A peer-reviewed version of this preprint was published in PeerJ on 6 October 2017.

<u>View the peer-reviewed version</u> (peerj.com/articles/3896), which is the preferred citable publication unless you specifically need to cite this preprint.

Prostova MA, Deviatkin AA, Tcelykh IO, Lukashev AN, Gmyl AP. 2017. Independent evolution of tetraloop in enterovirus oriL replicative element and its putative binding partners in virus protein 3C. PeerJ 5:e3896 <u>https://doi.org/10.7717/peerj.3896</u>

Independent evolution of tetraloop in enterovirus oriL replicative element and its putative binding partners in virus protein 3C

Maria A Prostova ^{Corresp., 1}, Andrei A Deviatkin ¹, Irina O Tcelykh ^{1, 2}, Alexander N Lukashev ^{1, 3}, Anatoly P Gmyl ^{1, 2, 3}

¹ Chumakov Institute of Poliomyelitis and Viral Encephalitides, Moscow, Russia

² Lomonosov Moscow State University, Moscow, Russia

³ Sechenov First Moscow State Medical University, Moscow, Russia

Corresponding Author: Maria A Prostova Email address: prostova_ma@chumakovs.su

Background. Enteroviruses are small non-enveloped viruses with (+) ssRNA genome with one open reading frame. Enterovirus protein 3C (or 3CD for some species) binds the replicative element oriL to initiate replication. The replication of enteroviruses features low fidelity, which allows the virus to adapt to the changing environment on the one hand, and requires additional mechanisms to maintain the genome stability on the other. Structural disturbances in the apical region of oriL domain d can be compensated by amino acid substitutions in positions 154 or 156 of 3C (amino acid numeration corresponds to poliovirus 3C), thus suggesting the co-evolution of these interacting sequences in nature. The aim of this work was to understand co-evolution patterns of two interacting replication machinery elements in enteroviruses, the apical region of oriL domain d and its putative binding partners in the 3C protein.

Methods.To evaluate the variability of the domain d loop sequence we retrieved all available full enterovirus sequences (>6400 nucleotides), which were present in the NCBI database on February 2017 and analysed the variety and abundance of sequences in domain d of the replicative element oriL and in the protein 3C.

Results.A total of 2,842 full genome sequences was analysed. The majority of domain d apical loops were tetraloops, which belonged to consensus YNHG (Y=U/C, N=any nucleotide, H=A/C/U). The putative RNA-binding tripeptide 154-156 (Enterovirus C 3C protein numeration) was less diverse than the apical domain d loop region and, in contrast to it, was species-specific.

Discussion. Despite the suggestion that the RNA-binding tripeptide interacts with the apical region of domain d, they evolve independently in nature. Together, our data indicate the plastic evolution of both interplayers of 3C-oriL recognition.

1	Independent evolution of tetraloop in enterovirus oriL
2	replicative element and its putative binding partners in
3	virus protein 3C
4	Maria A. Prostova ¹ , Andrei A. Deviatkin ¹ , Irina O. Tcelykh ^{1,2} , Alexander N. Lukashev ^{1,3} ,
5	Anatoly P. Gmyl ^{1,2,3}
6	1 - Chumakov Institute of Poliomyelitis and Viral Encephalitides, Moscow, Russian
7	Federation
8	2 - Lomonosov Moscow State University, Moscow, Russian Federation
9	3 - Sechenov First Moscow State Medical University, Moscow, Russian Federation
10	
11	Corresponding author:
12	Maria A. Prostova ¹
13	Email address:
14	prostovna@gmail.com
15	

16

Abstract

17	Background. Enteroviruses are small non-enveloped viruses with (+) ssRNA genome
18	with one open reading frame. Enterovirus protein 3C (or 3CD for some species) binds the
19	replicative element oriL to initiate replication. The replication of enteroviruses features low
20	fidelity, which allows the virus to adapt to the changing environment on the one hand, and
21	requires additional mechanisms to maintain the genome stability on the other. Structural
22	disturbances in the apical region of oriL domain d can be compensated by amino acid
23	substitutions in positions 154 or 156 of 3C (amino acid numeration corresponds to poliovirus
24	3C), thus suggesting the co-evolution of these interacting sequences in nature. The aim of this
25	work was to understand co-evolution patterns of two interacting replication machinery elements
26	in enteroviruses, the apical region of oriL domain d and its putative binding partners in the 3C
27	protein.
28	
29	Methods. To evaluate the variability of the domain d loop sequence we retrieved all
30	available full enterovirus sequences (>6400 nucleotides), which were present in the NCBI
31	database on February 2017 and analysed the variety and abundance of sequences in domain d of
32	the replicative element oriL and in the protein 3C.
33	
34	Results. A total of 2,842 full genome sequences was analysed. The majority of domain d

35	apical loops were tetraloops, which belonged to consensus YNHG (Y=U/C, N=any nucleotide,
36	H=A/C/U). The putative RNA-binding tripeptide 154-156 (Enterovirus C 3C protein
37	numeration) was less diverse than the apical domain d loop region and, in contrast to it, was
38	species-specific.
39	
40	Discussion. Despite the suggestion that the RNA-binding tripeptide interacts with the apical
41	region of domain d, they evolve independently in nature. Together, our data indicate the plastic
42	evolution of both interplayers of 3C-oriL recognition.
43	
44	Introduction
44 45	Introduction Enteroviruses are small non-enveloped viruses with a plus strand genome about 7500 nt
44 45 46	Introduction Enteroviruses are small non-enveloped viruses with a plus strand genome about 7500 nt long, which contains one open reading frame that encodes structural (capsid) and non-structural
44 45 46 47	Introduction Enteroviruses are small non-enveloped viruses with a plus strand genome about 7500 nt long, which contains one open reading frame that encodes structural (capsid) and non-structural proteins, 5' and 3' NTRs (non translated regions), and polyA on the 3' end (Palmenberg,
44 45 46 47 48	Introduction Enteroviruses are small non-enveloped viruses with a plus strand genome about 7500 nt long, which contains one open reading frame that encodes structural (capsid) and non-structural proteins, 5' and 3' NTRs (non translated regions), and polyA on the 3' end (Palmenberg, Neubauer and Skern, 2010). (Figure 1). Most non-structural enterovirus proteins are
 44 45 46 47 48 49 	Introduction Enteroviruses are small non-enveloped viruses with a plus strand genome about 7500 nt long, which contains one open reading frame that encodes structural (capsid) and non-structural proteins, 5' and 3' NTRs (non translated regions), and polyA on the 3' end (Palmenberg, Neubauer and Skern, 2010). (Figure 1). Most non-structural enterovirus proteins are polyfunctional. Protease 3CD is a precursor of polymerase 3D and plays a key role in the
 44 45 46 47 48 49 50 	Introduction Enteroviruses are small non-enveloped viruses with a plus strand genome about 7500 nt long, which contains one open reading frame that encodes structural (capsid) and non-structural proteins, 5' and 3' NTRs (non translated regions), and polyA on the 3' end (Palmenberg, Neubauer and Skern, 2010). (Figure 1). Most non-structural enterovirus proteins are polyfunctional. Protease 3CD is a precursor of polymerase 3D and plays a key role in the initiation of replication (Harris <i>et al.</i> , 1992; Gamarnik and Andino, 1998; Thompson and
 44 45 46 47 48 49 50 51 	Introduction Enteroviruses are small non-enveloped viruses with a plus strand genome about 7500 nt long, which contains one open reading frame that encodes structural (capsid) and non-structural proteins, 5' and 3' NTRs (non translated regions), and polyA on the 3' end (Palmenberg, Neubauer and Skern, 2010). (Figure 1). Most non-structural enterovirus proteins are polyfunctional. Protease 3CD is a precursor of polymerase 3D and plays a key role in the initiation of replication (Harris <i>et al.</i> , 1992; Gamarnik and Andino, 1998; Thompson and Peersen, 2004). After translation by host cell ribosomal machinery, the genome is utilized for the

53	daughter (+) strands. Non-translated regions of the genome and a coding sequence within the
54	genomic region encoding the viral helicase 2C contain replicative elements, which interact with
55	viral and host proteins. These RNA-protein complexes regulate initiation and further steps of
56	replication. For poliovirus, the most clinically relevant member of the Enterovirus genus, there
57	are at least three known RNA-protein complexes, which are formed with the replicative elements
58	oriL, oriR and oriI during replication (Figure 1).
59	Complex oriL with viral protein 3CD and the host protein PCBP2 is crucial for the
60	transcription initiation (Goodfellow et al., 2000; Vogt and Andino, 2010; Chase, Daijogo and
61	Semler, 2014). The element oriL has a cloverleaf-like secondary structure with four domains
62	termed a (stem of the cloverleaf), b, c and d (leaves of the cloverleaf) (Trono, Andino and
63	Baltimore, 1988; Andino, Rieckhof and Baltimore, 1990) (Figure 1). Previously, it was
64	demonstrated in vitro that 3CD (or 3C) of poliovirus, coxsackievirus B3 and bovine enterovirus
65	1 interacts with the apical loop and the flanking base pairs of hairpin d in the oriL element
66	(Andino, Rieckhof and Baltimore, 1990; Du et al., 2003; Ihle et al., 2005) (Figure 1).
67	The apical loops of domain d in genomes belonging to several viruses of Enterovirus
68	genera were shown by NMR experiments to be tetraloops with a specific spatial structure, which
69	belongs to the UNCG structural class of stable tetraloops (Du et al., 2003, 2004; Ihle et al., 2005;
70	Melchers et al., 2006). There are several known structural classes of tetraloops, three of which,
71	named according to consensus sequences, contain tetraloops of extreme stability: UNCG (where

