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Abstract

Data wrangling is a critical foundation of data science, and wrangling of categor-
ical data is an important component of this process. However, categorical data can
introduce unique issues in data wrangling, particularly in real-world settings with
collaborators and periodically-updated dynamic data. This paper discusses common
problems arising from categorical variable transformations in R, demonstrates the use
of factors, and suggests approaches to address data wrangling challenges. For each
problem, we present at least two strategies for management, one in base R and the
other from the ‘tidyverse.’ We consider several motivating examples, suggest defen-
sive coding strategies, and outline principles for data wrangling to help ensure data
quality and sound analysis.
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Introduction

Wrangling skills provide an intellectual and practical foundation for data science. Careless

data cleaning operations can lead to errors or inconsistencies in analysis [Hermans and

Murphy-Hill, 2015, FitzJohn et al., 2014]. The wrangling of categorical data presents

particular challenges and is highly relevant because many variables are categorical (e.g.,

gender, income bracket, U.S. state), and categorical data is often coded with numerical

values. It is easy to break the relationship between category numbers and category labels

without realizing it, thus losing the information encoded in a variable. If data sources

change upstream (for example, if a domain expert is providing spreadsheet data at regular

intervals), code that worked on the initial data may not generate an error message, but

could silently produce incorrect results.

Statistical and data science tools need to foster good practice and provide a robust

environment for data wrangling and data management. This paper focuses on how R deals

with categorical data, and showcases best practices for categorical data manipulation in

R to produce reproducible workflows. We consider a number of common idioms related

to categorical data that arise frequently in data cleaning and preparation, propose some

guidelines for defensive coding, and discuss settings where analysts often get tripped up

when working with categorical data.

For example, data ingested into R from spreadsheets can lead to problems with categor-

ical data because of the different storage methods possible in both R and the spreadsheets

themselves [Wilson et al., 2016]. The examples below help flag when these issues arise or

avoid them altogether.

To ground our work, we compare and contrast how categorical data are treated in base

R and the tidyverse [Wickham, 2014, 2016]. Tools from the tidyverse, discussed in another

paper in this special issue (see https://github.com/dsscollection/tidyflow), are designed to

make analysis purer, more predictable, and pipeable. Key components of the tidyverse

we address in this paper include dplyr, tidyr, forcats, and readr. This suite of packages

helps facilitate a reproducible workflow where a new version of the data could be supplied

in the code with updated results produced [Broman, 2015, Lowndes et al., 2017]. While

R code written in base syntax can also have this quality, a common tendency is to use
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row or column numbers in code, which makes the result less reproducible. Wrangling of

categorical data can make this task even more complex (e.g., if a new level of a categorical

variable is added in an updated dataset or inadvertently introduced by a careless error in

a spreadsheet to be ingested into R).

Our goal is to make the case that it is better to work with categorical data using

tidyverse packages than with base R. Tidyverse code is more human readable, which can

help reduce errors from the start, and the functions we highlight have been designed to

make it harder to accidentally remove relationships implicit in categorical data. Because

these issues are even more salient for new users, we recommend that instructors teach

tidyverse approaches from the start.

Categorical data in R: factors and strings

Consider a variable describing gender including categories male, female and

non-conforming. In R, there are two ways to store this information. One is to use a series

of character strings, and the other is to store it as a factor.

In early versions of R, storing categorical data as a factor variable was considerably

more efficient than storing the same data as strings, because factor variables only store the

factor labels once [Peng, 2015, Lumley, 2015]. However, R now uses a global string pool, so

each unique string is only stored once, which means storage is now less of an issue [Peng,

2015]. For historical (or possibly anachronistic) reasons, many functions store variables by

default as factors.

While factors are important when including categorical variables in regression models

and when plotting data, they can be tricky to deal with, since many operations applied

to them return different values than when applied to character vectors. As an example,

consider a set of decades,

x1 <- c(10, 10, 20, 20, 40)

x1f <- factor(x1)

ds <- data.frame(x1, x1f)

library(dplyr)

ds <- ds %>%
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mutate(x1recover = as.numeric(x1f))

ds

## x1 x1f x1recover

## 1 10 10 1

## 2 10 10 1

## 3 20 20 2

## 4 20 20 2

## 5 40 40 3

Instead of creating a new variable with a numeric version of the value of the factor vari-

able x1f, the variable is created with a factor number (i.e., 10 is mapped to 1, 20 is mapped

to 2, and 40 is mapped to 3). This result is unexpected because base::as.numeric() is

intended to recover numeric information by coercing a character variable. Compare the

following:

as.numeric(c("hello"))

## [1] NA

as.numeric(factor(c("hello")))

## [1] 1

The factor function has other behavior that feels unexpected. For example, the following

code silently makes a missing value, because the values in the data and the levels do not

match.

factor("a", levels="c")

## [1] <NA>

## Levels: c

The unfortunate behavior of factors in R has led to an online movement against the de-

fault behavior of many data import functions to make factors out of any variable composed

as strings [Peng, 2015, Wickham et al., 2017]. The tidyverse is part of this movement, with

functions from the readr package defaulting to leaving strings as-is. (Others have chosen

to add options(stringAsFactors=FALSE) into their startup commands.)
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Although the storage issues have been solved, and there are problems with defaulting

strings to factors, factors are still necessary for some data analytic tasks. The most salient

case is in modeling. When you pass a factor variable into lm() or glm(), R automatically

creates indicator (or more colloquially ‘dummy’) variables for each of the levels and picks

one as a reference group.

For simple cases, this behavior can also be achieved with a character vector. However,

to choose which level to use as a reference level or to order classes, factors must be used.

