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Integrating genomic information into cattle breeding is an important approach to exploring

the molecular mechanism for complex traits related to diary and meat production. To

assist with genomic-based selection, a reference map of interactome is needed to fully

understand genotype-phenotype relationships. To this end we constructed a co-expression

analysis of 92 tissues and this represents the first systematic exploration of gene-gene

relationship in cattle. By using robust WGCNA (Weighted Gene Correlation Network

Analysis), we described the gene co-expression network of 13,405 protein-coding genes

from the cattle genome. Using the 5,000 genes with majority variations in expression

across 92 tissues, we compiled a network with 72,306 co-associations and that provides

functional insights into thousands of poorly characterized proteins. Further module

identifications found 55 highly organized functional clusters representing diverse cellular

activities. To demonstrate the re-use of our interaction for functional genomics analysis,

we extracted a sub-network associated with DNA binding genes in cattle. The subnetwork

was enriched within regulation of transcription from RNA polymerase II promoter

representing central cellular functions. In addition, we identified 28 novel linker genes

associated with more than 100 DNA binding genes. Our WGCNA-based co-expression

network reconstruction will be a valuable resource for exploring the molecular mechanisms

of incompletely characterized proteins and for elucidating larger-scale patterns of

functional modulization in the cattle genome.
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18 Abstract 

19 Integrating genomic information into cattle breeding is an important approach to exploring the 

20 molecular mechanism for complex traits related to diary and meat production. To assist with 

21 genomic-based selection, a reference map of interactome is needed to fully understand genotype-

22 phenotype relationships. To this end we constructed a co-expression analysis of 92 tissues and 

23 this represents the first systematic exploration of gene-gene relationship in cattle. By using 

24 robust WGCNA (Weighted Gene Correlation Network Analysis), we described the gene co-

25 expression network of 13,405 protein-coding genes from the cattle genome. Using the 5,000 

26 genes with majority variations in expression across 92 tissues, we compiled a network with 

27 72,306 co-associations and that provides functional insights into thousands of poorly 

28 characterized proteins. Further module identifications found 55 highly organized functional 

29 clusters representing diverse cellular activities. To demonstrate the re-use of our interaction for 

30 functional genomics analysis, we extracted a sub-network associated with DNA binding genes in 

31 cattle. The subnetwork was enriched within regulation of transcription from RNA polymerase II 

32 promoter representing central cellular functions. In addition, we identified 28 novel linker genes 

33 associated with more than 100 DNA binding genes. Our WGCNA-based co-expression network 

34 reconstruction will be a valuable resource for exploring the molecular mechanisms of 

35 incompletely characterized proteins and for elucidating larger-scale patterns of functional 

36 modulization in the cattle genome.

37

38 Keywords:

39 Co-expression, network, WGCNA, systems biology, functional enrichment, cattle

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3178v1 | CC BY 4.0 Open Access | rec: 22 Aug 2017, publ: 22 Aug 2017



41 Introduction 

42 As the importance in dairy and beef production, the genome of the domestic cattle, Bos taurus, 

43 was sequenced in 2009 using hierarchical and whole-genome shotgun sequencing strategy 

44 (Zimin et al. 2009). To associate the genetic variation with phenotypes, the first phase of the 

45 1000 bull genomes project was started to sequence 234 ancestor bulls (Daetwyler et al. 2014). 

46 Although more and more efforts for genetic improvement of production efficiency and quality in 

47 cattle, majority of previous studies focused on single-gene based genetic breeding (Barabasi & 

48 Oltvai 2004). However, most of production traits are complex traits involving multiple genes. 

49 The recent development of systems biology-based approach was promising to explore the 

50 genome and gene-gene interactions in a global view to understand molecular mechanisms 

51 underlying complex traits (Zhao et al. 2014).