72	N=any nucleotide), GNRA (where R=A/G) and gCUUGc (Uhlenbeck, 1990; Cheong and
73	Cheong, 2010). Tetraloops of UNCG and GNRA classes are the most widely represented (Woese
74	et al., 1990; Cheong and Cheong, 2010; Bottaro and Lindorff-Larsen, 2017). Previously, it was
75	shown that only tetraloops of the UNCG structural class, but not tetraloops of GNRA or
76	gCUUGc structural classes, can support effective replication of the poliovirus genome (Prostova
77	et al., 2015). Moreover, the exact sequence of the apical region of poliovirus domain d was of
78	less importance for effective 3CD-oriL recognition than its spatial structure (Rieder et al., 2003;
79	Prostova et al., 2015). At the same time, structural disturbance in the apical region of oriL
80	domain d of poliovirus could be compensated by amino acid substitutions in the tripeptide 154-
81	156 of the 3C protein (here and hereafter amino acid numeration corresponds to poliovirus 3C
82	protein) (Andino et al., 1990; Prostova et al., 2015). In addition to triplet 154-156, the conserved
83	motif ₈₂ KFRDI ₈₆ of the 3C protein also takes part in the oriL recognition (Andino et al., 1990,
84	1993; Hämmerle, Molla and Wimmer, 1992; Shih, Chen and Wu, 2004). To date a
85	comprehensive analysis of the diversity in domain d apical region and amino acid tripeptide
86	sequences in the Enterovirus genus has not been conducted.
87	The replication of an enterovirus is a low-fidelity process, generating, on average, one
88	mutation per genome (Sanjuán et al., 2010; Acevedo, Brodsky and Andino, 2013). The high
89	probability of mutation allows the virus to adapt to a constantly changing environment on the
90	one hand, but requires additional mechanisms to maintain genome stability on the other (Wagner

91	and Stadler, 1999; Lauring, Frydman and Andino, 2013). The aim of the present study was to
92	understand co-evolution patterns of two interacting replication machinery elements in
93	enteroviruses, the apical domain d of oriL and the 3C protein.
94	
95	Materials and methods
96	Formation and filtration of sets of full genomes
97	All available nucleotide sequences (as of February 2017) containing the Enterovirus
98	genus with length 8000>n>6800 were extracted from the NCBI database. For every species, a
99	multiple sequence alignment was conducted using MAFFT version 7 with default settings (Katoh
100	and Standley, 2013). Sequences that contained more than 50 N characters in succession and
101	sequences that were annotated as "Modified_Microbial_Nucleic_Acid", were removed from
102	alignments. All sequences that differed from any other sequence in the dataset by less than 1% of
103	the nucleotide sequence were omitted in order to reduce the bias caused by over-represented
104	sequences.
105	Analysis of tetraloop and amino acid variety in the sets of genomes
106	For analysis of domain d sequence variety, the multiple sequence alignments were used.
107	The relevant region of multiple sequence alignment and the respective names of sequences were

108	analysed in Microsoft Excel. To analyse correlation of the domain d loop and tripeptide of 3C
109	sequences the same alignments were translated in the protein 3C coding region. The resulting
110	amino acid sequences that corresponded to tripeptides 154-156 (poliovirus 3C numerations) were
111	analysed using Microsoft Excel. An amino acid frequency plot was created via the WebLogo
112	server using the set of filtered genomes for every species (Crooks et al., 2004). To do this, the
113	multiple sequence alignment of filtered genomes of every species was translated in the region
114	that codes protein 3C, while positions 71-89 and 147-160 were saved in separate MAS files,
115	which were then used to produce logos.
116	Domain d secondary structure
117	The domain d secondary structure was folded using the Vienna RNA Websuite server
118	with subsequent manual editing (Gruber et al., 2008; Lorenz et al., 2011). Algorithm accounting
119	for minimum free energy and partition function was used.
120	Results
121	Sample characteristics
122	To evaluate the variability of the domain d loop sequence we retrieved all available
123	complete genome (8000>n>6800 nucleotides) enterovirus (EV) sequences that were present in
124	the NCBI database on February 2017. Representatives of Enterovirus A (1173 sequences in

125	total), Enterovirus B (414), Enterovirus C (773), Enterovirus D (462), Enterovirus E (12),
126	Enterovirus $F(13)$, Enterovirus $G(15)$, Enterovirus $H(3)$, Enterovirus $J(7)$, Rhinovirus $A(202)$,
127	Rhinovirus B (76) and Rhinovirus C (51) species were analysed. As expected, genomes of
128	epidemiologically significant viruses were the most represented in the database. For example,
129	66% of <i>Enterovirus A</i> species genomes belonged to the EV71 type, the causative agent of hand,
130	foot and mouth disease (Solomon et al., 2010); most Enterovirus C species sequences (78%)
131	belonged to poliovirus; and most <i>Enterovirus D</i> species sequences (98.7%) represented EV68, an
132	aetiological agent of severe respiratory illness (Oermann et al., 2015). The number of genome
133	sequences of each species that contained the oriL region is shown in Table 1.
134	Sequences of apical regions in oriL domain d and the amino acids involved in RNA
135	recognition in 3C protein were analysed. In genomes of <i>Enterovirus E</i> and <i>Enterovirus F</i> species
136	with two oriLs (Pilipenko, Blinov and Agol, 1990; Zell et al., 1999) sequences of both oriLs
137	were analysed (Table 1). To reduce the bias towards particular loop sequences present in a large
138	set of closely related genomes, which, for example, belonged to one outbreak, all sequences that
139	differed from any other sequence in the dataset by less than 1% of the nucleotide sequence were
140	omitted. After curation, the sizes of the largest data sets decreased dramatically, but the number
141	of unique loop sequences in every set did not change significantly (Table 1). Unique tetraloop
142	variants were lost for Enterovirus A (tetraloop UGUG), Enterovirus C (tetraloops CCCG, CAUG
143	and UGUG) and Enterovirus D (tetraloop UUGG). This indicates that, even among closely

144	related genomes, the tetraloop sequence can vary. Indeed, in several outbreaks caused by EV71
145	or PV1, closely related genomes contained different apical domain d sequences (not shown). It
146	should be noted that the filtration of the dataset using a 95% sequence identity threshold resulted
147	in a dramatic loss of unique tetraloop variants (107 genomes out of 1052 were left after filtration,
148	while 13 unique tetraloop variants out of total 17 variants were detected in the filtered set).
149	Variability in the oriL domain d apical loop sequence
150	The secondary structure of domain d was conserved in all species, except <i>Enterovirus G</i> ,
151	in which an elongated domain d was observed (Figure 2) (Krumbholz et al., 2002).
152	The variety and occurrence of various loops in the apical region of domain d in all
153	species of the Enterovirus genera were analysed in filtered sets of full genome sequences. Most
154	domain d apical loops were tetraloops (i.e., they consisted of four nucleotides) (Table 2).
155	However, triloops (3-nucleotide loop) could be found in genomes of <i>Enterovirus C</i> and
156	Rhinovirus A and B species, whereas pentaloops (5-nucleotide loop) were detected in genomes of
157	Enterovirus E species (Table 2).
158	The most common loop sequences belonged to consensuses YNMG (Y=C/U, N=any,
159	M=A/C; tetraloops with UNCG class spatial structure belong to this consensus) and YNUG
160	(tetraloops with UNCG class and gCUUGc class spatial structures belong to this consensus)
161	(Table 2). Consensus YNMG and consensus YNUG together corresponded to 24 unique
162	sequence variants. Interestingly, in our dataset of 2,842 full genomes, four tetraloops out of 24

163	possible variants were never found in the domain d apical region: UUAG, UCAG, CUAG and
164	CCAG (Table 2). Thus, dinucleotides UA and CA are likely to be avoided at positions 2 and 3 of
165	the tetraloop in enterovirus genomes.
166	In Enterovirus A species, 17 out of 24 possible unique tetraloop sequences were
167	identified (Table 2, Table S2). Twelve unique loops of Enterovirus A belonged to consensus
168	YNMG, while the other five belonged to consensus YNUG. The most abundant tetraloop in
169	Enterovirus A genomes, in contrast to other species, was CUCG (Table 2, Table S1). This is
170	explained by the prevalence of this tetraloop in the EV71 C4 genotype (Table 2, Table S1). The
171	frequency of other tetraloop sequences varied significantly (Table 2, Table S2). One tetraloop
172	(UGUG) was lost upon filtration. Such sequences here and below were manually added to the
173	final data set to maintain diversity of loop sequences within the species, as well as provide
174	comprehensive information about sequences in apical domain d in viable viruses (Table 2).
175	Interestingly, EV71 sequences contained 13 out of 17 tetraloop variants, which were detected in
176	the Enterovirus A genus (Table 2). In other words, the diversity of tetraloops in one discrete
177	lineage in general resembles its diversity in the unification of different discrete lineages.
178	In <i>Enterovirus B</i> genomes, 18 unique tetraloops out of 24 possible were found. Twelve
179	of these tetraloops belonged to consensus YNMG and six to consensus YNUG (Table 2, Table
180	S3). The most abundant tetraloops were CACG (98 genomes), UACG (51 genomes) and UGCG
181	(31 genomes), which were also present among the most abundant tetraloops of <i>Enterovirus A</i>

182 species.

