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Abstract1

Long-term time series are necessary to better understand population dynamics, assess2

species’ conservation status, and make management decisions. However, population3

data are often expensive, requiring a lot of time and resources. When is a population4

time series long enough to address a question of interest? I determine the minimum5

time series length required to detect significant increases or decreases in population6

abundance. To address this question, I use simulation methods and examine 8227

populations of vertebrate species. Here I show that on average 15.9 years of continuous8

monitoring are required in order to achieve a high level of statistical power. However,9

there is a wide distribution around this average, casting doubt on simple rules of thumb.10

For both simulations and the time series data, the minimum time required depends11

on trend strength, population variability, and temporal autocorrelation. However,12

there were no life-history traits (e.g. generation length) that were predictive of the13
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minimum time required. These results point to the importance of sampling populations14

over long periods of time. I argue that statistical power needs to be considered in15

monitoring program design and evaluation. Short time series are likely under-powered16

and potentially misleading.17

Keywords: ecological time series, experimental design, monitoring, power analysis, statistical18

power, sampling design19

1 Introduction20

Observational studies and population time series have become a cornerstone of modern ecolog-21

ical research and conservation biology (Magurran et al. 2010; Hughes et al. 2017). Long-term22

data are necessary to both understand population dynamics and to assess species extinction23

risk. Even though many time series may now be considered “long-term” (e.g. continuous24

plankton recorder, Giron-Nava et al. (2017)), most are still short. Time series are typically25

short for a variety of reasons (Field et al. 2007). They are often coupled with an experiment,26

which may only last a couple of years. In addition, short funding cycles make it difficult to27

examine populations over longer periods of time (Hughes et al. 2017).28

How long of a time series is actually necessary? This question has important implications29

for both research and management (Nichols and Williams 2006). Scientists need to know30

the time series length required to address a specific question. A short time series may lead31

to wrong conclusions given large natural year-to-year variability (McCain, Szewczyk, and32

Knight 2016). Managers need to know when action is needed for a population. Therefore,33

managers must understand when population trend over time is actually meaningful. For34

example, the International Union for Conservation of Nature (IUCN) Red List Categories and35

Criteria suggest, under Criterion A2, a species qualifies as vulnerable if it has experienced36

a 30% decline over 10 years, or three generations (IUCN 2012). For both scientific and37

management questions, because sampling is typically expensive, we also do not want to sample38

for longer than is necessary. For example, Gerber, DeMaster, and Kareiva (1999) investigated39

the minimum time series required to estimate population growth of the endangered, but40

recovering, eastern North Pacific gray whale (Eschrichtius robustus). They used a long-term41

census to retroactively determine the minimum time series required to assess threat status.42

They found that only 11 years were needed, eight years before the delisting decision was43

made. This highlights the importance of estimating the minimum time series required as an44

earlier decision would have saved time and money (Gerber, DeMaster, and Kareiva 1999).45

Further, waiting too long to make a decision can imperil a species where management action46

could have been taken earlier (Martin et al. 2012; Martin et al. 2017).47

An important step in experimental design is to determine the number of samples required.48

For any particular experiment four quantities are intricately linked: significance level (α),49

statistical power, effect size, and sample size (Legg and Nagy 2006). The exact relationship50

between these quantities depends on the specific statistical test. A type I error is a false51

positive, or incorrect rejection of a true null hypothesis. For example, if a time series was52
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assessed as significantly increasing or decreasing—when there was no true significant trend—53

this would be a false positive. The false positive rate, or significance level (α) is often set at54

0.05 (although this is purely historical, Mapstone (1995)). A type II error (β) is a failure to55

detect a true trend, or failure to reject a false null hypothesis. Formally, statistical power56

(1 − β) is one minus the probability of a type II error (β). The effect size is a measure57

of the difference between two groups. Prior to an experiment, one could set appropriate58

levels of power, significance level, and the effect size to estimate the sample size required for59

the experiment. This approach, however, is not straight-forward for a time series, or more60

complicated scenarios (P. C. Johnson et al. 2015), as data are clearly non-independent.61