For example, if a factor encodes income levels as low, medium, high, it might make sense

to use the lowest income level (low) as the reference class so that all the other coefficients

can be interpreted in comparison to it. However, R would use high as the reference by

default because ‘h’ comes before ‘l’ in the alphabet.

While ordering is particularly important when doing ordinal logistic regression and

multinomial logistic regression, the use of alphabetic ordering by default means even simple

linear regression can be affected.

In the context of visualizing data, factors are also relevant because they allow categorical

variables to be mapped to aesthetic attributes.

While factors are important, they can often be hard to deal with. Because of the way

the group numbers are stored separately from the factor labels, it can be easy to overwrite

data in such a way that the original data are lost. They present a steep learning curve for

new users. In this paper, we will suggest best practices for working with factor data.

To motivate this process, we will consider data from the General Social Survey [Smith

et al., 2015]. The General Social Survey is a product of the National Data Program for the

Social Sciences, and the survey has been conducted since 1972 by NORC at the University

of Chicago. It contains data on many factors of social life, and is widely used by social

scientists. (In this paper we consider data from 2014.)

There are some import issues inherent to the data which are not particular to categorical

data (see Supplementary Appendix A for details). We’ll work with the data with slightly

cleaned up variable names.

library(dplyr)

GSS <- read.csv("../data/GSScleaned.csv")
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glimpse(GSS)

## Observations: 2,540

## Variables: 16

## $ Year <int> 2014, 2014, 2014, 2014, 2014, 2014, ...

## $ ID <int> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 1...

## $ LaborStatus <fctr> Working fulltime, Working fulltime,...

## $ OccupationalPrestigeScore <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...

## $ MaritalStatus <fctr> Divorced, Married, Divorced, Marrie...

## $ NumChildren <int> 0, 0, 1, 2, 3, 1, 2, 2, 4, 3, 2, 0, ...

## $ Age <fctr> 53.000000, 26.000000, 59.000000, 56...

## $ HighestSchoolCompleted <int> 16, 16, 13, 16, 17, 17, 12, 17, 10, ...

## $ Sex <fctr> Male, Female, Male, Female, Female,...

## $ Race <fctr> White, White, White, White, White, ...

## $ ChildhoodFamilyIncome <fctr> Below average, Average, Below avera...

## $ TotalFamilyIncome <fctr> $25000 or more, $25000 or more, $25...

## $ RespondentIncome <fctr> $25000 or more, $25000 or more, Not...

## $ PoliticalParty <fctr> Not str republican, Not str republi...

## $ OpinionOfIncome <fctr> Above average, Above average, Below...

## $ SexualOrientation <fctr> Heterosexual or straight, Heterosex...

The remainder of this paper is organized around case studies (examples) to carry out

four specific and useful tasks:

1. Changing the labels of factor levels,

2. Reordering factor levels,

3. Combining several levels into one (both string-like labels and numeric, probably go

together), and

4. Making derived factor variables.

Each case study begins with a problem, and presents several solutions. Typically,

we contrast a method that uses the functionality of base R with an approach from the

tidyverse along with some annotations of the code as needed. We will argue that while

both approaches can solve the problem, the tidyverse solution tends to be simpler, easier

to learn, and less fragile.
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Changing the labels of factor levels

Our first example works with the LaborStatus variable. It is a categorical variable with 9

levels. Most of the labels are spelled out fully, but a few are strangely formatted. We want

to change this.

This is a specific case of the more general problem of changing the text of factor labels,

so they appear more nicely formatted in a plot, for example.

There are two typical approaches in base R. One is more compact, but depends on the

levels of the factor not changing in the data being fed in, and the other is more robust, but

extremely verbose. In contrast, the dplyr package offers a more human readable method,

while also supporting reproducibility.

Compact but fragile (base R)

To begin this example, we will create a new copy of the variable in question so as to leave

the original data for comparison.

GSS$BaseLaborStatus <- GSS$LaborStatus

levels(GSS$BaseLaborStatus)

## [1] "Keeping house" "No answer" "Other"

## [4] "Retired" "School" "Temp not working"

## [7] "Unempl, laid off" "Working fulltime" "Working parttime"

summary(GSS$BaseLaborStatus)

## Keeping house No answer Other Retired

## 263 2 76 460

## School Temp not working Unempl, laid off Working fulltime

## 90 40 104 1230

## Working parttime NA's

## 273 2

Almost all of our code examples start with some examination of the levels() and

summary() of the variable, in order to keep track of what the expected results are. With

the counts in mind, the labels can be rephrased for a few categories.
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levels(GSS$BaseLaborStatus) <- c(levels(GSS$BaseLaborStatus)[1:5],

"Temporarily not working",

"Unemployed, laid off",

"Working full time",

"Working part time")

summary(GSS$BaseLaborStatus)

## Keeping house No answer Other

## 263 2 76

## Retired School Temporarily not working

## 460 90 40

## Unemployed, laid off Working full time Working part time

## 104 1230 273

## NA's

## 2

This method is less than ideal, because it depends on the data coming in with the factor

levels ordered in a particular way. The first five levels are left the same, and the last four

are overwritten.

We call this a fragile process since future datasets may cause a workflow to break (a

related concept in computer science is software brittleness, where a small change can lead

to an error). Why is this fragile? By default, R orders factor levels alphabetically. So,

Keeping house is first not because it is the most common response, but simply because ‘k’

comes first in the alphabet. If the data gets changed outside of R, for example so responses

currently labeled Working full time get labeled Full time work, the code above will not

generate an error message, but will mislabel all the data such that the BaseLaborStatus

variable is essentially meaningless.