183	In genomes of the <i>Enterovirus C</i> species, nine unique tetraloops belonged to the YNMG
184	consensus and four to the YNUG consensus. Three unique tetraloops were lost upon filtration
185	and added to the final data set (CCCG, UGUG, CAUG) (Table 2, Table S4). Two genomes
186	annotated in the NCBI data base as Human coxsackievirus A21, strain Coe, (accession number
187	D00538) and Human coxsackievirus A21, strain BAN00-10467, (accession number EF015031)
188	contained triloops CAG and CCG, respectively. The most abundant tetraloops in EV-C species
189	were UACG (106), CACG (101), UGCG (43) (Table 2, Table S1, Table S4), which corresponds
190	to the Sabin vaccine strains of poliovirus serotypes 2, 3 and 1, respectively. To evaluate bias
191	caused by the redundant number of vaccine strain sequences in the data set, we subtracted
192	genomes of vaccine/vaccine derived poliovirus strains from the analysed set. As a result,
193	tetraloops UACG, CACG and UGCG were still the most frequent variants (Table 2, Table S1).
194	Only 57 Enterovirus D genomes out of 419 were left after 1% identity filtration. Fifty
195	genomes belonged to Human enterovirus 68, the aetiological agent of respiratory illness. All
196	genomes of this type contained loop UUCG in the domain d apical region. Other tetraloops were
197	UUUG (1), CUCG (2), CCCG (1), CUUG (2) and CACG (1) (Table 2, Table S5). One tetraloop
198	(UUGG) was lost upon filtration and manually added to the final data set.
199	Species <i>Enterovirus E</i> and <i>F</i> have two oriLs in the 5'NTR, generally with similar
200	sequences in the apical region of domain d (Pilipenko, Blinov and Agol, 1990; Zell et al., 1999)

201	(Table S6). As such, we united sequences from the first and the second oriL of these viruses in
202	the heat map (Table 2). Domain d loops in 10 genomes of <i>Enterovirus F</i> were tetraloops, while,
203	in 10 Enterovirus E genomes, there were both tetraloops (first oriL) and pentaloops (first and
204	second oriL) (Table 2, Table S6). There were four diverse tetraloop sequences in oriLs of
205	Enterovirus E and F with no obvious preference between these species. These sequences were
206	GCUA, GUUA, GCCA, AUUA (Table 2, Table S6). Tetraloop AUUA was found once in the
207	first oriL domain d of EV-F (strain PS87/Belfast, accession number DQ092794) (Table 2, Table
208	S6). There were six diverse pentaloop sequences in domain d of Enterovirus E genomes –
209	GCUUA, GUUUA, GCCUA, GCGUA, GAUUA, GUCUA (Table 2, Table S6).
210	All domain d loops in genomes of Enterovirus G, H and J species were tetraloops; all
211	except one tetraloop variant belonged to consensus YNMG (Table 2, Table S7). One Enterovirus
212	G representative had a GUUA tetraloop sequence (strain LP 54, accession number AF363455),
213	similar to loops of Enterovirus E and F species (Table 2). This genome had only one oriL with
214	the same domain d length as that of Enterovirus G genomes (Krumbholz et al., 2002).
215	All except one (isolate V38_URT-6.3m, accession number JF285329) of the full
216	genomes of Rhinovirus A species and all full genomes of Rhinovirus C species had tetraloops in
217	the apical regions of domain d (Table 2). Tetraloops of these viruses in almost all cases belonged
218	to consensus YNMG, with one exception found in <i>Rhinovirus C</i> (tetraloop CUUC, isolate JAL-1,
219	accession number JX291115) (Table 2, Table S8). All loops in the apical region of <i>Rhinovirus B</i>

domain d were triloops (Table 2, Table S8).

Thus, the secondary structure of domain d was very similar among species of the *Enterovirus* genus, with the exception of *Enterovirus G* species (Figure 2). The apical region of domain d has a high diversity of sequences; however, in species of *Enterovirus A, B, C, D, G, H* and *J* and *Rhinovirus A* and *C*, it mostly corresponds to the same consensus, that is, YNHG (Y=C/U, N=any, H=A/C/U).

226 Variety of RNA-recognition tripeptide of 3C

227 Two motifs of protein 3C are involved in RNA recognition and interact with oriL: the 228 conservative motif KFRDI (positions 82-86 of poliovirus 3C) and the putative RNA-binding 229 tripeptide (positions 154-156 in poliovirus 3C) (Andino et al., 1990, 1993; Hämmerle, Hellen 230 and Wimmer, 1991; Shih, Chen and Wu, 2004). Substitutions in the putative RNA-binding 231 tripeptide are known to compensate for disturbance in the apical region of domain d, such that 232 the RNA-binding tripeptide is a putative candidate to co-evolve with the domain d loop (Andino 233 et al., 1990; Prostova et al., 2015). There are other amino acids that have been found to affect oriL-3CD interaction, but tripeptide 154-156 (Enterovirus C 3C protein numbering here and 234 235 below) is the only one that is proven to compensate structural disturbance in the domain d apical 236 region (Andino et al., 1990, 1993). To evaluate the possible co-evolution between the domain d tetraloop and its putative interaction partners in protein 3C, relevant sequences in the filtered full 237 238 genome data sets were analysed.

239	Motif $_{82}$ KFRDI ₈₆ was conserved in all species, as well as amino acids Glu 71 and Cys
240	147 of the protease catalytic triad (Figure 3). Always in second position of the putative RNA-
241	binding tripeptide (position 155) was Gly.
242	No mutual dependence between loop sequences and tripeptide sequences was found
243	within enterovirus genomes of the same species. For example, Enterovirus A genomes contained
244	17 unique variants of the tetraloop sequence, whereas the predominant fraction of 3C sequences
245	(548 out of 564) contained the conservative tripeptide VGK at positions 154-156 (Figure 3,
246	Table S9). It is noteworthy that, this tripeptide was not found exclusively only in genomes of the
247	EV71 serotype, although genomes of this serotype prevailed in the data set. Other Enterovirus A
248	genomes contained tripeptides VGR (seven out of 564), TGK (four out of 564), IGK (three out
249	of 564), VGE (one out of 564) and SRK (one out of 564) (Figure 3, Table S9). Genomes with
250	tripeptides other than VGK contained no peculiarities of the domain d loop sequence (Table S9).
251	This observation confirms that the specific loop sequence is not likely to be the main subject for
252	recognition by the RNA-binding tripeptide. Similarly, all or almost all genomes of <i>Enterovirus B</i>
253	(242 out of 244), Enterovirus C (272 out of 274), Enterovirus D (all), Enterovirus G (seven out
254	of 8), Enterovirus H (a total of two: genomes – one with TGK, one with TGR), Enterovirus J
255	(all) and <i>Rhinovirus B</i> (36 out of 37) species contained tripeptide TGK at positions 154-156 of
256	the 3C protein (Figure 3, Table S7, S9, S10). Alternative tripeptides were TGR in two genomes
257	of Enterovirus B and one genome of Enterovirus H; IGK in one genome of Enterovirus C

258	species and in one genome of Rhinovirus B species; PGK in one genome of Enterovirus C
259	species; and MGK in one genome of <i>Enterovirus G</i> species (Table S7, S9, S10).
260	Genomes of <i>Enterovirus E</i> and <i>F</i> species contained two oriLs with tetraloops in domain d
261	mostly of consensus GYYA or pentaloops of consensus GHBUA, where $H = A/C/U$ and
262	B=U/C/G. All genomes contained tripeptide MGK at positions 154-156 of protein 3C (Figure 3,
263	Table S7). Interestingly, a similar loop-tripeptide pair was found in one genome of <i>Enterovirus</i> G
264	species (strain LP 54, accession number AF363455). It contained tetraloop GUUA in domain d
265	of its single oriL and tripeptide MGK in 3C. Unlike this unique genome, other genomes of
266	Enterovirus G species contained tetraloops of YNMG consensus and tripeptide TGK in the
267	protein 3C.
268	Rhinovirus genomes contained tetraloops, mostly of consensus YNMG (Rhinovirus A
269	and C species) or triloops (<i>Rhinovirus A</i> and <i>B</i>) (Table 2). <i>Rhinovirus A</i> genomes with tetraloops
270	in domain d contained tripeptides in 3C with positively charged amino acid before the tripeptide,
271	but not in its final position, as in case of genomes of <i>Enterovirus A-C</i> species (Figure 3, Table
272	S11, S12). The sequence of tripeptides, which did not depend on the tetraloop sequence, was, in
273	descending order, IGQ (the most abundant, 65 genomes out of 119), IGL (20 genomes out of
274	119), IGS, VGS, IGN, VGQ, IGV and VGH (Table S11). In the case of the <i>Rhinovirus A</i>
275	genome with triloop UCU in domain d (isolate V38_URT-6.3m, accession number JF285329),
276	protein 3C contained tripeptide TGK without positively-charged amino acid before it (Table

