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Abstract

Long-term time series are necessary to better understand population dynamics, assess

species’ conservation status, and make management decisions. However, population

data are often expensive, requiring a lot of time and resources. What is the minimum

population time series length required to detect significant trends in abundance? I first

present an overview of the theory and past work that has tried to address this question.

As a test of these approaches, I then examine 822 populations of vertebrate species. I

show that 72% of time series required at least 10 years of continuous monitoring in

order to achieve a high level of statistical power. However, the large variability between

populations casts doubt on commonly used simple rules of thumb, like those employed

by the IUCN Red List. I argue that statistical power needs to be considered more often

in monitoring programs. Short time series are likely under-powered and potentially

misleading.

Keywords: ecological time series, experimental design, population monitoring, statistical

power, sampling design
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Introduction

Observational studies and population time series have become a cornerstone of modern

ecological research and conservation biology (Magurran et al. 2010, Peters 2010, Hughes et al.

2017). Long-term data are necessary to both understand population dynamics and to assess

species extinction risk. Some time series may now be considered “long-term” (e.g. continuous

plankton recorder, Giron-Nava et al. (2017)), but most are still short. Time series are

typically short due to short funding cycles and typical experimental time-frames (Field et al.

2007, Hughes et al. 2017).

How long of a time series is actually necessary? This question has important implications for

both research and management (Nichols & Williams 2006). A short time series may lead to

wrong conclusions given large natural year-to-year variability (McCain et al. 2016). Managers

need to know when action is needed for a population. Therefore, managers must understand

when a population trend over time is actually meaningful. In addition, sampling is typically

expensive, therefore, we also do not want to sample for longer than is necessary. For example,

Gerber et al. (1999) investigated the minimum time series required to estimate population

growth of the endangered, but recovering, eastern North Pacific gray whale (Eschrichtius

robustus). They used a long-term census to retroactively determine the minimum time series

required to assess threat status. They found that only 11 years were needed, eight years before

the delisting decision was made. This highlights the importance of estimating the minimum

time series required as an earlier decision would have saved time and money (Gerber et al.

1999). Further, waiting too long to decide an action can imperil a species where management

action could have been taken earlier (Martin et al. 2012, 2017). Specific guidelines are

therefore needed to determine when a time series is adequate. For example, the International

Union for Conservation of Nature (IUCN) Red List Categories and Criteria suggest, under

Criterion A2, a species qualifies as vulnerable if it has experienced a 30% decline over 10

years, or three generations (IUCN 2012).
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Past work has investigated questions related to the minimum time series required to estimate

trends in population size over time (Wagner et al. 2009, Giron-Nava et al. 2017). For

example, Rhodes & Jonzen (2011) examined the optimal allocation of e�ort between spatial

and temporal replicates. Using simple populations models, they found that the allocation of

e�ort depends on environmental variation, spatial and temporal autocorrelation, and observer

error. Rueda-Cediel et al. (2015) also used a modeling approach, but parameterized a model

specific for a threatened snail, Tasmaphena lamproides. They found that for this short-lived

organism, 15 years was adequate to assess long-term trends in abundance. However, these

studies, and other past work, have typically been only on theoretical aspects of monitoring

design or focused on a few species.

Statistical power is not a new tool (Cohen 1992, Thomas 1997, Thomas & Krebs 1997, Gibbs

et al. 1998), but it is still under-appreciated in ecological research (Legg & Nagy 2006).

Therefore, I begin by reviewing key concepts of power analyses in relation to time series

analysis. I then explain how simulation approaches have been used to estimate the minimum

time required to estimate long-term population trends. Lastly, I take an empirical approach

to estimate the minimum time required for 822 animal populations.

Statistical power in time series analyses

For any particular experiment four quantities are related to one another: significance level (–),

statistical power, e�ect size, and sample size (Thomas 1997, Legg & Nagy 2006). The exact

relationship between these quantities depends on the specific statistical test. If a time series

was assessed as significantly increasing or decreasing—when there was no true significant

trend—this would be a false positive. The false positive rate, or significance level (–), is often

set at 0.05; although this is purely historical (Mapstone 1995). A type II error (—) is a failure

to detect a true trend in abundance over time. Statistical power (1 ≠ —) is then one minus
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the probability of a type II error (—). Informally, statistical power is simply the probability

of detecting a trend given it actually exists. The e�ect size is a estimate of the strength of a

particular phenomenon.