The issue of alphabetic ordering becomes even more relevant when considering strings

that include non-ASCII characters, where the default order levels may vary from locale to

locale. This means that code could create different results based on where it was run.

The workflow will also fail if additional factor levels are added after the fact. In our

experience, both with students and scientific collaborators, spreadsheet data can be easily

changed in these ways. Others have noted this concern [Leek, 2016].
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Robust but verbose (base R)

Another (more robust method) to recode this variable in base R is to use subsetting to

overwrite particular values in the data.

GSS$BaseLaborStatus <- GSS$LaborStatus

summary(GSS$BaseLaborStatus)

## Keeping house No answer Other Retired

## 263 2 76 460

## School Temp not working Unempl, laid off Working fulltime

## 90 40 104 1230

## Working parttime NA's

## 273 2

GSS$BaseLaborStatus <- as.character(GSS$BaseLaborStatus)

GSS$BaseLaborStatus[GSS$BaseLaborStatus == "Temp not working"] <-

"Temporarily not working"

GSS$BaseLaborStatus[GSS$BaseLaborStatus == "Unempl, laid off"] <-

"Unemployed, laid off"

GSS$BaseLaborStatus[GSS$BaseLaborStatus == "Working fulltime"] <-

"Working full time"

GSS$BaseLaborStatus[GSS$BaseLaborStatus == "Working parttime"] <-

"Working part time"

GSS$BaseLaborStatus <- factor(GSS$BaseLaborStatus)

summary(GSS$BaseLaborStatus)

## Keeping house No answer Other

## 263 2 76

## Retired School Temporarily not working

## 460 90 40

## Unemployed, laid off Working full time Working part time

## 104 1230 273

## NA's

## 2

This second approach is more robust, because if the labels or ordering of levels changes

before this code is run it will not overwrite labels on the incorrect data. However, this
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approach has a number of limitations in addition to being tedious and error prone. It is

possible to miss cases, and misspelling and cut-and-paste errors can mean pieces of the

code do not actually do anything.

Direct and robust (tidyverse)

The recode() function in the dplyr package is a vectorized function, which combines the

robustness of the second base R approach while also reducing the verbosity. It still suffers

from the problem of misspelling and cut-and-paste errors, because it will not generate an

error message if you try to recode a non-existent level.

GSS <- GSS %>%

mutate(tidyLaborStatus =

recode(LaborStatus,

`Temp not working` = "Temporarily not working",

`Unempl, laid off` = "Unemployed, laid off",

`Working fulltime` = "Working full time",

`Working parttime ` = "Working part time"))

summary(GSS$tidyLaborStatus)

## Keeping house No answer Other

## 263 2 76

## Retired School Temporarily not working

## 460 90 40

## Unemployed, laid off Working full time Working parttime

## 104 1230 273

## NA's

## 2

In the above example, notice the trailing space in

`Working parttime ` in the recode() call. Because of this typo (the original factor level

is actually `Working parttime`), the original factor level persists after the recode.

Aside – Editing whitespace out of levels

A more general problem sometimes arises due to extra spaces included when data are

ingested. Such whitespace can be dealt with when data is read, or addressed later using
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string operations. This latter approach can be carried out using the trimws() function in

base R.

gender <- factor(c("male ", "male ", "male ", "male"))

levels(gender)

## [1] "male" "male " "male " "male "

gender <- factor(trimws(gender))

levels(gender)

## [1] "male"

Reordering factor levels

Often, factor levels have a natural ordering to them. However, the default in base R is

to order levels alphabetically. So, users must have a way to impose order on their factor

variables.

Again, there is a fragile way to reorder the factor levels in base R, and a more robust

method in the tidyverse.

Fragile method (base R)

One common way to make this sort of change is to pass an argument to levels within

the factor() function. However, this is fragile with respect to spelling issues and trailing

whitespace.

GSS$BaseOpinionOfIncome <- GSS$OpinionOfIncome

summary(GSS$BaseOpinionOfIncome )

## Above average Average Below average Don't know

## 483 1118 666 21

## Far above average Far below average No answer NA's

## 65 179 6 2
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GSS$BaseOpinionOfIncome <-

factor(GSS$BaseOpinionOfIncome,

levels = c("Far above average", "Above average", "Average ", "Below Average",

"Far below average", "Don't know", "No answer"))

summary(GSS$BaseOpinionOfIncome )

## Far above average Above average Average Below Average

## 65 483 0 0

## Far below average Don't know No answer NA's

## 179 21 6 1786

Note that many of the category totals come through appropriately, but several totals

get set to 0 (Average because of the trailing whitespace and Below Average because of

the mistaken capitalization). These errors can be exceedingly frustrating to troubleshoot.

An approach that looks similar upon inspection but actually does not work is to over-

write the levels() of the factor outside the factor() command. It is tempting for new

analysts to write code such as the following, which completely breaks the association be-

tween rows and factor labels the data set.

badApproach <- GSS$OpinionOfIncome

summary(badApproach)

## Above average Average Below average Don't know

## 483 1118 666 21

## Far above average Far below average No answer NA's

## 65 179 6 2

levels(badApproach) <- c("Far above average", "Above average",

"Average", "Below Average", "Far below average",

"Don't know", "No answer")

summary(badApproach)

## Far above average Above average Average Below Average

## 483 1118 666 21

## Far below average Don't know No answer NA's

## 65 179 6 2

Notice that no errors were generated, but the labels have been clobbered and the counts
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do not match up anymore. Instead of Far above average having 65 observations, it has

483.

Another base approach that will not suffer from spelling mistakes is to use numeric

indexing to reorder the levels. Again, the indexing must take place within a factor() call.

