28

#> 9 comedyoferrors 40 14 0 0 14

#> 10 coriolanus 94 45 0 1 55

#> # ... with 31 more rows

Visualize with ggplot2

No matter how much reshaping and filtering you do, the huge number of different words in

the works of Shakespeare does not lend itself well to tabular representation. Instead we can

use data visualization to help us make sense of the data.

The package ggplot2 (Wickham 2009), developed in 2007, was designed to efficiently

generate complex multi-layered graphics. As the oldest member of the tidyverse, ggplot2

was developed before the core principles of the tidyverse were well established and thus

does not follow all the principles. For example, ggplot2 uses addition instead of function

composition and piping. Addition is a nice metaphor, but does not span the full range of

11

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3180v1 | CC BY 4.0 Open Access | rec: 23 Aug 2017, publ: 23 Aug 2017

activities that function composition does.

We can explore the relationship between the number of word occurrences across all of

Shakespeare’s works and the number of works they appear in. We can see from the plot

below that, as one would expect, there is a relationship between the two, though this simple

plot makes it hard to identify the patterns.

ggplot(words, aes(works, n)) +

geom_point()

0

500

1000

1500

2000

2500

0 10 20 30 40

works

n

Exploratory visualizations often start out simple, but build in complexity over time. For

example, we can improve the previous visualization by log transforming the y axis, using

boxplots to summarize the distribution at each unique x, and improving the labels. ggplot2

makes the process of including multiple layers simpler than base R plotting.

ggplot(words, aes(works, n)) +

geom_boxplot(aes(group = works)) +

geom_smooth(se = FALSE) +

12

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3180v1 | CC BY 4.0 Open Access | rec: 23 Aug 2017, publ: 23 Aug 2017

scale_y_log10() +

labs(

x = "Number of works",

y = "Word count"

)

10

1000

0 10 20 30 40

Number of works

W
or

d
co

un
t

Our plot clearly shows that a significant number of words are used only once. We can use

dplyr to list them (sorting by string length to show the most interesting).

words %>%

filter(n == 1) %>%

arrange(desc(str_length(word)))

#> # A tibble: 9,815 x 3

#> word n works

#> <chr> <int> <int>

#> 1 honorificabilitudinitatibus 1 1

13

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3180v1 | CC BY 4.0 Open Access | rec: 23 Aug 2017, publ: 23 Aug 2017

#> 2 indistinguishable 1 1

#> 3 anthropophaginian 1 1

#> 4 northumberland's 1 1

#> 5 northamptonshire 1 1

#> 6 interchangeably' 1 1

#> 7 incomprehensible 1 1

#> 8 unreconciliable 1 1

#> 9 uncomprehensive 1 1

#> 10 uncompassionate 1 1

#> # ... with 9,805 more rows

Using tidytext to analyze text

The core tidyverse includes packages like readr, tidyr, dplyr, and ggplot2 that facilitate

tasks that are required in almost every analysis. But the tidyverse is also a broader platform

that others can build on to provide more specialized tools. Developing these specialized tools

using the core tidyverse principles means that the tools can more easily be adopted into

workflows by a wider range of analysts. An example, well-suited to this sample analysis, is

tidytext (Silge & Robinson 2016). Created by Julia Silge and David Robinson, tidytext

provides a set of “tidy” tools for handling text data.

In the tables above, we can glean a general sense of word counts and we could see that

some words occur often in many different works and there are some words that seem to

occur mostly in a single work. In order to quantify this pattern we can take advantage of a

statistic known as “term frequency-inverse document frequency” (TF-IDF). This statistic,

which essentially shows how important a word is to a particular document, can be computed

within the context of the tidyverse using the bind_tf_idf() function from tidytext.

library(tidytext)

shakespeare_tf_idf <- shakespeare %>%

bind_tf_idf(word, work, word_count) %>%

14

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3180v1 | CC BY 4.0 Open Access | rec: 23 Aug 2017, publ: 23 Aug 2017

arrange(desc(tf_idf))

shakespeare_tf_idf

#> Source: local data frame [147,219 x 6]