Prior to an experiment, one could set appropriate levels of power, significance level, and the

e�ect size to estimate the sample size required for the experiment. This approach, however,

is not straight-forward for a time series, or more complicated scenarios (Johnson et al. 2015),

as data are clearly non-independent.

In the context of time series data, sample size can be the number of study sites surveyed,

frequency of surveys per year, and the number of years surveyed. For example, Gibbs et

al. (1998) examined how many times within a year a population needs to be sampled to

ensure high statistical power. They found that the sampling intensity within a year di�ered

greatly depending on species, because of di�erences in population variability. I use a similar

approach, but instead focus on the number of years required to estimate trends in abundance.

In line with Gibbs et al. (1998), I would expect these results to be strongly dependent on

population variability. Unlike Gibbs et al. (1998), I do not lump species together, and instead

study the di�erences between, and within, species.

Simulation approach

One approach to determining the minimum time series length needed is through repetitive

simulations of a population model (Gerrodette 1987, Gibbs et al. 1998). This is the same

approach one might use in sample size calculations for any experimental design too complicated

for simple power analyses (Bolker 2008, Johnson et al. 2015). Essentially, a population model,

with a selected set of parameter values, is simulated repetitively for a number of years. As an

example, we can take the following population model for population size N at time t:
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N(t + 1) = N(t) + r(t) + ‘ with ‘ ≥ N(µ, ‡) (1)

where ‘ is a normally-distributed random noise term with mean µ and standard deviation ‡.

The rate of growth (r) is the trend strength of the increase or decrease (i.e. the estimated

slope from linear regression). Although there are many approaches to studying populations

trends (Thomas 1996), linear regression is the simplest and most commonly applied.

With regard to detecting time series trends, statistical power is the proportion of simulations

where the slope parameter from linear regression is significant at the 0.05 threshold. Statistical

power of 0.8 would indicate that, if there was a true trend in abundance, there would be a 0.8

probability of detecting the trend. Values of 0.05 for the significance level and 0.8 statistical

power are purely historical (Cohen 1992). Thus, it is important to also examine the e�ect of

changing these values (Fig. A4). Predictably, as the significance level decreases or the power

required increases, more years of sampling are required (Fig. A4).

I set the significance level at 0.05 and then simulated the model in equation 1 (Fig. 1a).

Statistical power increases with increases in the length of time sampled (Fig. 1b). Where

power is greater than 0.8 (the dotted line), that is the minimum time required (Tmin) to be

confident in the detection of a long-term trend in abundance. As shown previously (Rhodes

& Jonzen 2011, Rueda-Cediel et al. 2015), statistical power increases with larger trend

strength and lower population variability (Fig. 1c,d). Simulation approaches can be useful

before designing a monitoring program or when a realistic model exists for the population in

question.

It is important to note that any population model could be used here (see example in Fig.

A6). Ideally, the specific model choice should be tailored to the population of interest. As an

example, I determined the minimum time required to estimate long-term population trends

using a stochastic, age-structured model of lemon shark population dynamics in the Bahamas
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(White et al. 2014). I found that over 27 years of continuous monitoring were needed in this

particular scenario (Fig. A7). Not surprisingly, the minimum time required for the lemon

shark population was strongly dependent on model parameters (see Fig. A7). Similarly,

Rueda-Cediel et al. (2015) used a matrix model parameterized for a particular snail species.

They used the model to argue that only 10-15 years were needed to accurately assess trends

in abundance.

Empirical approach

As an empirical test of these ideas, I used a database of 2444 population time series compiled

by Keith et al. (2015). The data are originally from the Global Population Dynamics

Database (NERC Centre for Population Biology Imperial College 2010) and several other

sources (Keith et al. 2015). I filtered out short time series (less than 35 years), and those

with missing data, leaving 822 time series. The data includes information on 477 vertebrate

species of birds (n = 747), mammals (n = 7), sharks (n = 2), and bony fish (n = 66).