GSS$BaseOpinionOfIncome <- GSS$OpinionOfIncome

summary(GSS$BaseOpinionOfIncome)

## Above average Average Below average Don't know

## 483 1118 666 21

## Far above average Far below average No answer NA's

## 65 179 6 2

GSS$BaseOpinionOfIncome <-

factor(GSS$BaseOpinionOfIncome,

levels=levels(GSS$BaseOpinionOfIncome)[c(5,1:3,6,4,7)])

summary(GSS$BaseOpinionOfIncome)

## Far above average Above average Average Below average

## 65 483 1118 666

## Far below average Don't know No answer NA's

## 179 21 6 2

This is both verbose and depends on the number and order of the levels staying the

same. If another factor level is added to the dataset, the above code will generate an error

message because the number of levels differs. This example illustrates why it is sometimes

dangerous to replace an old version of a data frame with a new version.

Again, if you try this approach outside of a factor() call, no errors are generated but

the levels get clobbered.

badApproach <- GSS$OpinionOfIncome

summary(badApproach)

## Above average Average Below average Don't know

## 483 1118 666 21

## Far above average Far below average No answer NA's

## 65 179 6 2
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levels(badApproach) <- levels(badApproach)[c(5,1:3,6,4,7)]

summary(badApproach)

## Far above average Above average Average Below average

## 483 1118 666 21

## Far below average Don't know No answer NA's

## 65 179 6 2

Notice that once again, Far above average has been given the wrong number of ob-

servations. Here, base methods for reordering factor levels are very fragile. Approaches

that appear functional and do not generate error messages can easily lead to garbled data.

Robust method (tidyverse)

Because of the fragility and potential for frustration and mistakes associated with reordering

levels in base R, we recommend the use of a tidyverse package.

The package forcats (where the name is an anagram of the word factors!) is included

in the tidyverse [Wickham, 2017]. It includes a fct_relevel() function that allows for

robust reordering of factor levels. It takes a specification of the order of factor levels (either

completely or partially) and is robust to re-running code in an interactive session.

# devtools::install_github("hadley/forcats")

library(forcats)

summary(GSS$OpinionOfIncome)

## Above average Average Below average Don't know

## 483 1118 666 21

## Far above average Far below average No answer NA's

## 65 179 6 2

GSS <- GSS %>%

mutate(tidyOpinionOfIncome =

fct_relevel(OpinionOfIncome,

"Far above average",

"Above average",

"Average",

"Below average",
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"Far below average"))

summary(GSS$tidyOpinionOfIncome)

## Far above average Above average Average Below average

## 65 483 1118 666

## Far below average Don't know No answer NA's

## 179 21 6 2

Notice the levels unmentioned in the function call end up at the back end of the ordering,

but all the counts are appropriate.

Combining several levels into one

Combining discrete levels

This is another common task. Maybe you want fewer coefficients in your model, or the

data-generating process makes a finer distinction between categories than your research.

For whatever the reason, you want to group together levels that are currently separate.

Fragile method (base R)

This method overwrites the labels of factor levels with repeated labels in order to group

levels together.

GSS$BaseMarital <- GSS$MaritalStatus

summary(GSS$BaseMarital)

## Divorced Married Never married No answer Separated

## 411 1158 675 4 81

## Widowed NA's

## 209 2

levels(GSS$BaseMarital) <- c("Not married", "Married",

"Not married", "No answer",

"Not married", "Not married", NA)

summary(GSS$BaseMarital)

## Not married Married No answer NA's

## 1376 1158 4 2
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As before, this is fragile because it depends on the order of the factor levels not changing,

and on a human accurately counting the indices of all the levels they wish to change.

Robust method (tidyverse)

In the tidyverse, the recode() function performs recoding more robustly.

summary(GSS$MaritalStatus)

## Divorced Married Never married No answer Separated

## 411 1158 675 4 81

## Widowed NA's

## 209 2

GSS <- GSS %>%

mutate(tidyMaritalStatus = recode(MaritalStatus,

Divorced = "Not married",

`Never married` = "Not married",

Widowed = "Not married",

Separated = "Not married"))

summary(GSS$tidyMaritalStatus)

## Not married Married No answer NA's

## 1376 1158 4 2

In contrast to the base approach, the tidyverse approach allows the analyst to only

mention the levels that need to be recoded. The levels do not need to be presented in the

order they originally appeared (note that Widowed appears earlier in the list than it does

in the summary()).

Combining numeric-type levels

Combining numeric-type levels is a frequently-occurring problem even when

stringsAsFactors = FALSE. Often variables like age or income are right-censored, so there

is a final category that lumps the remainder of people into one group. This means the data

is necessarily at least a character string if not a factor. However, it may be more natural

to work with numeric expressions when recoding this data.
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In this data, age is provided as an integer for respondents 18-88, but also includes the

possible answers 89 or older, No answer and NA.

A common data wrangling task might be to turn this into a factor variable with two

levels: 18-65, and over 65. In this case, it would be easier to deal with a conditional

statement about the numeric values, rather than writing out each of the numbers as a

character vector.

Fragile method (base R)

In order to break this data apart as simply as possible, it needs to be numeric. The first

step is to recode the label for 89 or older to read 89.

