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Abstract16

Long-term time series are necessary to better understand population dynamics, assess17

species’ conservation status, and make management decisions. However, population data18

are often expensive, requiring a lot of time and resources. When is a population time19

series long enough to address a question of interest? We determine the minimum time20

series length required to detect significant increases or decreases in population abundance.21

To address this question, we use simulation methods and examine 878 populations22

of vertebrate species. Here we show that 15-20 years of continuous monitoring are23

required in order to achieve a high level of statistical power. For both simulations and24

the time series data, the minimum time required depends on trend strength, population25

variability, and temporal autocorrelation. These results point to the importance of26

sampling populations over long periods of time. We argue that statistical power needs27

to be considered in monitoring program design and evaluation. Time series less than28

15-20 years are likely underpowered and potentially misleading.29

Keywords: ecological time series, experimental design, monitoring, power analysis, statistical30

power, sampling design31

1 Introduction32

Observational studies and population time series have become a cornerstone of modern ecolog-33

ical research and conservation biology (Magurran et al. 2010; Hughes et al. 2017). Long-term34

data are necessary to both understand population dynamics and to assess species extinction35

risk. Even though many time series may now be considered “long-term” (e.g. continuous36

plankton recorder, Giron-Nava et al. (2017)), most are still short. Time series are typically37

short for a variety of reasons (Field et al. 2007). They are often coupled with an experiment,38

which may only last a couple of years. In addition, short funding cycles make it di�cult to39

examine populations over longer periods of time (Hughes et al. 2017).40

How long of a time series is actually necessary? This question has important implications for41

both research and management (Nichols and Williams 2006). Scientists need to know the42

time series length required to address a specific question. A short time series may lead to43

wrong conclusions given large natural year-to-year variability. Managers need to know when44

action is needed for a population. Therefore, they must understand when population trend45

over time is actually meaningful. The IUCN Red List Categories and Criteria suggest, under46

Criterion A2, a species qualifies as vulnerable if it has experienced a 30% decline over 1047

years, or 3 generations (IUCN 2012). For both scientific and management questions, because48

sampling is typically expensive, we also do not want to sample for longer than is necessary.49

For example, Gerber, DeMaster, and Kareiva (1999) investigated the minimum time series50

required to estimate population growth of the endangered, but recovering, eastern North51

Pacific gray whale (Eschrichtius robustus). They used a long-term census to retroactively52

determine the minimum time series required to assess threat status. They found that only 1153

years were needed, eight years before the delisting decision was made. This highlights the54
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importance of estimating the minimum time series required as an earlier decision would have55

saved time and money (Gerber, DeMaster, and Kareiva 1999).56

An important step in experimental design is to determine the number of samples required.57

For any particular experiment four quantities are intricately linked: significance level (–),58

statistical power, e�ect size, and sample size (Legg and Nagy 2006). The exact relationship59

between these quantities depends on the specific statistical test. A type I error is a false60

positive, or incorrect rejection of a true null hypothesis. For example, if a time series was61

assessed as significantly increasing or decreasing—when there was no true significant trend—62

this would be a false positive. The false positive rate, or significance level (–) is often set at63

0.05 (although this is purely historical, Mapstone (1995)). A type II error (—) is a failure to64

detect a true trend, or failure to reject a false null hypothesis. Formally, statistical power65

(1 ≠ —) is one minus the probability of a type II error (—). The e�ect size is a measure66

of the di�erence between two groups. Prior to an experiment, one could set appropriate67

levels of power, significance level, and the e�ect size to estimate the sample size required for68

the experiment. This approach, however, is not straight-forward for a time series, or more69

complicated scenarios (P. C. Johnson et al. 2015), as data are clearly non-independent.70

For time series data, two general approaches to estimating sample size are appropriate.71

Simulations can be designed for a specific population and question (Bolker 2008; P. C.72

Johnson et al. 2015). Simple models can be simulated with parameter values corresponding73

to a population of interest (Gerrodette 1987). Statistical power can then be calculated as the74

fraction of simulations that meet some criteria. The specific criteria depend on the question at75

hand. For example, given a time series, when is the slope from linear regression significantly76

di�erent from zero? In other words, when is the time series significantly increasing or77

decreasing? It is then possible to determine how power changes with a variable of interest.78