52

53 An gene-based interactome is the complete set of gene-gene interactions in a particular cell 

54 (Barabasi & Oltvai 2004) and these could be direct physical interactions among molecules as 

55 well as indirect interactions among genes (such as gene co-expression). The understanding of 

56 interactomes are important in systems biology-based studies as they provide a global view of all 

57 the possible molecular interactions that a protein can influence (Barabasi & Oltvai 2004). 

58 Because of lacking interactome in cattle, the network-based data mining approach are not able to 

59 apply to functional discovery for any interesting genes associated with complex traits (Elsik et al. 

60 2016). Recently, a functional proteomic and interactome analysis of the proteins of Angus cattle 

61 was presented (Mitra et al. 2014). However, this data is specific for beef tenderness with limited 

62 tissues, not useful for other large-scale functional studies. With the development of next-

63 generation sequencing technologies, cumulative expression data across multiple tissues in cattle 

64 are now publicly available and may promote the understanding of gene-gene interaction from 

65 network approach (Elsik et al. 2016). 

66
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67 In this study, we hypothesize that the complex genetic traits related to cattle production is 

68 reflected by the perturbation of gene-gene co-expressing networks. To this aim, we built the first 

69 co-expression based interactome for cattle through integrating expression profiles from 92 

70 tissues from bovine genome database (BGD) (Elsik et al. 2016). In this study, we utilized an 

71 established network-based approach, Weighted Gene Co-Expression Network Analysis 

72 (WGCNA) (Langfelder & Horvath 2008) , to further identify and characterize a number of 

73 functional modules. To demonstrate our reconstructed interactome could provide a new approach 

74 for network-based data mining of cattle genetics data, we focused on the DNA-binding genes in 

75 cattle and extracted a DNA-binding regulatory network. 

76 Materials & methods 

77 The gene expression data in 92 tissues from bovine genome database

78 To characterize the gene expression in multiple tissues, the bovine genome database (BGD) 

79 collected gene expression data from 92 different tissues from the individual of the reference 

80 genome (Elsik et al. 2016). By using RNAseq sequencing and mapping to the reference genome, 

81 all the genes in cattle genome was quantified using the FPKM (Fragments Per Kilobase of 

82 transcript per Million mapped reads). All the FPKM were further normalized for each expression 

83 dataset by using cuffquant and cuffnorm. By using Intermine Web Services API of BovineMine 

84 (part of BGD), we downloaded all the normalized FPKM values of the 92 tissues. To further 

85 build the co-expression network based on high-quality data, we first removed those non-

86 informative genes with FPKMs in 46 or less tissue samples. After the initial filtering, a list of 

87 13,405 genes with FPKMs were subject to WGCNA analysis. 

88 Weighted Gene Co-Expression Analysis (WGCNA) 

89 WGCNA is a R package to construct gene co-expression networks. By using the package, we 

90 first built similarity matrix between all the gene pairs using bi-weight mid-correlation based on 

91 normalized FPKMs (Zheng et al. 2014). The expression similarity matrix was further 

92 transformed to an adjacency matrix by using the soft thresholding power Beta. By further 
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93 focusing on the top 5000 genes with more variations across samples, we run the gene co-

94 expression analysis and build the interaction network for all the 5000 genes. To choose a suitable 

95 threshold for reconstruction of co-expression network, we adopted a parameter analysis on the 

96 Beta value with most approximating scale-free topology of the network (Langfelder & Horvath 

97 2008). As shown in Figure 1, the final optimal Beta value was 4 based on the scale-free 

98 topological analysis. 

99 The identification of functional modules 

100 To further identify functional modules in our reconstructed co-expression network with 5000 

101 genes, the adjacency matrix was further transformed to topological overlap matrix (TOM) using 

102 WGCNA package. The hierarchical clustering on all the genes were performed to generate a 

103 dendrogram. By using dynamic tree cutting, the functional clusters (modules) were obtained 

104 from the constructed gene dendrogram. In detail, the cutreeDynamic function in WGCNA 

105 package was used to identify the larger module with minimum size of 30 genes as possible. By 

106 setting parameter deepSplit from 0 to 4 for the tree cutting, we found the optimal value to 

107 generate smaller clusters as more genes as possible. The final deepSplit of 4 was chosen and 

108 resulted in 55 modules with average size of 235 genes. Those identified functional modules are 

109 illustrated with different colours on the bottom of the Figure 2A. The relationship between 

110 modules were further summarized by eigenvalue <eigengene=. Eigengenes are defined as the first 

111 principal component of the expression matrix for each identified functional module. Therefore 

112 the eigengenes represent the expression profile with weighted genes for each module (Langfelder 

113 & Horvath 2007). 