277	S11). All genomes of <i>Rhinovirus B</i> species contained triloops in domain d, with all but one (with
278	IGK) containing tripeptide TGK in 3C. Genomes of Rhinovirus C contained tetraloops mostly of
279	consensus YHCG (H=all but G) and tripeptides in 3C without a positively charged amino acid at
280	the last position (TGN, VGN, TGH) or outside of the tripeptide (Table S12). One genome
281	contained tetraloop CUUC paired with most abundant tripeptide, that is, TGN (23 out of 37
282	genomes)(Table S12).
283	Thus, dependence between apical domain d sequences and tripeptides in protein 3C
284	within a species was not detected (Figure 3). We can state that the tripeptide and motif KFRDI
285	are almost non-variable within a species compared to the domain d loop sequence, but there is a
286	specifically preferred tripeptide sequence for each species. Hence, tripeptide sequences are
287	species-specific, while the domain d loop sequences are almost universal among Enterovirus A,
288	B, C and D and Rhinovirus A and C species.

289

Discussion

Most of the domain d apical loops in enterovirus genomes were represented by tetraloops. The most common variants of tetraloop sequences corresponded to consensuses YNHG (Y=C/U, N=any, H=A/C/U) (Table 2). Similar results were obtained in our previous experimental work, where eight apical nucleotides of domain d of the poliovirus genome were randomized and viable variants were selected *in vitro*, with the majority of selected tetraloops belonging to

295

296 genomes in the NCBI database, but not among the variants selected *in vitro*, namely tetraloops CACG, CUCG, UAAG, UGAG, CAAG, CGAG, UGUG and CUUG (Prostova et al., 2015). 297 Tetraloops UGAG, UGUG and CUUG were reconstructed with a U****G flanking base pair in 298 299 the context of the poliovirus genome strain Mahoney, which supported effective virus replication 300 (Prostova *et al.*, 2015). 301 Conversely, tetraloops UUAG, UCAG and CCAG, found in domain d of selected in vitro viable poliovirus variants, were able to support virus reproduction; however, they were not found 302 in naturally circulating viruses (Prostova et al., 2015). One tetraloop of the YNHG consensus 303 304 (CUAG) was neither found in genomes from the NCBI database (n=2842), nor in the 305 randomized poliovirus genomes selected *in vitro* (n=62) (Table 2). Thermodynamic stability is 306 unlikely to be the reason why this and other tetraloops were unrepresented as the melting 307 temperature of stem loops with avoided tetraloops is within range of the melting temperature of YNHG tetraloops, which supported replication (Proctor et al., 2002). Moreover, tetraloops 308 UUAG and UCAG are common in rRNA (Woese et al., 1990). Sample insufficiency cannot be 309 310 excluded for both database and *in vitro* selected sets of genomes, but it is safe to conclude that 311 these tetraloop variants are at least extremely rare. In any case, the fact that the incidence of these tetraloops is much less than for other tetraloops indicates that such variants are possibly 312 less fit. 313

consensus YNHG (Prostova et al., 2015). Some tetraloops of consensus YNHG were found in

314	The most abundant tetraloops in the domain apical region of genomes from the NCBI
315	database and variants selected in vitro could be compiled into consensuses UNCG and CNCG
316	(Table 2, Table S1). At the same time, these tetraloops are most abundant in rRNA, and, with
317	certain closing base pairs, among the most thermodynamically stable tetraloops (Woese et al.,
318	1990; Proctor et al., 2002). Tetraloops of these consensuses and some other found tetraloops of
319	the YNHG consensus form a specific spatial structure of the UNCG structural class of stable
320	tetraloops (Cheong, Varani and Tinoco, 1990; Varani, Cheong and Tinoco, 1991; Du et al.,
321	2003, 2004).
322	Another set of tetraloops, which correspond to GNYA consensus, was found both in
323	genomes of <i>Enterovirus E</i> and <i>F</i> and in genomes of viable polioviruses selected <i>in vitro</i>
324	(Prostova et al., 2015). Tetraloop GCUA was able to support the effective replication of
325	poliovirus and, together with tetraloop GUUA, is known to assume an UNCG fold (Ihle et al.,
326	2005; Melchers et al., 2006; Prostova et al., 2015). In sum, these data suggest that the spatial
327	structure, rather than the exact sequence, is the main subject for recognition by virus protein 3C.
328	Structure-based recognition of tetraloops occurs in several known RNA-protein complexes. For
329	example, tetraloops with a GNRA class structure in the context of bacteriophages P22 and $\boldsymbol{\lambda}$
330	genome transcription antitermination element boxB are specifically recognized by the
331	bacteriophage N-protein arginine-rich motif (ARM) (Cai et al., 1998; Legault et al., 1998;
332	Schärpf et al., 2000). Arginines and lysines of the ARM recognize the shape of the negatively

333	charged phosphodiester backbone of the stem-loop and positions N-peptide for hydrophobic or
334	stacking interaction with a non-conserved nucleotide of the loop (Cai et al., 1998; Legault et al.,
335	1998; Schärpf et al., 2000; Thapar, Denmon and Nikonowicz, 2013). Another example of
336	structure-specific recognition is the complex of the double-stranded RNA-binding domain
337	(dsRBD) of RNase Rnt1p and AGNN class tetraloop (Chanfreau, Buckle and Jacquier, 2000;
338	Lebars et al., 2001; Wu et al., 2001, 2004; Wang et al., 2011; Thapar, Denmon and Nikonowicz,
339	2013). Motif dsRBD recognizes the phosphodiester backbone at the 3' side of the tetraloop and
340	its non-conserved third and fourth nucleotides (Wu et al., 2004; Wang et al., 2011; Thapar,
341	Denmon and Nikonowicz, 2013).
342	The sequence to structure degeneracy (different RNA sequences are able to form similar
343	spatial structure) is the known phenomenon (Petrov, Zirbel and Leontis, 2013; Bottaro and
344	Lindorff-Larsen, 2017). Moreover, it is suggested to refrain from associating sequences with a
345	particular fold (D'Ascenzo et al., 2016, 2017). Together with the literature data our result let us
346	assume that sequence-structure degeneracy is an universal way in which RNA tetraloops are
347	used in nature (Lebars et al., 2001; Wu et al., 2004; Ihle et al., 2005; Petrov, Zirbel and Leontis,
348	2013; D'Ascenzo et al., 2016, 2017; Bottaro and Lindorff-Larsen, 2017).
349	It can be speculated that pentaloops in domain d of the Enterovirus E genome and
350	triloops of domain d of rhinoviruses have the potential to comprise the same UNCG fold as some
351	YNHG and GNYA tetraloops. For HRV14 domain d, it was shown that its triloop resembles the

352	structure of the first and last two nucleotides of UNCG structural class tetraloops (Headey et al.,
353	2007). There are pentaloops with four nucleotides that belong to consensus UNCG, GNRA or
354	gCUUGc, which are able to form spatial structures of corresponding structural classes with the
355	fifth bulged nucleotide (Cai et al., 1998; Schärpf et al., 2000; Theimer, Finger and Feigon, 2003;
356	Oberstrass et al., 2006; Liu et al., 2009). It is possible that four nucleotides of the pentaloops in
357	domain d of Enterovirus E species have a UNCG fold with one bulged nucleotide.
358	Tetraloops that did not belong to the YNHG or GNYA consensus were found in both sets
359	of natural and <i>in vitro</i> selected genomes. However, in an experiment such variants were found to
360	evolve towards the YNHG or GNYA consensus (Prostova et al., 2015). Apparently, tetraloops
361	that do not belong to the YNHG or GNYA consensus are less fit in most settings and under
362	experimental conditions. However, as these variants may still be found in a few naturally
363	circulating viruses (consequently, they have emerged and been fixed), we speculate that they
364	may be beneficial under specific replication conditions.
365	A similar structure of domain d and its apical region suggests the free exchange of this
366	region between genomes of the same and different species of Enterovirus genera. Indeed, viable
367	intra and inter species recombinants for this region could be obtained in vitro (Muslin et al.,
368	2015; Bessaud et al., 2016). To evaluate the relative impact of the high mutation rate and
369	recombination on domain d apical loop variability, sequences of EV71 C4 genotype viruses were
370	analysed. The natural recombination in EV71 genotype C4 is much less frequent than other