For example, time series can be simulated for di�erent lengths of time. From these simulations,79

the minimum time series length required is calculated to meet certain levels of statistical80

significance and power (Bolker 2008).81

In addition to using simulations, empirical time series can also be used. Multiple replicates82

of similar populations are usually not available, but it is possible to subsample an empirical83

time series (Gerber, DeMaster, and Kareiva 1999). Subsamples of di�erent lengths can then84

be evaluated to see which fraction of subsamples meet some criteria, again a measure of85

statistical power. Similar to the simulation approach, these measures of power can be used86

to determine the minimum time series required for a particular question of interest.87

Past work has investigated questions related to the minimum time series required to estimate88

trends in population size over time (Wagner, Vandergoot, and Tyson 2009; Giron-Nava89

et al. 2017). For example, Rhodes and Jonzen (2011) examined the optimal allocation90

of e�ort between spatial and temporal replicates. Using simple populations models, they91

found that the allocation of e�ort depends on environmental variation, spatial and temporal92

autocorrelation, and observer error. Rueda-Cediel et al. (2015) also used a modeling approach,93

but parameterized a model specifically for a threatened snail, Tasmaphena lamproides. They94

found that for this short-lived organism, 15 years was adequate to assess long-term trends95

in abundance. Hatch (2003) examined seabird populations and determined the minimum96

time required to achieve high statistical power ranged between 11 and 69 years. However,97
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these studies, and other past work, have typically focused either on theoretical aspects of98

monitoring design or focused on only a few species.99

We use both simulations and empirical time series to determine the minimum number of100

years required to address several questions. We estimate the minimum time series length101

required (Tmin) to assess long-term changes in abundance via simple linear regression. First,102

we estimate Tmin using a simulation approach. Then we examine 878 population time series to103

estimate Tmin. In the supplementary material, we determine Tmin for related ideas: calculating104

long-term growth rates, using more complicated population models, varying statistical level105

and power, and the use of generalized additive models.106

2 Methods107

2.1 Simulation approach108

One approach to determining the minimum time series length needed is through repetitive109

simulations of a population model (Gerrodette 1987). This is the same approach one might110

use in sample size calculations for any experimental design too complicated for simple power111

analyses (Bolker 2008; P. C. Johnson et al. 2015). We only briefly discuss this approach112

as it has been described elsewhere. Essentially, we use a population model and repetitively113

simulate it for a number of years. This approach requires us to determine values for our114

model parameters (e.g. population variability). As an example, we can take the following115

population model for population size N at time t:116

N(t + 1) = N(t) + r(t) + ‘ with ‘ ≥ N(µ, ‡) (1)

where ‘ is a normally-distributed random noise term with mean µ and standard deviation117

‡. The rate of growth r is also the trend strength of the increase or decrease (i.e. the rate118

of increase). It is important to note that any population model could be substituted for119

equation 1, as we do in the supplementary material (Figs. A6, A7).120

Statistical power is then the fraction of simulations that meet some criteria. Here, our criteria121

is whether the slope parameter from linear regression is significant at the 0.05 threshold.122

Statistical power of 0.8 would indicate that, if there was a true trend in abundance, we would123

have a 0.8 probability of detecting the trend. We also tested the e�ect of varying both the124

significance level and statistical power (Fig. A5).125

In Fig. 1a, a number of simulated time series are shown for a set number of time periods126

(t = 40). It is clear that statistical power increases quickly with increases in length of time127

sampled (Fig. 1b). Where power is greater than 0.8 (the dotted line), that is the minimum128

time required (Tmin).129
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Figure 1: (a) Example of a simulated time series for 40 time periods. (b) Statistical power
versus the simulated time series length. The horizontal, dashed line is the desired statistical
power of 0.8. The vertical, dashed line is the minimum time required to achieve the desired
statistical power. (c) Minimum time required (Tmin) for simulations with di�erent values of
the trend strength (r). (d) Minimum time required for di�erent levels of population variability
(‡). In each case, the minimum time required is the minimum number of years to achieve 0.8
statistical power given a significance level of 0.05.
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2.2 Data source130