#> Groups: word [26,928]

#>

#> # A tibble: 147,219 x 6

#> word work word_count tf idf tf_idf

#> <chr> <chr> <int> <dbl> <dbl> <dbl>

#> 1 macbeth macbeth 311 0.01686642 3.737670 0.06304112

#> 2 hamlet hamlet 484 0.01491709 3.737670 0.05575517

#> 3 syracuse comedyoferrors 232 0.01418006 3.737670 0.05300039

#> 4 dromio comedyoferrors 221 0.01350773 3.737670 0.05048744

#> 5 antipholus comedyoferrors 219 0.01338549 3.737670 0.05003054

#> 6 timon timonofathens 322 0.01622902 3.044522 0.04940962

#> 7 iago othello 361 0.01285796 3.737670 0.04805880

#> 8 romeo romeoandjuliet 322 0.01229383 3.737670 0.04595028

#> 9 othello othello 339 0.01207437 3.737670 0.04513000

#> 10 rosalind asyoulikeit 274 0.01186815 3.737670 0.04435923

#> # ... with 147,209 more rows

The result provides the term frequency (tf) which is the frequency within a work and

the inverse document frequency (idf) which is the inverse of the frequency across works.

The tf_idf is just tf * idf.

We can see from our results that high TF-IDF words tend to be words unique to and

common within a particular document, such as the names of protagonists. By keeping the

word data in a tidy form, the data can be further manipulated using dplyr to find the

highest TF-IDF words within particular works, and visualized using ggplot2.

top_tf_idf_words <- shakespeare_tf_idf %>%

filter(work %in% c("macbeth", "hamlet", "romeoandjuliet", "othello")) %>%

15

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3180v1 | CC BY 4.0 Open Access | rec: 23 Aug 2017, publ: 23 Aug 2017

group_by(work) %>%

top_n(12, tf_idf) %>%

mutate(word = reorder(word, tf_idf))

ggplot(top_tf_idf_words, aes(word, tf_idf)) +

geom_bar(stat = "identity") +

coord_flip() +

facet_wrap(~ work, scales = "free_y") +

theme(axis.text.x = element_text(angle = 90, hjust = 1))

othello romeoandjuliet

hamlet macbeth

0.
00

0.
02

0.
04

0.
06

0.
00

0.
02

0.
04

0.
06

donalbain
fleance
cawdor

thane
siward

duncan
lennox

ross
malcolm
banquo
macduff
macbeth

sampson
nurse
paris

montague
friar

laurence
tybalt

benvolio
mercutio

capulet
juliet

romeo

bernardo
osric

marcellus
guildenstern
rosencrantz

ophelia
gertrude
claudius

laertes
polonius

horatio
hamlet

bianca
gratiano

venice
moor

montano
lodovico

brabantio
roderigo

emilia
desdemona

cassio
othello

iago

tf_idf

w
or

d

The tidytext package also provides datasets for sentiment analysis in the form of tidy

data frames. For example, the sentiments dataset provided by tidytext includes word

sentiment scores and categorizations in three lexicons. Here we use the lexicon of Finn Arup

Nielsen (AFINN) to measure sentiment, making extensive use of the tidyverse tools in the

process.

16

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3180v1 | CC BY 4.0 Open Access | rec: 23 Aug 2017, publ: 23 Aug 2017

Limit to one lexicon

AFINN <- sentiments %>%

filter(lexicon == "AFINN") %>%

select(word, score) %>%

arrange(desc(score))

The most "positive" words in the lexicon

AFINN

#> # A tibble: 2,476 x 2

#> word score

#> <chr> <int>

#> 1 breathtaking 5

#> 2 hurrah 5

#> 3 outstanding 5

#> 4 superb 5

#> 5 thrilled 5

#> 6 amazing 4

#> 7 awesome 4

#> 8 brilliant 4

#> 9 ecstatic 4

#> 10 euphoric 4

#> # ... with 2,466 more rows

We can then join sentiment scores to the words in Shakespeare and see which words had

the greatest influence on sentiment, postive or negative, in the work.