For time series data, two general approaches to estimating sample size are appropriate.62

Simulations can be designed for a specific population and question (Bolker 2008; P. C.63

Johnson et al. 2015). Simple models can be simulated with parameter values corresponding64

to a population of interest (Gerrodette 1987). Statistical power is the proportion of simulations65

that meet some set of criteria. The specific criteria depend on the question at hand. For66

example, given a time series, when is the slope from linear regression significantly different67

from zero? In other words, when is the time series significantly increasing or decreasing? It is68

then possible to determine how power changes with a variable of interest. For example, time69

series can be simulated for different lengths of time. From these simulations, the minimum70

time series length required to meet certain levels of statistical significance and power is71

estimated (Bolker 2008).72

In addition to using simulations, empirical time series can also be used. Multiple replicates73

of similar populations are usually not available, but it is possible to subsample an empirical74

time series (Gerber, DeMaster, and Kareiva 1999; Brashares and Sam 2005). Subsamples of75

different lengths can then be evaluated to estimate the proportion of subsamples meeting76

some criteria, again a measure of statistical power. Similar to the simulation approach, this77

measures of power can be used to determine the minimum time series required for a particular78

question of interest.79

Past work has investigated questions related to the minimum time series required to estimate80

trends in population size over time (Wagner, Vandergoot, and Tyson 2009; Giron-Nava81

et al. 2017). For example, Rhodes and Jonzen (2011) examined the optimal allocation82

of effort between spatial and temporal replicates. Using simple populations models, they83

found that the allocation of effort depends on environmental variation, spatial and temporal84

autocorrelation, and observer error. Rueda-Cediel et al. (2015) also used a modeling approach,85

but parameterized a model specific for a threatened snail, Tasmaphena lamproides. They86

found that for this short-lived organism, 15 years was adequate to assess long-term trends in87

abundance. However, these studies, and other past work, have typically focused either on88

theoretical aspects of monitoring design or focused on only a few species.89

I use both simulations and empirical time series to determine the minimum number of years90

required to address several questions. I estimate the minimum time series length required91

(Tmin) to assess long-term changes in abundance via simple linear regression. First, I estimate92

Tmin using a simulation approach. Then I examine 822 population time series to estimate Tmin.93

In the supplementary material, I determine Tmin for related ideas: using more complicated94

population models, varying statistical level and power, and the use of generalized additive95
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models.96

2 Methods97

2.1 Simulation approach98

One approach to determining the minimum time series length needed is through repetitive99

simulations of a population model (Gerrodette 1987). This is the same approach one might100

use in sample size calculations for any experimental design too complicated for simple power101

analyses (Bolker 2008; P. C. Johnson et al. 2015). I only briefly discuss this approach as102

it has been described elsewhere. Essentially, a population model is simulated repetitively103

for a number of years. This approach requires us to determine values for model parameters104

(e.g. population variability). As an example, we can take the following population model for105

population size N at time t:106

N(t+ 1) = N(t) + r(t) + ε with ε ∼ N(µ, σ) (1)

where ε is a normally-distributed random noise term with mean µ and standard deviation107

σ. The rate of growth r is also the trend strength of the increase or decrease (i.e. the rate108

of increase). It is important to note that any population model could be substituted for109

equation 1, as in the supplementary material (Figs. A6, A7).110

Statistical power is then the proportion of simulations that meet some criteria. Here, our111

criteria is whether the slope parameter from linear regression is significant at the 0.05 threshold112

with statistical power of 0.8. Statistical power of 0.8 would indicate that, if there was a113

true trend in abundance, there would be a 0.8 probability of detecting the trend. Values of114

0.05 for the significance level and 0.8 statistical power are historical and it is important to115

examine the effect of changing these values (Fig. A4).116

In Fig. 1a, a number of simulated time series are shown for a set number of time periods117