We use a database of 2444 population time series compiled in (Keith et al. 2015); they131

compared the predictability of growth rates among populations. The data are originally from132

the Global Population Dynamics Database (NERC Centre for Population Biology 2010). We133

filtered out short time series (less than 35 years), and those with missing data, and were134

left with 878 time series. The data includes information on 478 vertebrate species with a135

focus on mammals, birds, and fish. The data also includes information on generation length136

and census specifications. For each time series, we also calculated variables of interest like137

variance in population size, long-term trend in abundance (slope coe�cient from simple linear138

regression), and temporal autocorrelation. All analyses were conducted in R (R Core Team139

2016).140

For a subset of populations (n = 547), we had information on biological characteristics from141

another paper (Myhrvold et al. 2015), including body size and generation length. All 547142

populations were birds. We examine how the minimum time required is related to these143

biological characteristics (Fig. A3).144

2.3 Empirical approach145

We assume that each time series in our database is long enough to include all necessary146

information (e.g. variability) about the population. In other words, each time series is a147

representative sample. We first take all possible contiguous subsamples of each time series.148

For example, a time series of 35 years would have 34 possible contiguous subsamples of length149

2, 34 possible contiguous subsamples of length 3, and continuing until 1 possible contiguous150

subsample of length 35 (Gerber, DeMaster, and Kareiva 1999; Giron-Nava et al. 2017). Next,151

we run a linear regression for each subsampled time series. Then, we determine the fraction of152

subsamples of a particular length that have estimated slope coe�cients which are statistically153

di�erent from zero. We only look at the fraction of samples where the long-term, or “true”,154

time series also has a significant slope. This fraction is a measure of statistical power. Lastly,155

we determine which subsample length is required to achieve a certain threshold of statistical156

power (0.8, Cohen (1992)). The subsampled length meeting these criteria is the minimum157

time series length required (Tmin).158

In the supplementary material, we show how the same approach described here can be used159

to determine the minimum time required to estimate a population’s geometric growth rate160

(Figs. A8,A9). We also determine the minimum time required to estimate long-term trends161

according to generalized additive models, instead of the simple linear models used here (Fig.162

A10).163
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3 Results164

We determined the minimum time series length (Tmin) required to address a particular165

question of interest. What is the minimum time series length required to determine, via linear166

regression, the long-term population trend? Here, the minimum time series length required167

had high enough statistical power (1 ≠ — greater than 0.8) for a set significance level (–) of168

0.05. It is also possible to alter 1≠— and –. Predictably, as we increased our level of power or169

decreased –, Tmin increased (Fig. A5). We estimated Tmin using two approaches. We briefly170

describe results from the simulation approach and then discuss our empirical approach.171

3.1 Simulation approach172

We constructed a general population model where the trend strength (i.e. slope coe�cient)173

over time could be a model parameter. We then ran simulated time series of di�erent lengths.174

From these simulations we determined the minimum time series length required to achieve175

a certain level of statistical power. In line with past work (Gerrodette 1987), we found the176

Tmin increases (i.e. more time is required) with decreases in trend strength and with increases177

in population variability (Figs. 1c,d).178

We chose a simple model, but any other population model could be used (see example in179

Fig. A6). Ideally, the specific model choice should be tailored to the population of interest.180

We explored how the simulation approach can be applied to more biologically-realistic181

population models (Fig. A7). More specifically, we determined the minimum time required to182

estimate long-term population trends using a stochastic, age-structured model of lemon shark183

population dynamics in the Bahamas (White, Nagy, and Gruber 2014). We found that over184

27 years of continuous monitoring were needed in this particular scenario (Fig. A7). Similar185

to the simulation approach described above, the minimum time required for the lemon shark186

population was strongly dependent on model parameters.187

3.2 Empirical approach188

We examined a database of 878 separate population time series representing 478 species. This189

database consists of vertebrate species with a variety of life history characteristics (Fig. A3).190