114 Pathway enrichment analysis and network analysis 

115 We performed pathway enrichment analysis on those interested genes by using functional 

116 enrichment tools in BGD (Elsik et al. 2016). This online tool includes enrichment in predefined 

117 pathways from KEGG and Gene Ontology. The reconstructed co-expression network from 

118 WGCNA was visualized using the Cytoscape (version 3.4). The topological centrality analysis 
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119 was performed by using NetworkAnalyzer in Cytoscape (Shannon et al. 2003). We used degree 

120 to represent the sum of the number of connections for each node in a network, and the shortest 

121 path represented by the least number of steps from one node to another (Barabasi & Oltvai 2004). 

122 By using the sub-network extraction algorithm described in our previous study (Zhao et al. 

123 2015), we built a sub-network to link the 340 DNA binding genes with the other cattle genes. 

124 The 340 genes were mapped into the prepared co-expression interactome from WGCNA analysis 

125 and the sub-network was extracted according to the shortest paths between the input 340 genes 

126 and other genes.

127 Results

128 Reconstruction of a scale-free co-expression network from 92 cattle tissues using 

129 WGCNA

130 Network-based data mining is used to explore the behavior of all the gene-gene interactions and 

131 the total of these is greater than would be expected from the sum of all the gene functions. 

132 However, there is limited information about cattle in the gene-gene interaction database and, for 

133 instance, BioGrid (Chatr-Aryamontri et al. 2017) contains only 102 interaction pairs for cattle. 

134 To overcome this shortcoming, we used the mature bioinformatics co-expression network 

135 approach to reconstruct the functional interactome for cattle. Based on comprehensive 

136 transcriptomes with 92 tissue samples covering the majority tissue types in cattle body, we built 

137 and mined the gene co-expression network using the WGCNA analysis. 

138

139 Using 19,064 genes with expression values, we ran a quality control step and removed those 

140 genes without expression values in more than half of 92 tissues. This provided a list of 13,405 

141 genes with expression across 92 tissues. However, a large number of these genes were not 

142 differentially expressed between samples. Therefore, the data set with 13,405 gene expression 

143 was processed further by focusing on the 5,000 most variant genes (Table S1). The remaining 

144 8,405 genes, which showed no or very low changes in expression between samples, were not 
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145 used for WGCNA analysis. The variability of gene expression data across the 92 samples was 

146 measured using a robust method called median absolute deviation (MAD). The 5000 most 

147 variant genes were used for analysis in other WGCNA studies (de Jong et al. 2012).

148

149 To build a scale-free network, we run a parameter analysis (Figure 1). Briefly, an adjacency 

150 function in WGCNA was used to weight between different genes in the hypothesis of 

151 following a power law. In detail, the correlation data were transformed to adjacency matrix 

152 using the formula: aij)=)(Sij, ³))=)|Sij|³. In the formula, the ³ represent the exponential 

153 parameter for power law distribution. Normally, the ³ was used to characterize the likeness to 

154 a scale-free network. In our data, the co-expression for a pair of gene represent a connection 

155 between two genes. In general, the number of connection of all the genes in a scale-free 

156 network follow a power law distribution P(k)~k-³. The P(k) in our co-expressing network 

157 indicates the probability that a gene is co-expressed with k other genes. By setting the 

158 criterion that the co-efficiency of log(k) and log(p(k)) is greater than 0.8, we checked all the 

159 possible ³ values. As shown in Figure 1A, we changed the ³ value step by step to identify the 

160 optimal value that the average connectivity of the network is smooth. The ³)=)4 was finally 

161 determined based on the diagnosis chart and the average number of co-expressed genes in the 

162 final network was 80 (Figure 1B). Using this information, we reconstructed the first and most 

163 co-expression network in cattle genome across 92 tissue samples representing the majority of 

164 tissue types; this will provide a basis for network-based data mining in cattle genetics and 

165 genomics studies. 