GSS$BaseAge <- GSS$Age

levels(GSS$BaseAge)

## [1] "18.000000" "19.000000" "20.000000" "21.000000" "22.000000"

## [6] "23.000000" "24.000000" "25.000000" "26.000000" "27.000000"

## [11] "28.000000" "29.000000" "30.000000" "31.000000" "32.000000"

## [16] "33.000000" "34.000000" "35.000000" "36.000000" "37.000000"

## [21] "38.000000" "39.000000" "40.000000" "41.000000" "42.000000"

## [26] "43.000000" "44.000000" "45.000000" "46.000000" "47.000000"

## [31] "48.000000" "49.000000" "50.000000" "51.000000" "52.000000"

## [36] "53.000000" "54.000000" "55.000000" "56.000000" "57.000000"

## [41] "58.000000" "59.000000" "60.000000" "61.000000" "62.000000"

## [46] "63.000000" "64.000000" "65.000000" "66.000000" "67.000000"

## [51] "68.000000" "69.000000" "70.000000" "71.000000" "72.000000"

## [56] "73.000000" "74.000000" "75.000000" "76.000000" "77.000000"

## [61] "78.000000" "79.000000" "80.000000" "81.000000" "82.000000"

## [66] "83.000000" "84.000000" "85.000000" "86.000000" "87.000000"

## [71] "88.000000" "89 or older" "No answer"

levels(GSS$BaseAge) <- c(levels(GSS$BaseAge)[1:71], "89", "No answer")

This code is already fragile because of its reliance on numeric indexing. From the

levels() output, the first 71 levels correspond to the ages 18-88, and are in the expected

order, so these are left as-is. Then 89 or older is overwritten with simply 89. Finally,

the variable can be converted to a character vector and then to a numeric one.
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GSS$BaseAge <- as.numeric(as.character(GSS$BaseAge))

summary(GSS$BaseAge)

## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's

## 18.00 34.00 49.00 49.01 62.00 89.00 11

This avoids the pitfall from the introduction by not using as.numeric() on the factor

variables (this would convert 18 to 1, 19 to 2, etc.). This method cheats a little– if the goal

were to use this as a numeric variable in an analysis it would not be appropriate to turn all

the 89 or older cases into the number 89. In this case, the goal is to create a two-level

factor, so those cases would be assigned to the 65 and up category one way or the other.

Once the variable is numeric, some conditional logic can be applied to split into two

cases.

summary(GSS$BaseAge)

## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's

## 18.00 34.00 49.00 49.01 62.00 89.00 11

GSS$BaseAge <- ifelse(GSS$BaseAge < 65, "18-64", "65 and up")

GSS$BaseAge <- factor(GSS$BaseAge)

summary(GSS$BaseAge)

## 18-64 65 and up NA's

## 2011 518 11

Robust method (tidyverse)

The tidyverse method follows similar logic. However, instead of explicitly overwriting

89 or older with the number 89 using indexing, the tidyverse solution uses the readr

parse_number() function to remove the numbers from each factor label. This works for

the labels that already look numeric, like 18.000000 as well as for 89 or older. Then

conditional logic can be used to split the variable within a mutate command.

library(readr)

GSS <- GSS %>%

mutate(tidyAge = parse_number(Age)) %>%
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mutate(tidyAge = if_else(tidyAge < 65, "18-65", "65 and up"),

tidyAge = factor(tidyAge))

summary(GSS$tidyAge)

## 18-65 65 and up NA's

## 2011 518 11

Note that this approach requires the analyst to be very sure the strings including a

number have a relevant number. If one of the levels was labeled

2 or more people in household it would be converted to the number 2. This would

accidentally add a number that was not meaningful.

Creating derived categorical variables

Challenges often arise when data scientists need to create derived categorical variables. As

an example, consider an indicator of moderate drinking status. The National Institutes of

Alcohol Abuse and Alcoholism have published guidelines for moderate drinking [NIAAA,

2016]. These guidelines state that women (or men aged 65 or older) should drink no more

than one drink per day on average and no more than three drinks on any single day or at

a sitting. Men under age 65 should drink no more than two drinks per day on average and

no more than four drinks on any single day.

The HELPmiss dataset from the mosaicData package includes baseline data from ran-

domized Health Evaluation and Linkage to Primary Care (HELP) clinical trial [Samet

et al., 2003]. These subjects for the study were recruited from a detoxification center,

hence those that reported alcohol as their primary substance of abuse have extremely high

rates of drinking.

variable description

sex gender of subject female or male

i1 average number of drinks per day (in last 30 days)

i2 maximum number of drinks per day (in past 30 days)

age age (in years)

These guidelines can be used to create a new variable called abstinent for those re-

porting no drinking based on the value of their i1 variable and moderate for those that do
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not exceed the NIAAA guidelines, with all other non-missing values coded as highrisk.

library(mosaic)

library(mosaicData)

library(dplyr)

library(readr)

Because missing values can become especially problematic in more complex derivations,

we will make one value missing so we can ensure our data wrangling accounts for the missing

value.

data(HELPmiss)

HELPsmall <- HELPmiss %>%

mutate(i1 = ifelse(id == 1, NA, i1)) %>% # make one value missing

select(sex, i1, i2, age)

head(HELPsmall, 2)

## sex i1 i2 age

## 1 male NA 26 37

## 2 male 56 62 37

Fragile method (base R)

# create empty vector for new variable

drinkstat <- character(length(HELPsmall$i1))

# create abstinent group

drinkstat[HELPsmall$i1 == 0] = "abstinent"

# create moderate group

drinkstat[(HELPsmall$i1>0 & HELPsmall$i1<=1 & # find those with moderate levels

HELPsmall$i2 <= 3 & HELPsmall$sex == "female") |

(HELPsmall$i1 > 0 & HELPsmall$i1 <= 2 &

HELPsmall$i2 <= 4 & HELPsmall$sex == "male")] = "moderate"

# create highrisk group

drinkstat[((HELPsmall$i1 > 1 | HELPsmall$i2 > 3) & HELPsmall$sex == "female") |

((HELPsmall$i1 > 2 | HELPsmall$i2 > 4) & HELPsmall$sex == "male")] = "highrisk"

# account for missing values
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is.na(drinkstat) <- is.na(HELPsmall$i1) | is.na(HELPsmall$i2) |

is.na(HELPsmall$sex)

drinkstat <- factor(drinkstat)

table(drinkstat, useNA = "always")

## drinkstat

## abstinent highrisk moderate <NA>

## 69 372 28 1

While this approach works, it is hard to follow, check, or debug. The logical conditions

are all correctly coded, but require many repetitions of HELPsmall$variable, and the

missing value was not handled by default (without the is.na() call, the missing value

would default to be highrisk because of the extreme value for i2 for that subject).