371	Enterovirus A types (Lukashev et al., 2014); menawhile only one recombinant genome
372	(accession number HQ423143) was detected in our data set. Therefore, the variability of its
373	domain d loop sequence reflects changes that were only accumulated via mutations. The
374	diversity of the domain d loop sequence of EV-71 C4 viruses was far less prominent than among
375	Enterovirus A genomes and represented only by five tetraloop sequence variants (Table 2). As
376	the most recent common ancestor of EV71 genotype C4 dates back about 20 years (McWilliam
377	Leitch et al., 2012), this diversity, although limited, has only emerged very recently. On the other
378	hand, the high sequence variability of the domain d apical region in all enterovirus genomes was
379	possibly assisted by inter- and intra-species recombination events.
380	Interestingly, in contrast to the similar structure of domain d and the very similar
381	distribution of its apical sequences in genomes of different enterovirus species, its putative RNA-
382	recognition tripeptide of 3C is diverse (Figure 3). Most <i>Enterovirus A</i> genomes contain tripeptide
383	VGK in 3C, while there is a prevalence of the TGK tripeptide among genomes of <i>Enterovirus B</i> ,
384	C and D species (Figure 3). Genomes of Rhinovirus A and C also contain common enterovirus
385	tetraloops in the domain d apical region, but, in 3C, unlike other species, they contain tripeptides
386	without positively charged amino acids (Figure 3, Table S11, Table S12). Positively charged
387	amino acids are often involved in the interaction with RNA, in particular, with phosphates of the
388	RNA backbone. As such, they are of importance to RNA-protein recognition (Jones et al., 2001;
389	Bahadur, Zacharias and Janin, 2008). In Rhinovirus A genomes, positively charged amino acid

390	"jumped" from the last position of the tripeptide (position 156) to the position that precedes the
391	tripeptide (position 153) (Figure 3, shown by an arrow). The residue at position 153 starts and
392	the residue at position 156 ends the reverse turn between beta strands dII and eII of protein 3C
393	(Mosimann et al., 1997; Matthews et al., 1999; Cui et al., 2011). In a crystal structure of the
394	Rhinovirus A2 protein 3C, the side chain of Lys153 (preceding the tripeptide) is positioned in a
395	region similar to that of the side chain of Lys156 (in last position of the tripeptide) in the crystal
396	structure of Enterovirus 71 and Poliovirus 1 proteins 3C (Mosimann et al., 1997; Matthews et
397	al., 1999; Cui et al., 2011). Thus, Lys at position 153 of 3C has almost the same potential to
398	interact with the RNA-ligand as Lys at position 156 (Mosimann et al., 1997; Matthews et al.,
399	1999; Cui et al., 2011). Genomes of Rhinovirus C species do not contain a positively charged
400	amino acid, either inside the tripeptide of the 3C protein, or in the neighbouring positions,
401	possibly indicating that tripeptide 154-156 in the protein 3C of <i>Rhinovirus C</i> genome does not
402	interact directly with RNA. Thus, 3C is able to recognize domain d of the oriL with tripeptides of
403	a different sequence. In contrast to the domain d structure and its apical sequence, the tripeptide
404	is species-specific. The diversity of the tripeptide, which is expected to recognize domain d, has
405	several compatible explanations. Residue 154 of the tripeptide possibly does not interact with
406	domain d directly. The tripeptide may be involved into a species-specific cooperative amino acid
407	network (amino acid "epistasis"). Moreover, different tripeptides could reflect slightly different
408	molecular mechanisms for domain d recognition.

409	The complexity of the tripeptide's role in domain d recognition can be shown in several
410	examples. The 3C protein of different species with the same RNA-binding tripeptide is not
411	guaranteed to bind the same structured domain d. Genomes of the Rhinovirus B contain triloops
412	in the apical region of domain d, which are paired with tripeptide TGK in 3C, common for
413	genomes with tetraloops. In contrast, protein 3C of the Coxsackie virus B3 (Enterovirus B
414	species, containing tripeptide TGK) cannot recognize oriL sufficiently well when domain d is
415	capped with a triloop (Zell et al., 2002). This indicates that the sequence of the RNA-binding
416	tripeptide is probably not the exclusive participant in oriL-3C recognition. In other words,
417	different molecular mechanisms of oriL-3C recognition have evolved in every enterovirus
418	species independently. For example, it was shown for Rhinovirus 14 (Rhinovirus B species) that
419	protein 3C recognizes the stem region of domain d, rather than its apical loop (Leong et al.,
420	1993). Another oriL-3C recognition mechanism is seemingly employed by <i>Enterovirus E</i> and F
421	species, two oriLs of which play the same role as the single oriL in genomes of other
422	enteroviruses (Pilipenko, Blinov and Agol, 1990; Zell et al., 1999). The apical loop of their
423	domain d is a tetra- or pentaloop with a sequence that differs from the loop consensuses of other
424	enteroviruses. The RNA-binding tripeptide in 3C is species-specific as well, and is always MGK
425	(Table S6). Interestingly, one genome of <i>Enterovirus G</i> species had the same pair domain d loop:
426	tripeptide of 3C, i.e., GUUA MGK. Domain d of Enterovirus G species is prolonged in
427	comparison to the length of domain d in genomes of other species (Krumbholz et al., 2002)

428	(Figure 2). Tripeptide MGK in the 3C of <i>Enterovirus E, F</i> and <i>G</i> possibly indicates another
429	molecular mechanism of oriL-3C recognition (Krumbholz et al., 2002). Therefore, we assume
430	that, though putative RNA-binding, the tripeptide, in most cases, possibly interacts with the
431	domain d apical region (since amino acid substitutions in it are known to compensate for
432	structural disturbance in domain d); however, this interaction is not the only one that determines
433	the evolution of oriL-3C interaction. Altogether, the data suggest that the independent evolution
434	of the putative RNA-binding tripeptide of 3C and domain d of oriL occurs.
435	
436	Conclusions
436 437	Conclusions We analysed the variety and occurrence of the replication element oriL's functional loop
436 437 438	Conclusions We analysed the variety and occurrence of the replication element oriL's functional loop and its protein ligand virus protease 3C. RNA-binding motifs of 3C are species-specific, in
436 437 438 439	Conclusions We analysed the variety and occurrence of the replication element oriL's functional loop and its protein ligand virus protease 3C. RNA-binding motifs of 3C are species-specific, in contrast to domain d loop sequences: the sequence variety of domain d loop is almost the same
436 437 438 439 440	Conclusions We analysed the variety and occurrence of the replication element oriL's functional loop and its protein ligand virus protease 3C. RNA-binding motifs of 3C are species-specific, in contrast to domain d loop sequences: the sequence variety of domain d loop is almost the same for <i>Enterovirus A, B, C</i> and <i>D</i> and <i>Rhinovirus A</i> and <i>C</i> species, whereas tripeptide sequence
 436 437 438 439 440 441 	Conclusions We analysed the variety and occurrence of the replication element oriL's functional loop and its protein ligand virus protease 3C. RNA-binding motifs of 3C are species-specific, in contrast to domain d loop sequences: the sequence variety of domain d loop is almost the same for <i>Enterovirus A, B, C</i> and <i>D</i> and <i>Rhinovirus A</i> and <i>C</i> species, whereas tripeptide sequence variety differs. The conservation of the tripeptide sequence within species, together with the
 436 437 438 439 440 441 442 	Conclusions We analysed the variety and occurrence of the replication element oriL's functional loop and its protein ligand virus protease 3C. RNA-binding motifs of 3C are species-specific, in contrast to domain d loop sequences: the sequence variety of domain d loop is almost the same for <i>Enterovirus A, B, C</i> and <i>D</i> and <i>Rhinovirus A</i> and <i>C</i> species, whereas tripeptide sequence variety differs. The conservation of the tripeptide sequence within species, together with the almost universal diversity of tetraloop sequences among species, indicates the occurrence of the
 436 437 438 439 440 441 442 443 	Conclusions We analysed the variety and occurrence of the replication element oriL's functional loop and its protein ligand virus protease 3C. RNA-binding motifs of 3C are species-specific, in contrast to domain d loop sequences: the sequence variety of domain d loop is almost the same for <i>Enterovirus A, B, C</i> and <i>D</i> and <i>Rhinovirus A</i> and <i>C</i> species, whereas tripeptide sequence variety differs. The conservation of the tripeptide sequence within species, together with the almost universal diversity of tetraloop sequences among species, indicates the occurrence of the independent evolution of these two elements. Our result suggest the structure-based, rather than

445 reported in the literature, let us assume that the sequence-structure degeneracy is a universal way

446 RNA in which tetraloops are used in nature.

4	4	7

448	References
449	Acevedo, A., Brodsky, L. and Andino, R. (2013) 'Mutational and fitness landscapes of an
450	RNA virus revealed through population sequencing.', Nature. Nature Publishing Group,
451	505(7485), pp. 686–690. doi: 10.1038/nature12861.
452	Andino, R., Rieckhof, G. E., Achacoso, P. L. and Baltimore, D. (1993) 'Poliovirus RNA
453	synthesis utilizes an RNP complex formed around the 5' -end of viral RNA', EMBO Journal,
454	12(9), pp. 3587–3598.
455	Andino, R., Rieckhof, G. E. and Baltimore, D. (1990) 'A Functional Ribonucleoprotein
456	around the 5' End of Poliovirus', Cell, 63, pp. 369–380.
457	Andino, R., Rieckhof, G. E., Trono, D. and Baltimore, D. (1990) 'Substitutions in the
458	protease (3Cpro) gene of poliovirus can suppress a mutation in the 5' noncoding region.', J
459	<i>Virol</i> , 64(2), pp. 607–612.
460	Bahadur, R. P., Zacharias, M. and Janin, J. (2008) 'Dissecting protein-RNA recognition
461	sites.', Nucleic Acids Res., 36(8), pp. 2705–2716. doi: 10.1093/nar/gkn102.
462	Bessaud, M., Joffret, ML., Blondel, B. and Delpeyroux, F. (2016) 'Exchanges of
463	genomic domains between poliovirus and other cocirculating species C enteroviruses reveal a
464	high degree of plasticity', Scientific Reports, 6(1), p. 38831. doi: 10.1038/srep38831.