shakespeare_sentiment <- shakespeare %>%

inner_join(AFINN, by = "word")

shakespeare_sentiment %>%

group_by(word) %>%

17

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3180v1 | CC BY 4.0 Open Access | rec: 23 Aug 2017, publ: 23 Aug 2017

summarize(impact = sum(word_count * score)) %>%

top_n(25, abs(impact)) %>%

mutate(word = reorder(word, impact)) %>%

ggplot(aes(word, impact, fill = impact > 0)) +

geom_bar(stat = "identity", show.legend = FALSE) +

coord_flip() +

ylab("Impact on sentiment scores in Shakespeare")

no
death
dead

die
poor
fear

bastard
fool
lost

mad
god

dear
peace
better
noble

honour
heaven

best
fair

true
sweet
great

like
love

good

0 5000

Impact on sentiment scores in Shakespeare

w
or

d

Conclusion

R is an incredible tool for data analytics that has withstood the test of time. Developed

(initially as S) more than 40 years ago at Bell Labs to help researchers tackle statistical

challenges, R is now used by millions worldwide in ways the initial developers, John

Chambers, Ross Ihaka and Robert Gentleman, could not have imagined. R is being used to

18

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3180v1 | CC BY 4.0 Open Access | rec: 23 Aug 2017, publ: 23 Aug 2017

analyze Facebook and Twitter posts, trends in Airbnb bookings, perform image processing

and conduct spatial analysis.

Much of the language has remained essentially unchanged in the nearly 20 years since the

initial version of R was released to the public but there is a need for a smoother, more

efficient and more readable pipeline for modern R workflows.

Tidy tools, those that do one thing well, accept inputs and produce outputs with a full

workflow in mind and take advantage of “glue” to move outputs from one task to another,

simplify the process of solving complex tasks. Packages such as dplyr, tidyr, ggplot2 and

tidytext and other members of the tidyverse were developed to fulfill these needs.

References

Bache, S. M. & Wickham, H. (2014), magrittr: A Forward-Pipe Operator for R. R package

version 1.5.

URL: https://CRAN.R-project.org/package=magrittr

Google (2017), ‘Google cloud platform sample tables: Shakespeare’.

URL: https://cloud.google.com/bigquery/sample-tables

Knuth, D. E. (1973), The art of computer programming. Volume 1, Fundamental algorithms,

Addison-Wesley.

Raymond, E. S. (2003), The art of Unix programming, Addison-Wesley Professional.

Silge, J. & Robinson, D. (2016), ‘tidytext: Text mining and analysis using tidy data

principles in r’, JOSS 1(3).

URL: http://dx.doi.org/10.21105/joss.00037

Wickham, H. (2009), ggplot2: Elegant Graphics for Data Analysis, Springer-Verlag New

York.

URL: http://ggplot2.org

19

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3180v1 | CC BY 4.0 Open Access | rec: 23 Aug 2017, publ: 23 Aug 2017

Wickham, H. (2017), tidyr: Easily Tidy Data with spread and gather Functions. R package

version 0.6.1.

URL: https://CRAN.R-project.org/package=tidyr

Wickham, H. & Francois, R. (2016), dplyr: A Grammar of Data Manipulation. R package

version 0.5.0.

URL: https://CRAN.R-project.org/package=dplyr

Wickham, H. & Grolemund, G. (2017), R for Data Science, O’Reilly.

Wickham, H. et al. (2014), ‘Tidy data’, Journal of Statistical Software 59(10), 1–23.

20

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3180v1 | CC BY 4.0 Open Access | rec: 23 Aug 2017, publ: 23 Aug 2017

	Introduction
	The tidyverse
	A case study
	Import with readr
	Wrangle and reshape with dplyr and tidyr
	Visualize with ggplot2
	Using tidytext to analyze text

	Conclusion