166 Functional module identification on co-expression network using WGCNA and functional 

167 enrichment analyses for the genes in the top five modules

168 To determine the similarity between genes, the WGCNA consider not only the co-expression 

169 coefficients between genes, but also the content of co-expressed gene partners. To this aim, a 

170 topological overlap matrix (TOM) was calculated based on the adjacent coefficient and how 

171 many shared <friends= between any pairs of co-expressed genes. In this way, all the edges 
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172 between co-expressed genes were weighted by TOM ranging from 0 to 1, which represent the 

173 strength of the communication between the two genes. To identify the clustered co-expressed 

174 genes with specific functions, we further conducted module identification using using 

175 agglomerative hierarchical clustering based TOM (Figure 2A). Since it was hard to associate 

176 small number of genes to specific biological function, we required any functional modules with 

177 at least 10 genes. 

178

179 To validate the potential functions for the modules, we focused on the top five modules with 

180 most genes (Table S2). Pathway and gene ontology (GO) enrichment analysis of the chosen 

181 modules were performed with BovineMine of BGD. Table 1 shows functionally enriched 

182 pathways obtained from BovineMine by setting adjusted P-value < 0.05. We found enriched 

183 pathways only for module 1 and module 2. The genes in module 1 were identified as associated 

184 with metabolic pathways: there are three genes related to isoleucine degradation. A previous 

185 carbon-14 labelling experiment showed that the degradation of valine, leucine, and isoleucine 

186 represent a potential source of energy to the mammary gland as well as a source of carbon and 

187 alpha-amino nitrogen for the synthesis of nonessential amino acids (Wohlt et al. 1977). The 

188 genes from module 2 have extensive roles in extracellular processing and are associated with 15 

189 pathways (Table 1). These pathways are known to be key components in the extracellular 

190 signaling system that involve collagen formation and degradation, glycosaminoglycan 

191 metabolism and axon guidance (Table 1). 

192

193 By using the GO enrichment analysis, we further discovered more functional features for the five 

194 modules (Table 2). Those genes in module 1 (M1) are mainly metabolism related pathways (all 

195 adjusted P-values < 0.05). The components of module 2 (M2) are associated with extracellular 

196 structure organization and protein hetero-trimerization and trimerization (adjusted P-values < 

197 0.05). The genes in module 3 (M3) use a microtubule cytoskeleton to organize cell projection (all 

198 adjusted P-values < 0.05). The module 4 (M4) is mainly related to pigment cell differentiation 
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199 and its regulation (two adjusted P-values < 0.05). The genes in module 5 (M5) are enriched for 

200 the development of sertoli cells (adjusted P-values < 0.05), which are essential for 

201 spermatogenesis. Based on Pearson correlation coefficients, we further explored the relationship 

202 between modules. The module eigengenes are further calculated, which provides quantitative 

203 assessments for the similarity between the modules (Table S3). As shown in Figure 2B, the top 

204 five modules are not clustered together which implies that they have different functions. 

205 Combined with our functional results from KEGG pathway and GO, we concluded that the top 

206 five modules have distinct and independent functions at the cellular level. 

207 The hub genes in a co-expression based interactome with manageable size 

208 In contrast to the correlation-based network reconstruction, WGCNA considered not only the 

209 expression correlation between two genes but also how many co-expressing genes were shared. 