Robust method (tidyverse)

HELPsmall <- HELPsmall %>%

mutate(drink_stat = case_when(

i1 == 0 ~ "abstinent",

i1 <= 1 & i2 <= 3 & sex == 'female' ~ "moderate",

i1 <= 1 & i2 <= 3 & sex == 'male' & age >= 65 ~ "moderate",

i1 <= 2 & i2 <= 4 & sex == 'male' ~ "moderate",

is.na(i1) ~ "missing", # can't put NA in place of "missing"

TRUE ~ "highrisk"

))

HELPsmall %>%

group_by(drink_stat) %>%

dplyr::count()

## Source: local data frame [4 x 2]

## Groups: drink_stat [4]

##

## drink_stat n

## <chr> <int>

## 1 abstinent 69
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## 2 highrisk 372

## 3 missing 1

## 4 moderate 28

In the robust tidyverse method, the same logic is used, but the conditions are clearer

and more comprehensible. Instead of one complex Boolean condition for moderate, three

separate lines can be used to match the different options. While the end result is the same,

this code is more human readable and it is harder to miss special cases.

An additional example is provided in Supplementary Appendix B.

Defensive coding

It is always good practice to code in a defensive manner. Investing a little time up front

can help avoid painful errors later. In the context of wrangling categorical data, defensive

coding involves running many summary() commands to ensure data operations do not

mangle relationships, and might involve adding conditional testing statements into code

creating or modifying factors. These testing statements (such as those implemented in the

testthat and assertthat packages) can help ensure the data have not changed from one

session to another, or as the result of changes to the raw data.

As an example, we might want to check there are exactly three levels for the drinking

status variable in the HELP dataset. If there were fewer or more than three levels, some-

thing would have gone wrong with our code. The assertthat package can help with this.

library(assertthat)

levels(drinkstat)

## [1] "abstinent" "highrisk" "moderate"

assert_that(length(levels(drinkstat)) == 3)

## [1] TRUE

We also might want to ensure the factor labels are exactly what we were expecting.

Perhaps we want to make sure the Sex variable in the GSS data has two categories, with
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particular levels. The expect_equivalent() function from the testthat package can be

used to make this check.

library(testthat)

levels(GSS$Sex)

## [1] "Female" "Male"

expect_equivalent(levels(GSS$Sex), c("Female", "Male"))

This check will only work if the levels are exactly the same as the strings provided,

and are in the same order. Ideally, expect_equivalent() would do level checking without

relying on order, but that is not the current functionality.

While assertions of this sort are most commonly used to provide error-checking within

functions, we believe that they can and should be incorporated into working code. In this

manner they may serve as the basis for a function at some point in the future.

Conclusion

Categorical variables arise commonly in most datasets. Aspects of data wrangling in R

involving categorical variables can be problematic and error-prone, particularly when using

base R. In this paper we have outlined some example case studies where analytic tasks can

be simplified and made more robust through use of new tools available in the tidyverse.

However, these are only some of the issues categorical data presents.

For example, many analysts use testing and training data when working with models.

Without careful thought toward levels of categorical variables, there can be a mismatch

between the levels present in the training data and those present in the testing data. If a

particular level was not present in the training data, the model will not be able to make

predictions for the observations in the testing data with that level. Even worse, if the two

sets have the same number of levels, the model may produce predictions by matching the

order of the levels rather than the labels. Another possible issue can arise when indexing

by a factor- the levels get treated as integers, rather than characters.

We believe further work is needed to continue to make it easier to undertake analyses
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requiring data wrangling (particularly with respect to categorical data). New tools and

an increased emphasis on defensive coding may help improve the quality of data science

moving forward.
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Supplementary Appendix A: Loading the data

Since this is a reproducible special issue, we want to make sure our data ingestion process

is as reproducible as possible. We are using the General Social Survey (GSS) data, which

includes many years of data (1972-2014) and many possible variables (150-800 variables,

depending on the year) [Smith et al., 2015]. However, the GSS data has some idiosyncrasies.

So, we are attempting good-enough practices for data ingest [Wilson et al., 2016].

The major issue related to reproducibility is the fact that the dataset is not available

through an API. For SPSS and Stata users, yearly data are available for direct download

on the website. For more format possibilities, users must go through an online wizard to

select variables and years for the data they wish to download [NORC at the University

of Chicago, 2016]. For this paper, we selected a subset of the demographic variables and

the year 2014. The possible output options from the wizard are Excel (either data and

metadata or metadata only), SPSS, SAS, Stata, DDI, or R script. We selected both the

Excel and R formats to look at the differences.

The R format provided by the GSS is actually a Stata file and custom R script using

the foreign package to do the translation. Here is the result of that process.

source('../data/GSS.r')

glimpse(GSS)

## Observations: 2,538

## Variables: 17
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## $ YEAR <int> 2014, 2014, 2014, 2014, 2014, 2014, 2014, 2014, 2014,...