I assumed that each time series was long enough to include all necessary information

(e.g. variability) about the population. In other words, each time series was a representative

sample. I then performed a type of ‘retrospective’ power analysis; termed retrospective because

the data has already been collected (Thomas 1997). I first took all possible contiguous

subsamples of each time series. For example, a time series of 35 years had 34 possible

contiguous subsamples of length 2, 34 possible contiguous subsamples of length 3, and

continuing until 1 possible contiguous subsample of length 35 (Gerber et al. 1999, Brashares

& Sam 2005, Giron-Nava et al. 2017). The subsampling avoids some of the common pitfalls

of retrospective power analyses (Thomas 1997, Thomas & Krebs 1997). In line with the

simulation approach, I determined the proportion of subsamples of a particular length that

had estimated slope coe�cients statistically di�erent from zero. This proportion is a measure
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of statistical power. Lastly, I determined which subsample length is required to achieve a

certain threshold of statistical power (0.8, Cohen (1992)). The minimum subsampled length

that met these criteria was the minimum time series length required (Tmin). All analyses

were conducted in R (R Core Team 2017).

Estimates of the minimum time required

Across all the populations, I found an average minimum time series length required (Tmin)

of 15.9 (SD=8.3), with a wide distribution (Fig. 2b). Approximately, 72% of populations

required at least 10 years of monitoring. Estimates of Tmin varied between biological class

(Fig. 2a). Ray-finned fish (class Actinopterygii) typically had estimates of Tmin over 20 years.

Birds (class Aves) had a much wider distribution of Tmin, but usually required less years of

sampling. Di�erences between these classes can be explained by di�erences in variability in

population size and strength of trends in abundance (Fig. A3).

This time-frame is in line with past work on a short-lived snail species (Rueda-Cediel et

al. 2015) and a long-lived whale species (Gerber et al. 1999). Hatch (2003) used seabird

monitoring data to estimate minimum sampling requirements. He found that the time

required ranged from 11 to 69 years depending on species, trend strength, and study design.

All of this past work has been limited to a small number or species. This manuscript is the

first attempt to document the minimum sampling requirements for such a wide diversity and

number of species.

Correlates for minimum time required

The minimum time series length required was strongly correlated with trend strength (i.e. es-

timated slope coe�cient from linear regression), coe�cient of variation in population size, and

autocorrelation in population size (Figs. 3a-c). All three of these explanatory variables were
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significant and had large e�ect sizes (see Table A1). Combined, trend strength, coe�cient

of variation in population, and autocorrelation account for 75.1% of the explained deviance

(Zuur et al. 2009) in minimum time series length required. Thus, by knowing these three

aspects of a time series, a reasonable estimate for the minimum time series length required

can be made.

There was life-history information available (Myhrvold et al. 2015) for 547 populations

representing 315 di�erent species, all of which were birds (Aves class). Some life-history

traits were significant predictors for the minimum time required (Figs. 3d-h, Tables A2,A3).

However, even combined, all five of the life-history traits accounted for only 5.99% of the

explained deviance in minimum time series length required. In addition, when accounting

for trend strength, coe�cient of variation, and autocorrelation, no life-history traits were

significant predictors of the minimum time required (Table A3). These results were not

altered when taking phylogeny into account (Fig. A10).

I initially hypothesized that species with longer lifespans or generation times may require a

longer sampling period. This result could have been a result of at least two factors. First,

the data I used may not include a diverse enough set of species with di�erent life-history

traits. Second, the question I posed, whether a population is increasing or decreasing, was

specifically concerned with population trends over time. Therefore, life-history characteristics

may be more important for other questions more closely tied to species biology. For example,

Blanchard et al. (2007) used detailed simulations of spatially-distributed fisheries to compare

survey designs. They found that statistical power depended on temperature preferences and

the degree of population patchiness, presumably because the survey designs included a spatial

component.
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Evaluating the IUCN criteria

I examined a subset of populations with observed declines of 30% or greater over 10 years,

qualifying all of them as vulnerable under IUCN Criterion A2 (IUCN 2012). This resulted in

n = 162 populations. I then compared the minimum time required to achieve 0.8 statistical

power (Tmin) to the minimum time required under the IUCN criteria (Fig. 4). For populations

below the identity line in figure 4, IUCN criteria would require more sampling compared to

estimates for Tmin. Further, populations above the identity line are cases where the IUCN

criteria would classify a population as vulnerable despite not having sampled enough years

to achieve high statistical power (Fig. 4). The silhouettes on figure 4 highlight that species

with long generation times had larger discrepancies between Tmin and the minimum time

required for IUCN assessments (Fig. A5).