210 In WGCNA, the weighted measure TOM was used to reflect the strength of the communication 

211 between the two genes and ranged from 0 to 1. In theory, the reconstructed network comprised 

212 all the 5000 genes based on the TOM of >0. However, the resulting network is too large for 

213 functional genomics analysis. Since our aim was to build a comprehensive interactome covering 

214 as many genes with variant expression as possible, we defined three set of the co-expression 

215 gene network by using different TOM thresholds. For a TOM >0.01, the resulting co-expression 

216 based interactome comprised 4,995 genes with 1,538,522 significant co-expression pairs. With a 

217 TOM >0.1, the interactome comprised 4,403 genes with 72,306 significant co-expression pairs 

218 and for TOM scores greater than >0.3, there were 2,119 significant co-expression pairs and 1,045 

219 genes. 

220

221 To visualize the entire network, we used a TOM score >0.1 which covered the about 90% genes 

222 in the 5,000 genes but, as seen in Figure 3A, the network is still too large to obtain detail. The 

223 diameter of the network is 11 and the average number of neighbors is 32.844. Further network 

224 topological analysis revealed that most genes in the reconstructed co-expression network are 

225 closely connected. In detail, we found that the probability P(k) for genes with other k co-
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226 expressed genes could be fitted to a power law distribution (P(k)~k ³). The estimated ³ is 1.368 

227 (Figure 3B), which indicate this co-expression network are more closely connected compared to 

228 published human protein-protein interaction network with estimated ³ value of 2.9 (Jin et al. 

229 2013). By further analysis the shortest pathways between all the co-expressed genes, we found 

230 the majority of the genes could connected with other genes by co-expressing with three or four 

231 more genes (Figure 3C).

232

233 In addition, our reconstructed network also helped to identify a number of genes with hundreds 

234 of co-expressed genes. In general, these potential hub genes may have central roles for signaling 

235 transduction or metabolic transformation. In total, we identified 340 genes with 100 or more co-

236 expressed genes (Table S4) and these genes are involved in fundamental processes: 

237 ribonucleotide binding (adjusted P-value = 1.253E-2, 54 genes); RNA binding (54 genes, 

238 adjusted P-value = 2.219E-3); RNA polymerase binding (6 genes, adjusted P-value = 4.696E-3); 

239 and cyclin-dependent protein kinase (5 genes, adjusted P-value = 1.440E-2). Additionally, there 

240 are 20 ATPases (adjusted P-value = 8.199E-3), which may indicates the importance of ATPases 

241 in the maintenance of metabolite homeostasis in cattle. 

242

243 Using the number of connections is the most common way to identify the key genes with 

244 important functions (Zhao & Qu 2009). Interestingly, we identified API5 (apoptosis inhibitor 5) 

245 as the gene with highest degree (number of connection = 279). This apoptosis inhibitory protein 

246 often prevents apoptosis after growth factor deprivation in humans (Han et al. 2012). As one of 

247 the genes with most co-expressed gene partners, API5 may have critical functions in the cattle 

248 development and association with complex genetic traits. Another promising gene is FBXO11 

249 with hundreds of co-expressed genes in cattle genome (Table S4). As one of gene member of the 

250 F-box protein family, FBXO11 was functioned as a suppressor of p53 function by post-

251 translational modification (Abida et al. 2007). In summary, our reconstructed co-expression 
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252 network across 92 tissue samples may provide unexplored functional clues for many of the genes 

253 with a large number of connections in cattle. 

254 A gene-gene interaction sub-network related to DNA binding 

255 To demonstrate the application of our reconstructed interactome, we downloaded 614 DNA 

256 binding genes from BGD (Table S5). Then, we connected these genes to form a functional 

257 network using the method implemented in our previous studies (Zhao et al. 2016a). The resulted 

258 sub-network contained 132 genes and 251 interactions (Figure 4A, Table S6). In total, there were 

259 104 genes from our original DNA binding genes, and 28 genes functioned as linker genes to 

260 fully connect the DNA binding genes. The degrees of all genes followed a power law distribution 