We limited our analyses to populations with at least 35 years of continuous sampling. We191

then examined the minimum time required to estimate long-term trends via linear regression.192

Across all the populations we examined, we found an average minimum time series length193

required (Tmin) of 16.5 (‡=8.4), with a wide distribution (Fig. 2). Estimates of Tmin194

varied between biological class (Fig. 2). Ray-finned fish (class Actinopterygii) typically had195

estimates of Tmin over 20 years. Birds (class Aves) had a much wider distribution of Tmin,196

but usually required less years of sampling. Di�erences between these classes were explained197

by di�erences in inter-annual variability in population size (Fig. A4). We also examined a198
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variance (inter-annual variability in population size), and (c) temporal lag-1 autocorrelation.
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subset of populations where life-history characteristics were known. None of these explanatory199

variables were predictive of the minimum time series length required (Fig. A3).200

The minimum time series length required was strongly correlated with trend strength,201

population variance, and autocorrelation (Fig. 3). This is in line based on our simulations202

and those of others (Rhodes and Jonzen 2011). Using a generalized linear model, with a203

Poisson error structure, all three of these explanatory variables were significant and had204

large e�ect sizes (see Table A1). Combined, trend strength, population variance, and205

autocorrelation account for about 72.6% of the explained deviance (Zuur et al. 2009) in206

minimum time series length required.207

Lastly, we tested model sensitivity by using generalized additive models (GAMs) instead of208

simple linear regression. Again, we examined the minimum time required to estimate long-209

term population trends (Fig. A10). We found that although we obtain a similar distribution210

of minimum times required for GAMs, the minimum time required for GAMs is on average211

shorter than for linear regression (Fig. A11).212

4 Discussion213

We explored two approaches to estimate the minimum time series length required to address214

a particular question of interest. We asked, what is the minimum time series length required215

to determine long-term population trends using linear regression? This is one of the simplest216

questions one could ask of a time series. The simulation-based approach has been suggested217

by others, especially in situations more complicated than that suited for classic power analysis218

(Gerrodette 1987; P. C. Johnson et al. 2015; Bolker 2008). Our simulations support past219

work that longer time series are needed when the trend strength (i.e. rate of increase or220

decrease) is weak or when population variability is high (Gerrodette 1987). We also showed221

how the simulation model can be altered for a particular population (Fig. A7) or question222

(Figs. A6,A10).223

Here, we focus on an empirical approach to estimate the minimum time series length required224

to assess changes in abundance over time. We examined 878 population time series (all longer225

than 35 years). We then subsampled each to determine the minimum time required to achieve226

a desired significance level and power for linear regression. Statistical power is important as it227

provides on information as to the necessary samples required to determine a significant trend228

(Legg and Nagy 2006). We found that at least 15-20 years of continuous monitoring were229

typically necessary (Fig. 2). This time frame is in line with past work on a short-lived snail230

species (Rueda-Cediel et al. 2015) and a long-lived whale species (Gerber, DeMaster, and231

Kareiva 1999). Hatch (2003) used seabird monitoring data to estimate minimum sampling232

requirements. He found that the time required ranged from 11 to 69 years depending on233

species, trend strength, and study design.234

In line with theoretical predictions (Rhodes and Jonzen 2011), we also found Tmin was235

strongly correlated with the trend strength, variability in population size, and temporal236

autocorrelation (Fig. 3). Contrary to our prior expectations, we also found that Tmin did237
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not correlate with any biological variables of interest (Fig. A3). We initially hypothesized238

that species with longer lifespans or generation times may require a longer sampling period.239

Our result could have been a result of at least two factors. First, the data we used may not240

include a diverse enough set of species with di�erent life history traits. Second, the question241

we poised, whether a population is increasing or decreasing, was specifically concerned with242

trends in population density over time. Therefore, life-history characteristics may be more243

important for other questions, like estimating species extinction risk (J. A. Hutchings et al.244

2012).245

An important related question, is the optimal allocation of sampling e�ort in space versus246

time. In a theoretical investigation of this question, Rhodes and Jonzen (2011) found that the247

optimal allocation of sampling depended strongly on temporal and spatial autocorrelation.248