465	Bottaro, S. and Lindorff-Larsen, K. (2017) 'Mapping the Universe of RNA Tetraloop
466	Folds', Biophysical Journal, 113(2), pp. 257–267. doi: 10.1016/j.bpj.2017.06.011.
467	Cai, Z., Gorin, A., Frederick, R., Ye, X., Hu, W., Majumdar, A., Kettani, A. and Patel, D.
468	J. (1998) 'Solution structure of P22 transcriptional antitermination N peptide-box B RNA
469	complex.', Nature structural biology, 5(3), pp. 203–212.
470	Chase, A. J., Daijogo, S. and Semler, B. L. (2014) 'Inhibition of poliovirus-induced
471	cleavage of cellular protein PCBP2 reduces the levels of viral RNA replication.', Journal of
472	virology, 88(6), pp. 3192–3201. doi: 10.1128/JVI.02503-13.
473	Chanfreau, G., Buckle, M. and Jacquier, A. (2000) 'Recognition of a conserved class of
474	RNA tetraloops by Saccharomyces cerevisiae RNase III.', Proceedings of the National Academy
475	of Sciences of the United States of America, 97(7), pp. 3142-3147. doi:
476	10.1073/pnas.070043997.
477	Cheong, C. and Cheong, H. (2010) 'RNA Structure: Tetraloops', in Encyclopedia of life
478	sciences. Chichester: John Wiley & Sons, Ltd. doi: 10.1002/9780470015902.a0003135.pub2.
479	Cheong, C., Varani, G. and Tinoco, I. J. (1990) 'Solution structure of an unusually stable
480	RNA hairpin, 5'GGAC(UUCG)GUCC.', Nature., 346(6285), pp. 680-682.
481	Crooks, G. E., Hon, G., Chandonia, JM. and Brenner, S. E. (2004) 'WebLogo: A
482	Sequence Logo Generator', Genome Research, 14(6), pp. 1188-1190. doi: 10.1101/gr.849004.
483	Cui, S., Wang, J., Fan, T., Qin, B., Guo, L., Lei, X., Wang, J., Wang, M. and Jin, Q.

484 (2011) Crystal structure of human enterovirus 71 3C protease.', Journal of molecula

- 485 408(3), pp. 449–461. doi: 10.1016/j.jmb.2011.03.007.
- 486 D'Ascenzo, L., Leonarski, F., Vicens, Q. and Auffinger, P. (2016) "Z-DNA like"
- 487 fragments in RNA: a recurring structural motif with implications for folding, RNA/protein
- 488 recognition and immune response.', *Nucleic acids research*, 44(12), pp. 5944–5956. doi:
- 489 10.1093/nar/gkw388.
- 490 D'Ascenzo, L., Leonarski, F., Vicens, Q. and Auffinger, P. (2017) 'Revisiting GNRA and
- 491 UNCG folds: U-turns versus Z-turns in RNA hairpin loops', *RNA*, 23(3), pp. 259–269. doi:
- 492 10.1261/rna.059097.116.
- 493 Du, Z., Yu, J., Andino, R. and James, T. L. (2003) 'Extending the family of UNCG-like
- 494 tetraloop motifs: NMR structure of a CACG tetraloop from coxsackievirus B3.', *Biochemistry*,
- 495 42(15), pp. 4373–4383. doi: 10.1021/bi027314e.
- 496 Du, Z., Yu, J., Ulyanov, N. B., Andino, R. and James, T. L. (2004) 'Solution structure of
- 497 a consensus stem-loop D RNA domain that plays important roles in regulating translation and
- 498 replication in enteroviruses and rhinoviruses.', *Biochemistry*, 43(38), pp. 11959–11972. doi:
- 499 10.1021/bi048973p.
- 500 Gamarnik, A. V and Andino, R. (1998) 'Switch from translation to RNA replication in a
- 501 positive-stranded RNA virus', Genes & Dev., 12, pp. 2293–2304. doi: 10.1101/gad.12.15.2293.
- 502 Goodfellow, I., Chaudhry, Y., Richardson, A., Meredith, J., Almond, J. W., Barclay, W.

503	and Evans, D. J. (2000) 'Identification of a cis-acting replication element within the poliovirus
504	coding region.', Journal of virology, 74(10), pp. 4590-4600. doi: 10.1128/JVI.74.10.4590-
505	4600.2000.
506	Gruber, A. R., Lorenz, R., Bernhart, S. H., Neuböck, R. and Hofacker, I. L. (2008) 'The
507	Vienna RNA websuite.', Nucleic acids research, 36(Web Server issue), pp. W70-4. doi:
508	10.1093/nar/gkn188.
509	Hämmerle, T., Hellen, C. U. and Wimmer, E. (1991) 'Site-directed mutagenesis of the
510	putative catalytic triad of poliovirus 3C proteinase.', The Journal of biological chemistry, 266(9),
511	pp. 5412–5416.
512	Hämmerle, T., Molla, A. and Wimmer, E. (1992) 'Mutational analysis of the proposed
513	FG loop of poliovirus proteinase 3C identifies amino acids that are necessary for 3CD cleavage
514	and might be determinants of a function distinct from proteolytic activity.', J Virol., 66(10), pp.
515	6028–6034.
516	Harris, K. S., Reddigari, S. R., Nicklin, M. J., Hämmerle, T. and Wimmer, E. (1992)
517	'Purification and characterization of poliovirus polypeptide 3CD, a proteinase and a precursor
518	for RNA polymerase.', J Virol., 66(12), pp. 7481–7489.
519	Headey, S. J., Huang, H., Claridge, J. K., Soares, G. A., Dutta, K., Schwalbe, M., Yang,
520	D. and Pascal, S. M. (2007) 'NMR structure of stem-loop D from human rhinovirus-14.', RNA,
521	13(3), pp. 351–360. doi: 10.1261/rna.313707.

522	Ihle, Y., Ohlenschläger, O., Häfner, S., Duchardt, E., Zacharias, M., Seitz, S., Zell, R.,
523	Ramachandran, R. and Görlach, M. (2005) 'A novel cGUUAg tetraloop structure with a
524	conserved yYNMGg-type backbone conformation from cloverleaf 1 of bovine enterovirus 1
525	RNA.', Nucleic Acids Res., 33(6), pp. 2003–2011. doi: 10.1093/nar/gki501.
526	Jones, S., Daley, D. T. A., Luscombe, N. M., Berman, H. M. and Thornton, J. M. (2001)
527	'Protein – RNA interactions : a structural analysis', <i>Biochemistry</i> , 29(4), pp. 943–954.
528	Katoh, K. and Standley, D. M. (2013) 'MAFFT multiple sequence alignment software
529	version 7: improvements in performance and usability.', Molecular biology and evolution, 30(4),
530	pp. 772-80. doi: 10.1093/molbev/mst010.
531	Krumbholz, A., Dauber, M., Henke, A., Birch-Hirschfeld, E., Knowles, N. J., Stelzner, A.
532	and Zell, R. (2002) 'Sequencing of porcine enterovirus groups II and III reveals unique features
533	of both virus groups.', Journal of virology, 76(11), pp. 5813-5821.
534	Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A.,
535	McWilliam, H., Valentin, F., Wallace, I. M., Wilm, A., Lopez, R., Thompson, J. D., Gibson, T.
536	J. and Higgins, D. G. (2007) 'Clustal W and Clustal X version 2.0.', <i>Bioinformatics</i> , 23(21), pp.
537	2947-2948. doi: 10.1093/bioinformatics/btm404.
538	Lauring, A. S., Frydman, J. and Andino, R. (2013) 'The role of mutational robustness in
539	RNA virus evolution.', Nature reviews. Microbiology, 11(5), pp. 327-336. doi:
540	10.1038/nrmicro3003.