261 P(k)~k-b, where b is estimated as 1.388 (Figure 4B) comparing to 1.368 (Figure 3B). Although 

262 only 17% of the 614 DNA binding genes are co-expressed, they all formed highly modular 

263 structures, which implies coordination in DNA binding-related gene regulation. For example, we 

264 found 39 genes were involved in regulation of transcription from RNA polymerase II promoter 

265 (adjusted P-value = 2.04E-11). Similarly, there are 36 genes associated with <positive regulation 

266 of gene expression= (adjusted P-value = 2.04E-11) and 26 genes associated with <negative 

267 regulation of gene expression= (adjusted P-value = 2.43E-5). Taken together, the competitive 

268 regulation may be associated with RNA polymerase II promoter regions. With regard to the 28 

269 linker genes, we found only three genes (AGO4, CAPRIN1, CNOT3) localized to <P-body= 

270 (GO:0000932, adjusted P-value = 0.03) and two genes (AXIN1 and CALCOCO1) that have 

271 <armadillo repeat domain binding= (GO:0070016, adjusted P-value = 3.24E-2). Although the 

272 majority are not statistically over-represented in any functional modules, their strong co-

273 expression with hundreds of DNA binding regulators may imply their important role in cellular 

274 processes. 

275

276 In summary, by applying the sub-network extraction to the DNA binding genes in cattle, we 

277 successfully identified a sub-network with hundreds of DNA binding genes and a number of 

278 relevant novel genes. This demonstrated that the use of our reconstructed co-expression 
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279 interactome is a powerful approach to cluster genes with similar function for network-based data 

280 mining in cattle genetics and genomics studies in general. 

281 Discussion and conclusion

282 The cellular machines can be viewed as the product of thousands of proteins necessary to 

283 maintain cellular signalling and respond to extracellular stimulation. The genome-wide gene 

284 expression is coordinated in part through networks of protein-protein interactions that assemble 

285 functionally related proteins into complexes and organelles. Understanding the architecture of 

286 the cattle transcriptome will improve our knowledge of cellular, structural and molecular 

287 mechanisms. For instance, those co-expressed genes may have similar biological functions. Ans 

288 this co-expression information could be used to elucidating how genome variation and 

289 expression contributes to the cattle breeding. Here we present the first co-expression based 

290 interactome in cattle. This data will not only enhance network-based characterization of 

291 subcellular localization and complex formation, but also provide the basis for network-based 

292 mining for specific functional modules. 

293

294 By using robust co-expression analysis, we characterized a number of interesting genes for 

295 further investigation that formed tightly interconnected cluster in our co-expression network. Our 

296 further topological analysis revealed 340 highly-connected genes with 100 or more connections 

297 that may act as important links in various biological processes. For example, FBXO11 was 

298 identified to play a role in the p53 pathway. Combined with the results from the enrichment 

299 analysis of ribonucleotide binding, this gene may be one of the fundamental regulators involved 

300 in the suppression of p53 function. The p53 pathway was not only associated with bovine virus-

301 induced leukemogenesis in cattle but is also important in human cancer (Zhao et al. 2016b). 

302 Therefore, the identification of p53 inhibitor, FBXO11, as a hub gene may provide a feasible 

303 approach for the design of molecular inhibitors to prevent p53-related diseases in cattle. Another 

304 interesting gene that shows a large connection in cattle co-expression network is API5, an 

305 apoptosis inhibitor that is involved in the fibroblast growth factor binding. Since cell apoptosis 
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306 has an important role in vitro-produced beef cattle embryos (Nkadimeng et al. 2016), our result 

307 may offer a number of new genes for identifying novel mechanisms of vitro-produced embryos 

308 in cattle. 

309

310 Our additional module analysis identified 55 highly-connected functional modules representing 

311 diverse cellular activities. By focusing on the top five modules with the largest number of genes, 

312 we characterized some important functions for these modules. For example, there are three genes 

313 (BCKDHA, ETFB, and PHLDB2) involving isoleucine degradation in module 1. More 

314 interestingly, the biochemical intermediates and final products from the isoleucine degradation 

315 pathway are the potential energy source for the mammary gland in cattle (Wohlt et al. 1977). 

