Impact of litter quantity on the soil bacteria community during the decomposition of Quercus wutaishanica litter

College of Natural Resources and Environment, Northwest A&F University, Yangling, China
State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, China
Subject Areas
Microbiology, Soil Science
Carbon fractions, Nitrogen fractions, Litter decomposition, Soil bacteria
© 2017 Zeng et al.
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Preprints) and either DOI or URL of the article must be cited.
Cite this article
Zeng Q, Liu Y, An S. 2017. Impact of litter quantity on the soil bacteria community during the decomposition of Quercus wutaishanica litter. PeerJ Preprints 5:e3161v1


The forest ecosystem is the main component of terrestrial ecosystems. The global climate and the functions and processes of soil microbes in the ecosystem are all influenced by litter decomposition. The effects of litter decomposition on the abundance of soil microorganisms remain unknown. Here, we analyzed soil bacterial communities during the litter decomposition process in an incubation experiment under treatment with different litter quantities based on annual litterfall data (normal quantity, 200 g/(m2/yr); double quantity, 400 g/(m2/yr) and control, no litter). The results showed that litter quantity had significant effects on soil carbon fractions, nitrogen fractions, and bacterial community compositions, but significant differences were not found in the soil bacterial diversity. The normal litter quantity enhanced the relative abundance of Actinobacteria and Firmicutes and reduced the relative abundance of Bacteroidetes, Plantctomycets and Nitrospiare. The Beta-, Gamma-, and Deltaproteobacteria were significantly less abundant in the normal quantity litter addition treatment, and were subsequently more abundant in the double quantity litter addition treatment. The bacterial communities transitioned from Proteobacteria-dominant (Beta-, Gamma-, and Delta) to Actinobacteria-dominant during the decomposition of the normal quantity of litter. A cluster analysis showed that the double litter treatment and the control had similar bacterial community compositions. These results suggested that the double quantity litter limited the shift of the soil bacterial community. Our results indicate that litter decomposition alters bacterial dynamics under the accumulation of litter during the vegetation restoration process, which provides important significant guidelines for the management of forest ecosystems.

Author Comment

This is a submission to PeerJ for review.