## $ ID_ <int> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16...

## $ WRKSTAT <int> 1, 1, 4, 2, 5, 1, 9, 1, 8, 1, 7, 8, 5, 1, 6, 2, 2, 1,...

## $ PRESTIGE <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,...

## $ MARITAL <int> 3, 1, 3, 1, 1, 1, 1, 1, 5, 1, 1, 5, 3, 1, 5, 1, 3, 5,...

## $ CHILDS <int> 0, 0, 1, 2, 3, 1, 2, 2, 4, 3, 2, 0, 5, 2, 0, 3, 3, 0,...

## $ AGE <int> 53, 26, 59, 56, 74, 56, 63, 34, 37, 30, 43, 56, 69, 4...

## $ EDUC <int> 16, 16, 13, 16, 17, 17, 12, 17, 10, 15, 5, 11, 8, 11,...

## $ SEX <int> 1, 2, 1, 2, 2, 2, 1, 1, 2, 2, 2, 1, 1, 2, 2, 1, 2, 1,...

## $ RACE <int> 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 1, 1, 1, 1, 1, 3, 1,...

## $ INCOM16 <int> 2, 3, 2, 2, 4, 4, 2, 3, 3, 1, 1, 2, 2, 2, 2, 3, 2, 3,...

## $ INCOME <int> 12, 12, 12, 12, 13, 12, 13, 12, 10, 12, 9, 9, 10, 11,...

## $ RINCOME <int> 12, 12, 0, 9, 0, 12, 13, 12, 0, 12, 0, 0, 0, 11, 12, ...

## $ INCOME72 <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,...

## $ PARTYID <int> 5, 5, 6, 5, 3, 6, 6, 8, 3, 3, 3, 3, 3, 1, 3, 6, 1, 3,...

## $ FINRELA <int> 4, 4, 2, 4, 3, 4, 9, 3, 2, 3, 8, 5, 1, 1, 3, 3, 2, 3,...

## $ SEXORNT <int> 3, 3, 3, 3, 3, 9, 0, 0, 3, 3, 3, 3, 3, 0, 3, 3, 0, 0,...

Obviously, the result is less than ideal. All of the factor variables are encoded as

integers, but their level labels have been lost. We have to look at a codebook to determine

if SEX == 1 indicates male or female. We would rather preserve the integrated level labels.

In order to do this, our best option is to use the Excel file and use the readxl package to

load it.

library(readxl)

GSS <- read_excel("../data/GSS.xls")

glimpse(GSS)

## Observations: 2,540

## Variables: 17

## $ Gss year for this respondent <dbl> 2014, 2014...

## $ Respondent id number <dbl> 1, 2, 3, 4...

## $ Labor force status <chr> "Working f...

## $ Rs occupational prestige score (1970) <dbl> 0, 0, 0, 0...

## $ Marital status <chr> "Divorced"...

## $ Number of children <dbl> 0, 0, 1, 2...
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## $ Age of respondent <chr> "53.000000...

## $ Highest year of school completed <dbl> 16, 16, 13...

## $ Respondents sex <chr> "Male", "F...

## $ Race of respondent <chr> "White", "...

## $ Rs family income when 16 yrs old <chr> "Below ave...

## $ Total family income <chr> "$25000 or...

## $ Respondents income <chr> "$25000 or...

## $ Total family income <chr> "Not appli...

## $ Political party affiliation <chr> "Not str r...

## $ Opinion of family income <chr> "Above ave...

## $ Sexual orientation <chr> "Heterosex...

This is a little better. Now the character strings are preserved. But, the data is not yet

usable in an analysis. One problem is some of the variable names include spaces, so they

are hard to use. Also, one variable name is repeated, perhaps because of an error in the

data wizard. To fix these issues, the variables must be renamed the variables such that all

variables have unique names without spaces.

names(GSS) <- make.names(names(GSS), unique=TRUE)

names(GSS)

## [1] "Gss.year.for.this.respondent......................."

## [2] "Respondent.id.number"

## [3] "Labor.force.status"

## [4] "Rs.occupational.prestige.score...1970."

## [5] "Marital.status"

## [6] "Number.of.children"

## [7] "Age.of.respondent"

## [8] "Highest.year.of.school.completed"

## [9] "Respondents.sex"

## [10] "Race.of.respondent"

## [11] "Rs.family.income.when.16.yrs.old"

## [12] "Total.family.income"

## [13] "Respondents.income"

## [14] "Total.family.income.1"

## [15] "Political.party.affiliation"
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## [16] "Opinion.of.family.income"

## [17] "Sexual.orientation"

These names are an improvement, but now some are full of periods. For ease of coding,

more human readable names are preferable. As with all the tasks in this paper, there is a

fragile way to do this in base R, but we’ll use the more robust rename() function from the

dplyr package. rename()

library(dplyr)

GSS <- GSS %>%

rename(Year = Gss.year.for.this.respondent.......................,

ID = Respondent.id.number,

LaborStatus = Labor.force.status,

OccupationalPrestigeScore = Rs.occupational.prestige.score...1970.,

MaritalStatus = Marital.status,

NumChildren = Number.of.children,

Age = Age.of.respondent,

Sex = Respondents.sex,

HighestSchoolCompleted = Highest.year.of.school.completed,

Race = Race.of.respondent,

ChildhoodFamilyIncome = Rs.family.income.when.16.yrs.old,

TotalFamilyIncome = Total.family.income,

RespondentIncome = Respondents.income,

PoliticalParty = Political.party.affiliation,

OpinionOfIncome = Opinion.of.family.income,

SexualOrientation = Sexual.orientation)

names(GSS)

## [1] "Year" "ID"

## [3] "LaborStatus" "OccupationalPrestigeScore"

## [5] "MaritalStatus" "NumChildren"

## [7] "Age" "HighestSchoolCompleted"

## [9] "Sex" "Race"

## [11] "ChildhoodFamilyIncome" "TotalFamilyIncome"

## [13] "RespondentIncome" "Total.family.income.1"

## [15] "PoliticalParty" "OpinionOfIncome"

## [17] "SexualOrientation"
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GSS <- GSS %>%

select(-Total.family.income.1)

With the data loaded and the names adjusted, the cleaned data can be written to a

new file for use in the body of the paper.

library(readr)

write_csv(GSS, path="../data/GSScleaned.csv")

A version of this file is used as our motivating example.