316

317 Moreover, our reconstructed network will serve as a basis for network-based mining as 

318 exemplified by the identified sub-network related to DNA binding genes in cattle. This work 

319 highlights the importance of a systems biology approach to study largely unexplored 

320 transcriptomes by analysing the inherent modularity of the co-expression network concerned 

321 with the majority tissue samples. In conclusion, we performed the first systematically co-

322 expression analysis on thousands of genes in cattle genome across 92 tissues. The resulted co-

323 expression pairs connected thousands of genes with similar functions and formed the first cattle 

324 interactome for large scale systems biology-based data mining.

325
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403 Figures

404 Figure 1 - Determination of power Beta value based on the adjacency matrix using the 

405 weighted gene correlation network analysis (WGCNA).

406 The adjacency matrix from co-expression data was weighted by the power of the correlation data 

407 between different genes; i.e., aij)=))|Sij|³. The weighted parameter power Beta value was 

408 determined by the scale-free topology criterion.  To ensure that the average connectivity of the 

409 network is smooth, we chose ³)=)4 based on both chart: (A) for topology fitting results and (B) 

410 for mean connectivity.

411 Figure 2 - The WGCNA analysis on the top 5000 genes with most variation across 92 

412 tissues in cattle.

413 (A) Functional modules are illustrated with different colours. The parameter deepslip=4 is set in 

414 WGCNA analysis, which providing a high sensitivity to cluster splitting. We additionally 

415 required each gene module with 30 or more genes. In total, 4950 genes were grouped into 56 

416 modules which showed with various colours. The top five modules ordered by number of genes 

417 were: turquoise with 212 genes; blue with 201 genes; brown with 187 genes; yellow with 162 

418 genes; and green with 155 genes. The grey colour in the left of the figure represents the 50 genes 

419 not associated with any module. (B) The relationship tree for all the modules is presented and the 

420 top five modules marked in the corresponding number.

421 Figure 3 - The co-expression network and gene ontology analysis of 340 genes with 100 or 

422 more connections.

423 (A) Co-expression network from WGCNA based on the TOM greater than 0.1; (B) degree 

424 distribution for the network; and (C) short path length frequency for the network. The scatterplot 

425 (D) shows the gene ontology (GO) cluster representatives for the 340 genes in a two-dimensional 

426 space derived by applying multidimensional scaling to a matrix of the GO terms semantic 

427 similarities. Bubble colour indicates the corrected P-value of the GO term. 
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428 Figure 4 - The sub-network for the DNA binding genes in cattle.

429 (A) the sub-network extracted for DNA binding genes in cattle; (B) the degree distribution for 

430 the network; (C) the short path length frequency for the network. 

431 Tables

432 Table 1 3 The enriched KEGG pathways for the genes in module 1 and 2 from WGCNA 

433 analysis.

Pathway # of genes Q-value

Module 1

Metabolism 43 6.26E-07

Isoleucine degradation 3 0.04218

Module 2

Collagen formation 14 4.54E-12

Extracellular matrix organization 21 4.92E-12

Collagen biosynthesis and modifying enzymes 13 1.54E-11

ECM proteoglycans 11 2.85E-10

Collagen degradation 10 7.38E-09

Assembly of collagen fibrils and other multimeric 

structures 9 3.76E-08

Degradation of the extracellular matrix 12 5.32E-08

Integrin cell surface interactions 11 2.07E-07

NCAM1 interactions 6 8.55E-06

Glycosaminoglycan metabolism 9 0.00409

MET activates PTK2 signaling 5 0.00967

Cooperation of PDCL (PhLP1) and TRiC/CCT in G-

protein beta folding 5 0.01919

Non-integrin membrane-ECM interactions 5 0.02361

Axon guidance 14 0.04552

434 Note: * Q-values: the raw P-values of the hypergeometric test were corrected by Benjamini-Hochberg 

435 multiple testing correction.