If spatial population dynamics were highly correlated, then it was better to sample more249

temporally, and vice versa. Our work supports this idea as populations with strong temporal250

autocorrelation needed less years of sampling (Fig. 3). Morrison and Hik (2008) also studied251

the optimal allocation of sampling e�ort in space versus time, but used emprical data from a252

long-term census of the collared pika (Ochotona collaris) found in the Yukon. They estimated253

long-term growth rates among three subpopulations over a 10-year period. They found that254

censuses less than 5 years may be misleading and that extrapolating from one population to255

another, even when nearby geographically, may be untenable.256

Seavy and Reynolds (2007) asked whether statistical power was even a useful framework257

for assessing long-term population trends. They used 24 years of census data on Red-tailed258

Tropicbirds (Phaethon rubricauda) in Hawaii and showed that to detect a 50% decline over 10259

years almost always resulting in high statistical power (above 0.8). Therefore, they cautioned260

against only using power analyses to design monitoring schemes and instead argued for261

metrics that would increase precision. For example, Seavy and Reynolds (2007) suggest262

improving randomization, reducing bias, and increases detection probability when designing263

and evaluating monitoring programs. We agree that power analyses should not be the only264

consideration when designing monitoring schemes. However, unlike Seavy and Reynolds265

(2007), our results indicate that longer than 10 years is often needed to achieve high statistical266

power. Therefore, the design of monitoring programs should include calculations of statistical267

power, the allocation of sampling in space versus time (Rhodes and Jonzen 2011), and268

metrics to increase precision. Ideally, a formal decision analysis to evaluate these di�erent269

factors would be conducted to design or assess any monitoring program (Hauser, Pople, and270

Possingham 2006; McDonald-Madden et al. 2010).271

4.1 Limitations272

Our work has some limitations in determining the minimum time series length required. First,273

Tmin is particular to the specific question of interest. An additional complication is that274

for our empirical approach, the subsampling of the full time series allows for estimates of275

power, but the individual subsamples are clearly not independent of one another. Further,276

estimates of Tmin depend on chosen values of – and — (Fig. A5). In an ideal setting, we277

would build a specific population model parameterized for each population of interest. Then,278
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model simulations could be used to estimate the minimum time series required to address279

each specific question of interest. Clearly, this is not always practical, especially if conducting280

analyses for a wide array of species as we do here. In addition, our statistical models suggest281

that Tmin does not correlate with any biological variables of interest, at least for the question282

of linear regression (Fig. A3). Therefore, it is not possible to use these results to predict Tmin283

for another population, even if the population is of a species with a similar life-history to one284

in our database.285

4.2 Conclusions286

We use a database of 878 populations to determine the minimum time series length required to287

detect population trends. This goes beyond previous work that either focused on theoretical288

investigations or a limited number of species. We show that to identify long-term changes in289

abundance, 15-20 years of continuous monitoring are often required (Fig. 2). In line with290

theoretical predictions (Gerrodette 1987), we also show that Tmin is strongly correlated with291

the long-term population trend (i.e. rate of increase), variability in population size, and the292

temporal autocorrelation (Fig. 3). Our work implies that for many populations, time series293

less than 15-20 years are probably not reliable for detecting population trends. This result294

highlights the importance of long-term monitoring programs. From both a scientific and295

management perspective estimates of Tmin are important. If a time series is too short, we296

lack statistical power to reliably detect long-term population trends. In addition, a time297

series that is too long may be a poor use of already limited funds (Gerber, DeMaster, and298

Kareiva 1999). Future work should examine other species, with a wider range of life history299

characteristics. In addition, similar approaches can be used to determine the minimum time300

series length required to address additional questions of interest.301

5 Supporting Information302

In the supporting material, we provide an expanded methods sections, additional figures,303

minimum time calculations for determining exponential growth, simulations with a more304

complicated population model, minimum time calculations for determining long-term growth305

rates, and the use of generalized additive models to identify population trends. All code and306

data can be found at https://github.com/erwhite1/time-series-project307
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