(t = 40). It is clear that statistical power increases quickly with increases in length of time118

sampled (Fig. 1b). Where power is greater than 0.8 (the dotted line), that is the minimum119

time required (Tmin) to be confident in the detection of a long-term trend in abundance.120

2.2 Data source121

I use a database of 2444 population time series compiled in (Keith et al. 2015); they compared122

the predictability of growth rates among populations. The data are originally from the Global123

Population Dynamics Database (NERC Centre for Population Biology 2010) and several other124

sources (Keith et al. 2015). I filtered out short time series (less than 35 years), and those125

with missing data, leaving 822 time series. The data includes information on 477 vertebrate126

species with a focus on mammals, birds, and fish. The data also includes information on127
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Figure 1: (a) Example of a simulated time series for 40 time periods. (b) Statistical power
versus the simulated time series length. The horizontal, dashed line is the desired statistical
power of 0.8. The vertical, dashed line is the minimum time required to achieve the desired
statistical power. (c) Minimum time required (Tmin) for simulations with different values of
the trend strength (r). (d) Minimum time required for different levels of population variability
(σ). In each case, the minimum time required is the minimum number of years to achieve 0.8
statistical power given a significance level of 0.05.
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generation length and survey specifications. For each time series, I also calculate other128

variables of interest: coefficient of variance in population size, long-term trend in abundance129

(slope coefficient from simple linear regression), and temporal autocorrelation. All analyses130

were conducted in R (R Core Team 2016).131

For a subset of populations (n = 547), there is information on life-history traits available132

from another paper (Myhrvold et al. 2015), including body size and generation length. All133

547 populations were birds. I examine how the minimum time required is related to these134

life-history traits (Fig. 4).135

2.3 Empirical approach136

I assume that each time series is long enough to include all necessary information (e.g. vari-137

ability) about the population. In other words, each time series is a representative sample.138

I first take all possible contiguous subsamples of each time series. For example, a time139

series of 35 years would have 34 possible contiguous subsamples of length 2, 34 possible140

contiguous subsamples of length 3, and continuing until 1 possible contiguous subsample of141

length 35 (Gerber, DeMaster, and Kareiva 1999; Giron-Nava et al. 2017). Next, I run a linear142

regression for each subsampled time series. Then, I determine the proportion of subsamples143

of a particular length that have estimated slope coefficients which are statistically different144

from zero. I only look at the proportion of samples where the long-term, or “true”, time145

series also has a significant slope. This proportion is a measure of statistical power. Lastly, I146

determine which subsample length is required to achieve a certain threshold of statistical147

power (0.8, Cohen (1992)). The minimum subsampled length that met these criteria is the148

minimum time series length required (Tmin).149

In the supplementary material, I show how the same approach described here for more150

complicated population models. I also determine the minimum time required to estimate151

long-term trends according to generalized additive models, instead of the simple linear models152

used here (Fig. A8).153

3 Results154

I determined the minimum time series length (Tmin) required to address a particular question155

of interest. What is the minimum time series length required to determine, via linear156

regression, the long-term population trend? Here, the minimum time series length required157

had high enough statistical power (greater than 0.8) for a set significance level (α) of 0.05. It158

is also possible to alter statistical power and α. Predictably, with increased statistical power159

or decreased α, Tmin increased (Fig. A4). I then estimated Tmin using two approaches. I160

briefly describe results from the simulation approach and then discuss the empirical approach.161

6

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3168v3 | CC BY 4.0 Open Access | rec: 14 Dec 2017, publ: 15 Dec 2017



3.1 Simulation approach162

I constructed a general population model where the trend strength (i.e. slope coefficient) over163

time could be a model parameter. I then simulated time series of different lengths. From164

these simulations I determined the minimum time series length required to achieve a certain165

level of statistical power. In line with past work (Gerrodette 1987), I found the Tmin increases166