436

437 Table 2 3 The enriched biological processes GO terms for the genes in the top five modules 

438 from WGCNA analysis.

Modules GO: Biological process Q-values

M1 Small molecule metabolic process 0.000971
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M1 Carboxylic acid metabolic process 0.00332

M1 Oxoacid metabolic process 0.003628

M1 Organic acid metabolic process 0.005205

M1 Single-organism metabolic process 0.041382

M2 Extracellular matrix organization 0.000392

M2 Extracellular structure organization 0.000427

M2 Protein heterotrimerization 0.000438

M2 Collagen fibril organization 0.000636

M2 Protein trimerization 0.004188

M3 Cell projection organization 0.013119

M3 Microtubule cytoskeleton organization 0.028215

M3 Microtubule-based process 0.045173

M3 Nervous system development 0.04747

M4 Pigment cell differentiation 0.006709

M4 Regulation of pigment cell differentiation 0.008956

M4 Developmental pigmentation 0.024965

M4 Melanocyte differentiation 0.026407

M5 Sertoli cell development 0.00372

439 Note: * Q-values: the raw P-values of the hypergeometric test were corrected by Benjamini-Hochberg 

440 multiple testing correction.

441 Additional files

442 Additional file 1 3 Table S1. The expression profile for the top 5,000 most variant genes 

443 across 92 tissue samples.

444

445 Additional file 2 3 Table S2. The top five gene modules with most genes in WGCNA 

446 analysis.

447

448 Additional file 3 3 Table S3. The eigengenes for the gene modules from WGCNA analysis.

449

450 Additional file 4 3 Table S4. The number of connections for all the genes in the co-

451 expression network from WGCNA.

452
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453 Additional file 5 3 Table S5. The gene related to DNA binding in cattle.

454

455 Additional file 6 3 Table S6. The gene types for the extracted sub-network related to DNA 

456 binding.

457

458

459
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Figure 1

Determination of power Beta value based on the adjacency matrix using the weighted

gene correlation network analysis (WGCNA).

The adjacency matrix from co-expression data was weighted by the power of the correlation

data between different genes; i.e., aij = |Sij|³. The weighted parameter power Beta value

was determined by the scale-free topology criterion. To ensure that the average connectivity

of the network is smooth, we chose ³ = 4 based on both chart: (A) for topology fitting results

and (B) for mean connectivity.
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Figure 2

The WGCNA analysis on the top 5000 genes with most variation across 92 tissues in

cattle.

(A) Functional modules are illustrated with different colours. The parameter deepslip=4 is set

in WGCNA analysis, which providing a high sensitivity to cluster splitting. We additionally

required each gene module with 30 or more genes. In total, 4950 genes were grouped into

56 modules which showed with various colours. The top five modules ordered by number of

genes were: turquoise with 212 genes; blue with 201 genes; brown with 187 genes; yellow

with 162 genes; and green with 155 genes. The grey colour in the left of the figure

represents the 50 genes not associated with any module. (B) The relationship tree for all the

modules is presented and the top five modules marked in the corresponding number.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3178v1 | CC BY 4.0 Open Access | rec: 22 Aug 2017, publ: 22 Aug 2017



Figure 3

The co-expression network and gene ontology analysis of 340 genes with 100 or more

connections.

(A) Co-expression network from WGCNA based on the TOM greater than 0.1; (B) degree

distribution for the network; and (C) short path length frequency for the network. The

scatterplot (D) shows the gene ontology (GO) cluster representatives for the 340 genes in a

two-dimensional space derived by applying multidimensional scaling to a matrix of the GO

terms semantic similarities. Bubble colour indicates the corrected P-value of the GO term.
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Figure 4

The sub-network for the DNA binding genes in cattle.

(A) the sub-network extracted for DNA binding genes in cattle; (B) the degree distribution for

the network; (C) the short path length frequency for the network.
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