For the populations I examined, the IUCN criteria may be overly simplistic (Fig. 4). For

many populations, the IUCN criteria suggest more years than necessary are required to assess

a population as vulnerable. Conversely, for other populations the IUCN criteria suggest

sampling times that are less than the minimum time required for statistical power. This

suggests that the IUCN criteria are probably too simplistic as the minimum time required

does not correlate with generation time or other biological covariates (Fig. 3d-h). Instead,

assessments of long-term trends could rely on one of two approaches. First, a specific model

could be built and simulated for the species of interest. An estimate of the minimum number

of years for a particular threshold of statistical power could then be determined (see example

in Fig. A7). Alternatively, if one had estimates of the population trend, the population

variability, and the autocorrelation then it would be possible to estimate the minimum number

of years required using the regression model provided in Table A1.
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Related questions

Keith et al. (2015) studied the same dataset to determine how predictive a current population

trend was of future trends. They showed that for many species (except birds), past declines

were actually more predictive of subsequent increases. This shows the non-linear nature

of many time series. They do not explicitly determine the minimum time required for a

population trend to predict a longer term term. Therefore, this manuscript adds to their

work by determining the minimum number of years required to determine a population trend.

Many populations require far greater than the IUCN rule of 10 years (or 3 generations)

employed by Keith et al. (2015).

An important related idea is the optimal allocation of sampling e�ort in space versus time. In

a theoretical investigation of this question, Rhodes & Jonzen (2011) found that the optimal

allocation of sampling depended strongly on temporal and spatial autocorrelation. If spatial

population dynamics were highly correlated, then it was better to sample more temporally,

and vice versa. The empirical data supports this idea as populations with strong temporal

autocorrelation needed less years of sampling (Fig. 3). Morrison & Hik (2008) also studied

the optimal allocation of sampling e�ort in space versus time, but used emprical data from a

long-term survey of the collared pika (Ochotona collaris) in the Yukon. They found that

surveys less than 5 years may be misleading and that extrapolating from one population to

another, even when nearby geographically, may be untenable.

Seavy & Reynolds (2007) asked whether statistical power was even a useful framework for

assessing long-term population trends. They examined 24 years of census data on Red-tailed

Tropicbirds (Phaethon rubricauda) in Hawaii. They always had 0.8 statistical power to detect

a 50% decline over ten years. Therefore, they cautioned against only using power analyses

to design monitoring schemes and instead argued for metrics that would increase precision:

improving randomization, reducing bias, and increasing detection probability. Power analyses

should not be the only consideration when designing monitoring schemes. However, unlike
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Seavy & Reynolds (2007), the results here show that at least 10 years of monitoring were

required for 72% of populations. Further, 30.7% of populations required at least 20 years of

monitoring.

Limitations

This paper has some limitations in determining the minimum time series length required. First,

the minimum time estimated is particular to the specific question of interest. Specifically,

here I examined the minimum time required to determine if a long-term linear population

trend exists. The minimum time required would di�er if one was interested in examining

non-linear trends, assessing multiple populations, or answering a di�erent question. The

empirical approach presented here was also limited to only 477 populations of vertebrate

species. An additional complication is that the subsampling of the full time series allows for

estimates of power, but the individual subsamples are clearly not independent of one another.

In an ideal setting, a specific population model would be parameterized for each population

of interest. Then, model simulations could be used to estimate the minimum time series

required to address each specific question of interest. Clearly, this is not always practical,

especially if conducting analyses for a wide array of species.

Conclusions

Power analyses are not a novel aspect of ecological research (Thomas & Krebs 1997, Legg &

Nagy 2006). However, power analyses are still underutilized, especially in the context of time

series analyses. This is the first paper to study such a large number of populations (n=822)

to determine the minimum time series length required to detect population trends. This goes

beyond previous work that either focused on theoretical investigations or a limited number of
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species. I show that to identify long-term changes in abundance, on average 15.91 years of

continuous monitoring are often required (Fig. 2). More importantly, however, there is wide

distribution of estimated minimum times. Therefore, it is not wise to use a simple threshold

number of years in monitoring design. Further, contrary to my initial hypotheses, minimum

time required did not correlate with generation time or any other life-history traits (Fig.

3d-h). These results argue against overly simplified measures of minimum sampling time

based on generation length or other life-history traits, like those of the IUCN criteria (Fig. 4).

Instead, simulation models or power analyses should be tailored to particular populations.

The design of monitoring programs should include calculations of statistical power, the

allocation of sampling in space versus time (Larsen et al. 2001, Rhodes & Jonzen 2011), and

metrics to increase precision (Seavy & Reynolds 2007). Ideally, a formal decision analysis

to evaluate these di�erent factors would be conducted to design or assess any monitoring

program (Hauser et al. 2006, McDonald-Madden et al. 2010). This type of formal decision

analysis would also include information on the costs of monitoring. These costs include

the actual costs of sampling (Brashares & Sam 2005) and the ecological costs of inaction

(Thompson et al. 2000).