(i.e. more time is required) with decreases in trend strength and with increases in population167

variability (Figs. 1c,d).168

I chose a simple model, but any other population model could be used (see example in169

Fig. A6). Ideally, the specific model choice should be tailored to the population of interest.170

I explored how the simulation approach could be applied to more biologically-realistic171

population models (Fig. A7). Specifically, I determined the minimum time required to172

estimate long-term population trends using a stochastic, age-structured model of lemon shark173

population dynamics in the Bahamas (White, Nagy, and Gruber 2014). I found that over 27174

years of continuous monitoring were needed in this particular scenario (Fig. A7). Similar to175

the simulation approach described above, the minimum time required for the lemon shark176

population was strongly dependent on model parameters.177

3.2 Empirical approach178

I examined a database of 822 separate population time series representing 477 species. This179

database consisted of vertebrate species with a variety of life-history characteristics (Fig.180

4). I limited analyses to populations with at least 35 years of continuous sampling. I then181

examined the minimum time required to estimate long-term trends via linear regression.182

Across all the populations, I found an average minimum time series length required (Tmin) of183

15.9 (SD=8.3), with a wide distribution (Fig. 2b). Estimates of Tmin varied between biological184

class (Fig. 2a). Ray-finned fish (class Actinopterygii) typically had estimates of Tmin over185

20 years. Birds (class Aves) had a much wider distribution of Tmin, but usually required186

less years of sampling. Differences between these classes can be explained by differences in187

variability in population size and strength of trends in abundance (Fig. A3).188

3.2.1 Corrrelates for minimum time required189

The minimum time series length required was strongly correlated with trend strength (i.e. es-190

timated slope coefficient from linear regression), coefficient of variation in population size,191

and autocorrelation in population size (Fig. 3). This is in line based on simulations here and192

those of others (Rhodes and Jonzen 2011). Using a generalized linear model, with a Poisson193

error structure, all three of these explanatory variables were significant and had large effect194

sizes (see Table A1). Combined, trend strength, coefficient of variation in population, and195

autocorrelation account for 75.1% of the explained deviance (Zuur et al. 2009) in minimum196

time series length required.197
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Figure 2: (a) Distributions of the minimum time required for populations from four different
biological classes. (b) Distribution of minimum time required for all populations regardless of
biological class. The minimum time required calculation corresponds to a significance level of
0.05 and statistical power of 0.8.
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Figure 3: Minimum time required to estimate change in abundance correlated with (a) trend
strength (absolute value of slope coefficient estimated from linear regression), (b) coefficient
of variation in interannual population size, and (c) temporal lag-1 autocorrelation.
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For a subset of the populations I combined time series data with a data on life-history198

characteristics of amniotes (Myhrvold et al. 2015). There was life-history information199

available for 547 populations representing 315 different species, all of which were birds (Aves200

class).201
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Figure 4: Mimimum time required versus (a) generation length (years), (b) litter size (n),
(c) log adult body mass (grams), (d) maximum longevity (years), and (e) incubation (days).
The lines in each plot represent the best fit line from linear regression.

Some life-history traits were significant predictors for the minimum time required (Fig. 4,202

Tables A2,A3). However, none of these life-history traits explained a large part of the203

variation in minimum time required. In a generalized linear model, all of the life-history traits204

described in figure 4 account for only 5.99% of the explained deviance in minimum time series205

length required. In addition, when accounting for trend strength, coefficient of variation,206

and autocorrelation, no life-history traits were significant predictors of the minimum time207

required (Table A3).208
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3.2.2 Evalulating the IUCN criteria209
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Figure 5: Minimum time required to achieve 0.8 statistical power versus the minimum time
required under IUCN criteria A2 to classify a species as vulnerable. Each point represents a
single population, all of which saw declines of 30% or greater over a 10 year period.