541	Lebars, I., Lamontagne, B., Yoshizawa, S., Aboul-Elela, S. and Fourmy, D. (2001)
542	'Solution structure of conserved AGNN tetraloops: insights into Rnt1p RNA processing.', The
543	EMBO journal, 20(24), pp. 7250-7258. doi: 10.1093/emboj/20.24.7250.
544	Legault, P., Li, J., Mogridge, J., Kay, L. E. and Greenblatt, J. (1998) 'NMR structure of
545	the bacteriophage lambda N peptide/boxB RNA complex: recognition of a GNRA fold by an
546	arginine-rich motif.', Cell, 93(2), pp. 289–299.
547	Leong, L. E. C., Walker, P. A., Porter, A. G., Protease, H. R, Leon, L. E. C., Walker, P.
548	A., Porter, A. G., Leong, L. E. C., Walker, P. A. and Porter, A. G. (1993) 'Human Rhinovirus-14
549	Protease 3C (3Cpro) Binds Specifically to the 5'-Noncoding Region of the Viral RNA', The
550	Journal of biological chemistry, 268(34), pp. 25735–25739.
551	Liu, P., Li, L., Keane, S. C., Yang, D., Leibowitz, J. L. and Giedroc, D. P. (2009) 'Mouse
552	hepatitis virus stem-loop 2 adopts a uYNMG(U)a-like tetraloop structure that is highly
553	functionally tolerant of base substitutions.', Journal of virology, 83(23), pp. 12084–12093. doi:
554	10.1128/JVI.00915-09.
555	Lorenz, R., Bernhart, S. H., Höner Zu Siederdissen, C., Tafer, H., Flamm, C., Stadler, P.
556	F. and Hofacker, I. L. (2011) 'ViennaRNA Package 2.0.', Algorithms for molecular biology,
557	6(26). doi: 10.1186/1748-7188-6-26.
558	Lukashev, A. N., Shumilina, E. Y., Belalov, I. S., Ivanova, O. E., Eremeeva, T. P.,
559	Reznik, V. I., Trotsenko, O. E., Drexler, J. F. and Drosten, C. (2014) 'Recombination strategies

560	and evolutionary of	lynamics	of the Human	enterovirus A	global	gene p	ool.', T	he Journal	of
	2	2			0	0 1	,		./

- 561 general virology, 95(Pt 4), pp. 868–873. doi: 10.1099/vir.0.060004-0.
- 562 Matthews, D. a, Dragovich, P. S., Webber, S. E., Fuhrman, S. a, Patick, a K., Zalman, L.
- 563 S., Hendrickson, T. F., Love, R. a, Prins, T. J., Marakovits, J. T., Zhou, R., Tikhe, J., Ford, C. E.,
- 564 Meador, J. W., Ferre, R. a, Brown, E. L., Binford, S. L., Brothers, M. a, DeLisle, D. M. and
- 565 Worland, S. T. (1999) 'Structure-assisted design of mechanism-based irreversible inhibitors of
- 566 human rhinovirus 3C protease with potent antiviral activity against multiple rhinovirus
- 567 serotypes.', Proceedings of the National Academy of Sciences of the United States of America,
- 568 96(20), pp. 11000–11007.
- 569 McWilliam Leitch, E. C., Cabrerizo, M., Cardosa, J., Harvala, H., Ivanova, O. E., Koike,
- 570 S., Kroes, A. C. M., Lukashev, A., Perera, D., Roivainen, M., Susi, P., Trallero, G., Evans, D. J.
- and Simmonds, P. (2012) 'The association of recombination events in the founding and
- 572 emergence of subgenogroup evolutionary lineages of human enterovirus 71.', Journal of
- 573 *virology*, 86(5), pp. 2676–2685. doi: 10.1128/JVI.06065-11.
- 574 Melchers, W. J. G., Zoll, J., Tessari, M., Bakhmutov, D. V, Gmyl, A. P., Agol, V. I. and
- 575 Heus, H. a (2006) 'A GCUA tetranucleotide loop found in the poliovirus oriL by in vivo SELEX
- 576 (un)expectedly forms a YNMG-like structure: Extending the YNMG family with GYYA.', RNA,
- 577 12(9), pp. 1671–1682. doi: 10.1261/rna.113106.
- 578 Mosimann, S. C., Cherney, M. M., Sia, S., Plotch, S. and James, M. N. (1997) 'Refined

579	X-ray crystallograp	hic structure of the	poliovirus 3C ge	ne product.', J	<i>Mol Biol</i> , 273(5), pp

- 580 1032–1047. doi: 10.1006/jmbi.1997.1306.
- 581 Muslin, C., Joffret, M.-L., Pelletier, I., Blondel, B. and Delpeyroux, F. (2015) 'Evolution
- and Emergence of Enteroviruses through Intra- and Inter-species Recombination: Plasticity and
- 583 Phenotypic Impact of Modular Genetic Exchanges in the 5' Untranslated Region', *PLOS*
- 584 Pathogens, 11(11), p. e1005266. doi: 10.1371/journal.ppat.1005266.
- 585 Oberstrass, F. C., Lee, A., Stefl, R., Janis, M., Chanfreau, G. and Allain, F. H.-T. (2006)
- 586 'Shape-specific recognition in the structure of the Vts1p SAM domain with RNA.', *Nature*
- 587 *structural & molecular biology*, 13(2), pp. 160–167. doi: 10.1038/nsmb1038.
- 588 Oermann, C. M., Schuster, J. E., Conners, G. P., Newland, J. G., Selvarangan, R. and
- Jackson, M. A. (2015) 'Enterovirus D68. A focused review and clinical highlights from the 2014
- 590 U.S. Outbreak.', Annals of the American Thoracic Society, 12(5), pp. 775–781. doi:
- 591 10.1513/AnnalsATS.201412-592FR.
- Palmenberg, A., Neubauer, D. and Skern, T. (2010) 'Genome organization and encoded
 proteins.', in Ehrenfeld, E., Domingo, E., and Roos, R. P. (eds) *The Picornaviruses*. ASM Press,
 pp. 3–17.
- 595 Petrov, A. I., Zirbel, C. L. and Leontis, N. B. (2013) 'Automated classification of RNA
- 596 3D motifs and the RNA 3D Motif Atlas', *RNA*, 19(10), pp. 1327–1340. doi:
- 597 10.1261/rna.039438.113.

598	Pilipenko, E. V, Blinov, V. M. and Agol, V. I. (1990) 'Gross rearrangements within the
599	5'-untranslated region of the picornaviral genomes.', Nucleic acids research, 18(11), pp. 3371-
600	3375.
601	Proctor, D. J., Schaak, J. E., Bevilacqua, J. M., Falzone, C. J. and Bevilacqua, P. C.
602	(2002) 'Isolation and characterization of a family of stable RNA tetraloops with the motif
603	YNMG that participate in tertiary interactions.', <i>Biochemistry</i> , 41(40), pp. 12062–12075.
604	Prostova, M. A., Gmyl, A. P., Bakhmutov, D. V, Shishova, A. A., Khitrina, E. V,
605	Kolesnikova, M. S., Serebryakova, M. V, Isaeva, O. V and Agol, V. I. (2015) 'Mutational
606	robustness and resilience of a replicative cis-element of RNA virus: promiscuity, limitations,
607	relevance.', RNA biology, 12(12), pp. 1338–1354. doi: 10.1080/15476286.2015.1100794.
608	Rieder, E., Xiang, W., Paul, A. and Wimmer, E. (2003) 'Analysis of the cloverleaf
609	element in a human rhinovirus type 14/poliovirus chimera: correlation of subdomain D structure,
610	ternary protein complex formation and virus replication', J Gen Virol, 84(8), pp. 2203-2216. doi:
611	10.1099/vir.0.19013-0.
612	Sanjuán, R., Nebot, M. R., Chirico, N., Mansky, L. M. and Belshaw, R. (2010) 'Viral
613	mutation rates.', Journal of virology, 84(19), pp. 9733–9748. doi: 10.1128/JVI.00694-10.
614	Schärpf, M., Sticht, H., Schweimer, K., Boehm, M., Hoffmann, S. and Rösch, P. (2000)
615	'Antitermination in bacteriophage lambda. The structure of the N36 peptide-boxB RNA
616	complex.', Eur. J. Boichem., 267(267), pp. 2397–2408.