For many populations, short time series are probably not reliable for detecting population

trends. This result highlights the importance of long-term monitoring programs. From both a

scientific and management perspective, estimates of the minimum time required are important.

If a time series is too short, we lack the statistical power to reliably detect population trends.

In addition, a time series that is too long may be a poor use of already limited funds (Gerber

et al. 1999). Further, more data is not always best in situations where management actions

need to be taken (Martin et al. 2012, 2017). When a population trend is detected, it may be

too late for management action. In these situations, the precautionary principle may be more

appropriate (Thompson et al. 2000). Future work should examine other species, with a wider

range of life-history characteristics. In addition, similar approaches can be used to determine
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the minimum time series length required to address additional questions of interest.

Supporting Information

In the supporting material, I provide an expanded methods sections, additional figures,

minimum time calculations for determining exponential growth, simulations with a more

complicated population model, the use of generalized additive models to identify population

trends, and regressions that correct for phylogenetic relationships. All code and data can be

found at https://github.com/erwhite1/time-series-project
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Figure captions

Figure 1: (a) Example of a simulated time series for 40 time periods. (b) Statistical power

versus the simulated time series length. The horizontal, dashed line is the desired statistical

power of 0.8. The vertical, dashed line is the minimum time required to achieve the desired

statistical power. (c) Minimum time required (Tmin) for simulations with di�erent values

of the trend strength (r) and ‡ = 5.0. (d) Minimum time required for di�erent levels of

population variability (‡) and r = 1.5. In each case, the minimum time required is the

minimum number of years to achieve 0.8 statistical power given a significance level of 0.05..

Figure 2: (a) Distributions of the minimum time required for populations from four di�erent

biological classes. (b) Distribution of minimum time required for all populations regardless of

biological class. The minimum time required calculation corresponds to a significance level of

0.05 and statistical power of 0.8.

Figure 3: Minimum time required to estimate change in abundance correlated with (a) trend

strength (absolute value of slope coe�cient estimated from linear regression), (b) coe�cient

of variation in interannual population size, (c) temporal lag-1 autocorrelation, (d) generation

length (years), (e) litter size (n), (f) log adult body mass (grams), (g) maximum longevity

(years), and (h) incubation (days). The lines in each plot represent the best fit line from

linear regression.

Figure 4: Minimum time required to achieve 0.8 statistical power versus the minimum time

required under IUCN criteria A2 to classify a species as vulnerable. Each point represents

a single population, all of which saw declines of 30% or greater over a 10 year period.

The silhouettes highlight that species with longer generation times typically have larger

discrepancies between Tmin and the minimum time required for IUCN assessments.
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Figure 1: (a) Example of a simulated time series for 40 time periods. (b) Statistical power
versus the simulated time series length. The horizontal, dashed line is the desired statistical
power of 0.8. The vertical, dashed line is the minimum time required to achieve the desired
statistical power. (c) Minimum time required (Tmin) for simulations with di�erent values
of the trend strength (r) and ‡ = 5.0. (d) Minimum time required for di�erent levels of
population variability (‡) and r = 1.5. In each case, the minimum time required is the
minimum number of years to achieve 0.8 statistical power given a significance level of 0.05.
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Figure 2: (a) Distributions of the minimum time required for populations from four di�erent
biological classes. (b) Distribution of minimum time required for all populations regardless of
biological class. The minimum time required calculation corresponds to a significance level of
0.05 and statistical power of 0.8.
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Figure 3: Minimum time required to estimate change in abundance correlated with (a) trend
strength (absolute value of slope coe�cient estimated from linear regression), (b) coe�cient
of variation in interannual population size, (c) temporal lag-1 autocorrelation, (d) generation
length (years), (e) litter size (n), (f) log adult body mass (grams), (g) maximum longevity
(years), and (h) incubation (days). The lines in each plot represent the best fit line from
linear regression.
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Figure 4: Minimum time required to achieve 0.8 statistical power versus the minimum time
required under IUCN criteria A2 to classify a species as vulnerable. Each point represents
a single population, all of which saw declines of 30% or greater over a 10 year period.
The silhouettes highlight that species with longer generation times typically have larger
discrepancies between Tmin and the minimum time required for IUCN assessments.
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