The IUCN Red List Categories and Criteria suggest, under Criterion A2, a species qualifies210

as vulnerable if it has experienced a 30% decline over 10 years, or 3 generations (whichever211

is longer) (IUCN 2012). I examined a subset of populations with observed declines of 30%212

or greater over 10 years, qualifying all of them as vulnerable. This resulted in n = 162213

populations of fish, birds, and a single mammal. I then compared the minimum time required214

to achieve 0.8 statistical power (Tmin) to the minimum time required under the IUCN criteria215

(Fig. 5). For populations below the identity line in figure 5, IUCN criteria would require216

more sampling compared to estimates for Tmin. Further, populations above the identity line217

are cases where the IUCN criteria would classify a population as vulnerable despite not218

having sampled enough years to achieve high statistical power (Fig. 5). The silhouettes on219

figure 5 highlight that species with longer generation times typically have larger discrepancies220

between Tmin and the minimum time required for IUCN assessments (Fig. A5).221
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3.2.3 Sensitivity analysis222

Lastly, I tested model sensitivity by using generalized additive models (GAMs) instead of223

simple linear regression. Again, I examined the minimum time required to estimate long-term224

population trends (Fig. A8). I found that although I obtain a similar distribution of minimum225

times required for GAMs, the minimum time required for GAMs is on average shorter than226

for linear regression (Fig. A9).227

4 Discussion228

I explored two approaches to estimate the minimum time series length required to address a229

particular question of interest. I asked, what is the minimum time series length required to230

determine long-term population trends using linear regression? This is one of the simplest231

questions one could ask of a time series. The simulation-based approach has been suggested232

by others, especially in situations more complicated than that suited for classic power analysis233

(Gerrodette 1987; P. C. Johnson et al. 2015; Bolker 2008). My simulations support past work234

that longer time series are needed when the trend strength (i.e. rate of increase or decrease)235

is weak or when population variability is high (Gerrodette 1987). I also showed how the236

simulation model can be altered for a particular population (Fig. A7) or question (Figs.237

A6,A8).238

Here, I focus on an empirical approach to estimate the minimum time series length required239

to assess changes in abundance over time. I examined 822 population time series (all longer240

than 35 years). I then subsampled each to determine the minimum time required to achieve241

a desired significance level and power for linear regression. Statistical power is important as242

it provides on information as to the necessary samples required to determine a significant243

trend (Legg and Nagy 2006). I found that on average 15.91 years of continuous monitoring244

were typically necessary (Fig. 2b). However, the distribution of minimum time required was245

wide. This time-frame is in line with past work on a short-lived snail species (Rueda-Cediel246

et al. 2015) and a long-lived whale species (Gerber, DeMaster, and Kareiva 1999). Hatch247

(2003) used seabird monitoring data to estimate minimum sampling requirements. He found248

that the time required ranged from 11 to 69 years depending on species, trend strength, and249

study design.250

In line with theoretical predictions (Rhodes and Jonzen 2011), I also found Tmin was strongly251

correlated with the trend strength, variability in population size, and temporal autocorrelation252

(Fig. 3). Contrary to my prior expectations, I also found that Tmin did not correlate with253

any life-history traits (Fig. 4). I initially hypothesized that species with longer lifespans254

or generation times may require a longer sampling period. This result could have been a255

result of at least two factors. First, the data I used may not include a diverse enough set of256

species with different life-history traits. Second, the question I poised, whether a population257

is increasing or decreasing, was specifically concerned with trends in population density over258

time. Therefore, life-history characteristics may be more important for other questions, like259

estimating species extinction risk (J. A. Hutchings et al. 2012). For example, Blanchard,260
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Maxwell, and Jennings (2007) used detailed simulations of spatially-distributed fisheries261

to compare survey designs. They found that statistical power depended on survey design,262

temperature preferences, and the degree of population patchiness.263

An important related question, is the optimal allocation of sampling effort in space versus264

time. In a theoretical investigation of this question, Rhodes and Jonzen (2011) found that the265

optimal allocation of sampling depended strongly on temporal and spatial autocorrelation.266