Supplementary Appendix B: Closing exercise

We have included the following as a possible supplementary exercise.

Subjects in the HELP study were also categorized into categories of primary and sec-

ondary drug and alcohol involvement, as displayed in the following table.

HELPbase <- HELPfull %>%

filter(TIME == 0)

tally( ~ PRIM_SUB + SECD_SUB, data=HELPbase)

## SECD_SUB

## PRIM_SUB 0 1 2 3 4 5 6 7 8

## 1 99 0 57 13 1 3 11 0 1

## 2 51 84 0 6 0 0 15 0 0

## 3 57 28 29 0 0 6 5 1 2

## 6 0 1 0 0 0 0 0 0 0

The following coding of substance use involvement was used in the study.

28

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3163v1 | CC BY 4.0 Open Access | rec: 18 Aug 2017, publ: 18 Aug 2017



value description

0 None

1 Alcohol

2 Cocaine

3 Heroin

4 Barbituates

5 Benzos

6 Marijuana

7 Methadone

8 Opiates

Create a new variable called primsub combining the primary and secondary substances

into a categorical variable with values corresponding to primary and secondary substances

of the form: alcohol only,

cocaine only, heroin only,

alcohol-cocaine, cocaine-alcohol, or other. Code any group with fewer than 5 en-

tries as alcohol-other, cocaine-other, or heroin-other. If PRIM\_SUB == 6 make the

primsub variable missing.

How many subjects are there in the alcohol-none group? How many subjects are

there in the alcohol-other group? What are the three most common groups?

SOLUTION:

HELPbase <- HELPbase %>%

mutate(

primary= recode(PRIM_SUB,

`1`="alcohol",

`2`="cocaine",

`3`="heroin",

`4`="barbituates",

`5`="benzos",

`6`="marijuana",

`7`="methadone",

`8`="opiates"),

second=recode(SECD_SUB,
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`0`="none",

`1`="alcohol",

`2`="cocaine",

`3`="heroin",

`4`="barbituates",

`5`="benzos",

`6`="marijuana",

`7`="methadone",

`8`="opiates"),

title=paste0(primary, "-", second)

)

tally(~ primary, data=HELPbase)

##

## alcohol cocaine heroin marijuana

## 185 156 128 1

tally(~ second, data=HELPbase)

##

## alcohol barbituates benzos cocaine heroin marijuana

## 113 1 9 86 19 31

## methadone none opiates

## 1 207 3

counts <- HELPbase %>%

group_by(primary, second) %>%

summarise(observed=n())

merged <- left_join(HELPbase, counts, by=c("primary", "second"))

merged <- merged %>%

mutate(

title =

case_when(

observed < 5 & primary == "alcohol" ~ "alcohol-other",
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observed < 5 & primary == "cocaine" ~ "cocaine-other",

observed < 5 & primary == "heroin" ~ "heroin-other",

TRUE ~ title),

title = ifelse(primary == "marijuana", NA, title))

tally(~ title + observed, data=merged)

## observed

## title 1 2 3 5 6 11 13 15 28 29 51 57 84 99

## alcohol-cocaine 0 0 0 0 0 0 0 0 0 0 0 57 0 0

## alcohol-heroin 0 0 0 0 0 0 13 0 0 0 0 0 0 0

## alcohol-marijuana 0 0 0 0 0 11 0 0 0 0 0 0 0 0

## alcohol-none 0 0 0 0 0 0 0 0 0 0 0 0 0 99

## alcohol-other 2 0 3 0 0 0 0 0 0 0 0 0 0 0

## cocaine-alcohol 0 0 0 0 0 0 0 0 0 0 0 0 84 0

## cocaine-heroin 0 0 0 0 6 0 0 0 0 0 0 0 0 0

## cocaine-marijuana 0 0 0 0 0 0 0 15 0 0 0 0 0 0

## cocaine-none 0 0 0 0 0 0 0 0 0 0 51 0 0 0

## heroin-alcohol 0 0 0 0 0 0 0 0 28 0 0 0 0 0

## heroin-benzos 0 0 0 0 6 0 0 0 0 0 0 0 0 0

## heroin-cocaine 0 0 0 0 0 0 0 0 0 29 0 0 0 0

## heroin-marijuana 0 0 0 5 0 0 0 0 0 0 0 0 0 0

## heroin-none 0 0 0 0 0 0 0 0 0 0 0 57 0 0

## heroin-other 1 2 0 0 0 0 0 0 0 0 0 0 0 0

## <NA> 1 0 0 0 0 0 0 0 0 0 0 0 0 0

tally(~ title == "alcohol-none", data=merged)

##

## TRUE FALSE <NA>

## 99 370 1

tally(~ title == "alcohol-other", data=merged)

##

## TRUE FALSE <NA>

## 5 464 1
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sort(tally(~ title, data=merged), decreasing=TRUE)[1:3]

##

## alcohol-none cocaine-alcohol alcohol-cocaine

## 99 84 57
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