617	Shih, S., Chen, T. and Wu, C. (2004) 'Mutations at KFRDI and VGK Domains of
618	Enterovirus 71 3C Protease Affect Its RNA Binding and Proteolytic Activities', Journal of
619	Biomedical Science, pp. 239–248. doi: 10.1159/000076036.
620	Solomon, T., Lewthwaite, P., Perera, D., Cardosa, M. J., McMinn, P. and Ooi, M. H.
621	(2010) 'Virology, epidemiology, pathogenesis, and control of enterovirus 71.', The Lancet.
622	Infectious diseases, 10(11), pp. 778-790. doi: 10.1016/S1473-3099(10)70194-8.
623	Thapar, R., Denmon, A. P. and Nikonowicz, E. P. (2013) 'Recognition modes of RNA
624	tetraloops and tetraloop-like motifs by RNA-binding proteins.', Wiley interdisciplinary reviews.
625	<i>RNA</i> , 5(1), pp. 49–67. doi: 10.1002/wrna.1196.
626	Theimer, C. A., Finger, L. D. and Feigon, J. (2003) 'YNMG tetraloop formation by a
627	dyskeratosis congenita mutation in human telomerase RNA', RNA, 9, pp. 1446–1455. doi:
628	10.1261/rna.5152303.activity.
629	Thompson, A. A. and Peersen, O. B. (2004) 'Structural basis for proteolysis-dependent
630	activation of the poliovirus RNA-dependent RNA polymerase.', The EMBO journal, 23(17), pp.
631	3462-3471. doi: 10.1038/sj.emboj.7600357.
632	Trono, D., Andino, R. and Baltimore, D. (1988) 'An RNA sequence of hundreds of
633	nucleotides at the 5' end of poliovirus RNA is involved in allowing viral protein synthesis.',
634	Journal of virology, 62(7), pp. 2291–2299.
635	Uhlenbeck, O. C. (1990) 'Tetraloops and RNA folding', Nature. Nature Publishing

636 Group, 346(6285), pp. 613–614. doi: 10.1038/346613a0.

- 637 Varani, G., Cheong, C. and Tinoco, I. (1991) 'Structure of an unusually stable RNA
- 638 hairpin.', *Biochemistry*, 30(13), pp. 3280–3289.
- 639 Vogt, D. A. and Andino, R. (2010) 'An RNA element at the 5'-end of the poliovirus
- 640 genome functions as a general promoter for RNA synthesis', *PLoS pathogens*, 6(6), p. e1000936.
- 641 doi: 10.1371/journal.ppat.1000936.
- 642 Wagner, A. and Stadler, P. F. (1999) 'Viral RNA and evolved mutational robustness.',
- 643 *The Journal of experimental zoology*, 285(2), pp. 119–127.
- 644 Wang, Z., Hartman, E., Roy, K., Chanfreau, G. and Feigon, J. (2011) 'Structure of a yeast
- 645 RNase III dsRBD complex with a noncanonical RNA substrate provides new insights into
- 646 binding specificity of dsRBDs.', *Structure*, 19(7), pp. 999–1010. doi: 10.1016/j.str.2011.03.022.
- 647 Woese, C. R., Winker, S., Gutell, R. R., Winkers, S. and Gutell, R. R. (1990)
- 648 'Architecture of ribosomal RNA : Constraints on the sequence of "tetra-loops", *Proceedings of*
- 649 the National Academy of Sciences of the United States of America, 87(November), pp. 8467–
- 650 8471.
- 651 Wu, H., Henras, A., Chanfreau, G. and Feigon, J. (2004) 'Structural basis for recognition
- of the AGNN tetraloop RNA fold by the double-stranded RNA-binding domain of Rnt1p RNase
- 653 III', Amino Acids, 101(22), pp. 8307–8312.
- Wu, H., Yang, P. K., Butcher, S. E., Kang, S., Chanfreau, G. and Feigon, J. (2001) 'A

- 655 novel family of RNA tetraloop structure forms the recognition site for Saccharomyces cerevisiae
- 656 RNase III.', The EMBO journal, 20(24), pp. 7240–9. doi: 10.1093/emboj/20.24.7240.
- 657 Zell, R., Sidigi, K., Bucci, E., Stelzner, A. and Görlach, M. (2002) 'Determinants of the
- 658 recognition of enteroviral cloverleaf RNA by coxsackievirus B3 proteinase 3C.', RNA (New
- 659 York, N.Y.), 8(2), pp. 188–201. Available at:
- 660 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1370242&tool=pmcentrez&renderty
- 661 pe=abstract (Accessed: 19 December 2014).
- 662 Zell, R., Sidigi, K., Henke, A., Schmidt-Brauns, J., Hoey, E., Martin, S. and Stelzner, A.
- 663 (1999) 'Functional features of the bovine enterovirus 5'-non-translated region.', J Gen Virol, 80,
- 664 pp. 2299–2309.
- 665

666

667

Figure 1

Schematic representation of poliovirus genome and detailed representation of secondary structure of poliovirus replicative element oriL.

Protein 3C and its RNA-binding motifs ${}_{82}$ KFRDI ${}_{86}$ and ${}_{154}$ TGK ${}_{156}$ are shown (here and below amino acid numeration corresponds to poliovirus protein 3C) (Prostova et al., 2015 with modifications).

Figure 2

Secondary structure of oriL domain d of distinct enterovirus species.

For *Enterovirus E* and *F* domain d of the first oriL is shown. Secondary structure of domain d of Porcine enterovirus 9 strain UKG/410/73 was folded with use as reference Krumbholtz et al., 2002.

Figure 3

Distribituion of domain d loop sequence and amino acid motifs in the 3C protein.

A - Distribution of domain d loop sequences. The regions corresponding to tetraloop consensuses, triloops and pentaloops are shown. Number of genomes cut off at 15 for clear view of sequence distribution. **B** - The frequency plot of amino acid sequence of 3C in species of genus *Enterovirus*. The amino acid sequence logo was done with WebLogo server (Crooks *et al.*, 2004). Arrows indicate amino acids of the proteolytic triade (Glu71 and Cys 147), the first and the last amino acids of motif ₈₂KFRDI₈₆, the putative RNA-binding tripeptide 154-156 of 3C and Lys153 in the protein 3C of *Rhinovirus A*.

Table 1(on next page)

Number of full genome sequences that contained oriL region and number of unique domain d sequences before and after filtration.

For *Enterovirus E* and *F* number of unique tetraloops is shown separately for first and the second oriL.

Species	Number of full genome sequences	e Number of uni- tetraloops aft filtration						
Enterovirus A	1052	564	17			16		
Enterovirus B	339	244	18		18			
Enterovirus C	747	274	15		12			
Enterovirus D	419	57 7				6		
Enterovirus E	12	10	6	5	6	5		
Enterovirus F	13	10	4	3	4	3		
Enterovirus G	10	8	6			6		
Enterovirus H	3	2	2			2		
Enterovirus J	8	5	3		3			
Rhinovirus A	151	118	8		8			
Rhinovirus B	50	37	7			7		
Rhinovirus C	38	37	6			6		

1

Table 2(on next page)

Occurrence of domain d apical sequences in filtered sets of full genomes of different enterovirus species.

Tetraloops CCCG, UGUG, CAUG and UUGG that were unique for species *Enterovirus A, C* and *D* and were lost upon filtration, were added and are shown in blue. The gradient coloring from red to green represents abundancy heat map for the genomes with different domain d sequence.

Table 2 Occurrence of domain d apical sequences in filtered sets of full genomes of different
enterovirus species and serotypes. Tetraloops CCCG, UGUG, CAUG and UUGG that were unique
for species *Enterovirus A, B, C* and *D* and were lost upon filtration, were added to maintain the
diversity of loop sequence and are shown in blue. The gradient coloring from red to green
represents abundance heat map for the genomes with different domain d sequence.

						Ente	erovirus	3							Rł	ninovi	rus
Loop			А				С										
sequence	all	EV71	EV71 C4 genotype	non EV71	В	all	PV	non PV	D	E	F	G	н	J	A	В	С
						1	riloops										
CCG						1		1									
CAG						1		1									
UCU															1	5	
UUU																17	
UAU																8	
AUU																4	
UGU																1	
UUC																1	
GAU																1	
YNMG Tetraloops																	
UACG	85	28		57	51	106	64	42				3	1	2	38		15
UGCG	114	2		112	31	43	31	12				1	1		2		
UUCG	16	16	14		3				50						6		6
UCCG	2			2	11	1	1								53		10
CACG	48	28		20	98	101	54	47	1			1		2	5		
CGCG	3	2		1	3	13	6	7				1					
CUCG	132	127	126	5	5	2		2	2						1		3
CCCG	40	39	28	1	16	1		1	1						12		2
UAAG	10	10			2												
UGAG	22	22			1												
UUAG																	
UCAG																	
CAAG	1	1			4	1		1						1			
CGAG	1			1		2		2									
CUAG																	
CCAG																	
YACG					1												
						YNUC	G Tetral	oops									
UAUG	54	1		53											1		
UGUG	1			1	1	1		1									
UUUG									1								
UCUG					1												
CAUG					9	1		1									
CGUG	1			1	3	2		2									
CUUG	34	34	35		3				2								
CCUG	1	1	1		1	1		1									
						GYYA	A Tetral	oops									
GCUA										2	13						
GCCA											3						
							I	I		2	2	1		I –	I –	I –	I –

UUGG									1							
CUUC																1
AUUA											1					
Pentaloops																
GCUUA										7						
GUUUA										2						
GCCUA										4						
GCGUA										1						
GCGUA										1						
GAUUA										1						
GUCUA										1						

7