If spatial population dynamics were highly correlated, then it was better to sample more267

temporally, and vice versa. My work supports this idea as populations with strong temporal268

autocorrelation needed less years of sampling (Fig. 3). Morrison and Hik (2008) also studied269

the optimal allocation of sampling effort in space versus time, but used emprical data from a270

long-term survey of the collared pika (Ochotona collaris) found in the Yukon. They estimated271

long-term growth rates among three subpopulations over a 10-year period. They found that272

surveys less than 5 years may be misleading and that extrapolating from one population to273

another, even when nearby geographically, may be untenable.274

Seavy and Reynolds (2007) asked whether statistical power was even a useful framework275

for assessing long-term population trends. They used 24 years of census data on Red-tailed276

Tropicbirds (Phaethon rubricauda) in Hawaii and showed that to detect a 50% decline over 10277

years almost always resulting in high statistical power (above 0.8). Therefore, they cautioned278

against only using power analyses to design monitoring schemes and instead argued for279

metrics that would increase precision. For example, Seavy and Reynolds (2007) suggest280

improving randomization, reducing bias, and increases detection probability when designing281

and evaluating monitoring programs. I agree that power analyses should not be the only282

consideration when designing monitoring schemes. However, unlike Seavy and Reynolds283

(2007), my results indicate that longer than 10 years is often needed to achieve high statistical284

power.285

This paper also has practical implications for the IUCN Redlist criteria. IUCN criteria A2286

suggests that species that have experienced 30% declines over 10 years (or three generations)287

should be listed as vulnerable (IUCN 2012). However, for the populations I examined, this288

criteria may be too simplistic (Fig. 5). For many populations, the IUCN criteria suggest more289

years than necessary are required to assess a population as vulnerable (points below diagonal290

line in Fig. 5). Conversely, for other populations the IUCN criteria suggest sampling times291

that are less than the minimum time required for statistical power. This suggests that the292

IUCN criteria are probably too simplistic as the minimum time required does not correlate293

with generation time (Fig. 4).294

The design of monitoring programs should include calculations of statistical power, the295

allocation of sampling in space versus time (Rhodes and Jonzen 2011), and metrics to increase296

precision. Ideally, a formal decision analysis to evaluate these different factors would be297

conducted to design or assess any monitoring program (Hauser, Pople, and Possingham 2006;298

McDonald-Madden et al. 2010). This type of formal decision analysis would also include299

information on the costs of monitoring. These costs include the actual costs of sampling300

(Brashares and Sam 2005) and the ecological costs on inaction (Thompson et al. 2000).301
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4.1 Limitations302

This paper has some limitations in determining the minimum time series length required.303

First, Tmin is particular to the specific question of interest. An additional complication is304

that for the empirical approach, the subsampling of the full time series allows for estimates305

of power, but the individual subsamples are clearly not independent of one another. Further,306

estimates of Tmin depend on chosen values of α and β (Fig. A4). In an ideal setting, a specific307

population model would be parameterized for each population of interest (McCain, Szewczyk,308

and Knight 2016). Then, model simulations could be used to estimate the minimum time309

series required to address each specific question of interest. Clearly, this is not always practical,310

especially if conducting analyses for a wide array of species as I do here. In addition, the311

statistical models suggest that Tmin does not correlate with any life-history traits, at least for312

the question of linear regression (Fig. 4). Therefore, it is not possible to use these results313

to predict Tmin for another population, even if the population is of a species with a similar314

life-history to one in the database used.315

4.2 Conclusions316

I used a database of 822 populations to determine the minimum time series length required to317

detect population trends. This goes beyond previous work that either focused on theoretical318

investigations or a limited number of species. I show that to identify long-term changes319

in abundance, on average 15.91 years of continuous monitoring are often required (Fig. 2).320

However, there is wide distribution of estimated minimum times. Therefore, it is probably321

not wise to use a simple threshold number of years in monitoring design.322

In line with theoretical predictions (Gerrodette 1987), I also show that Tmin is strongly323

correlated with the long-term population trend (i.e. rate of increase), variability in population324

size, and the temporal autocorrelation (Fig. 3). Contrary to my initial hypotheses, minimum325

time required did not correlate with generation time or any other life-history traits (Fig. 4).326

This result argues against overly simplified measures of minimum sampling time based on327

generation length (Fig. 5).328

My work implies that for many populations, short time series are probably not reliable for329

detecting population trends. This result highlights the importance of long-term monitoring330

programs. From both a scientific and management perspective estimates of Tmin are important.331

If a time series is too short, we lack the statistical power to reliably detect long-term population332

trends. In addition, a time series that is too long may be a poor use of already limited funds333

(Gerber, DeMaster, and Kareiva 1999). Further, more data is not always best in situations334

where management actions need to be taken (Martin et al. 2012; Martin et al. 2017). When335

a population trend is detected, it may be too late for management action. In these situations,336

the precautionary principle may be more appropriate (Thompson et al. 2000). Future work337

should examine other species, with a wider range of life-history characteristics. In addition,338

similar approaches can be used to determine the minimum time series length required to339

address additional questions of interest.340
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5 Supporting Information341

In the supporting material, I provide an expanded methods sections, additional figures,342

minimum time calculations for determining exponential growth, simulations with a more com-343

plicated population model, and the use of generalized additive models to identify population344

trends. All code and data can be found at https://github.com/erwhite1/time-series-project345
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8 Supplementary material444

Figure A1: (a) Population size of Bigeye tuna (Thunnus obesus) over time. The line is the
best fit line from linear regression. (b) Statistical power for different subsets of the time series
in panel a.

Figure A2: Output of generalized linear model with a Poisson error structure for predicting
the minimum time required with explanatory variables of the absolute value of the slope
coefficient (or trend strength), temporal autocorrelation, and variability in population size.

Figure A3: (a) Minimum time required to estimate change in abundance by biological
class, (b) long-term trend (estimated slope coefficient) by class, (c) coefficient of variation in
population size by class, and (d) temporal autocorrelation by class.

Table A1: Output of generalized linear model to examine time series characteristics as445

correlates of the minimum time required for determining long-term population trends.446

Table A2: Output of generalized linear model to examine life-history trait correlates of the447

minimum time required for determine long-term population trends.448

Table A3: Output of generalized linear model to examine both time series characteristics and449

life-history trait correlates of the minimum time required for determine long-term population450

trends.451
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Figure A4: Minimum time required to assess long-term trends in abundance for values of
statistical significance (α) and power (1 − β).

Figure A5: The difference between minimum time estimates is the minimum time required
to achieve 0.8 statistical power versus the minimum time required under IUCN criteria A2
to classify a species as vulnerable. Each point represents a single population, all of which
saw declines of 30% or greater over a 10 year period. (a) Difference between minimum
time estimates versus the coefficient of variation in population size. (b) Difference between
minimum time estimates versus the generation length in years.

Figure A6: Distribution of the minimum time required in order to detect a significant trend
(at the 0.05 level) in log(abundance) given power of 0.8.

Figure A7: Statistical power for different length of time series simulations for a lemon shark
population in Bimini, Bahamas.

Figure A8: (a) Time series for Bigeye tuna (Thunnus obesus) with corresponding fitted GAM
model in red and (b) statistical power as a function of the number of years sampled. The
horizontal line at 0.8 indicates the minimum threshold for statistical power and the vertical
line denotes the minimum time required to achieve 0.8 statistical power.

Figure A9: Distribution of the minimum time required in order to detect a significant trend
(at the 0.05 level) in abundance according to a GAM model given statistical power of 0.8.
The smoothing parameter was set to 3 for each population.
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