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ठ⃚

ABSTRACT 14ठ⃚

Restriction-site associated DNA sequencing (RADseq) has become a powerful and useful 15ठ⃚

approach for population genomics.  Currently, no software exists that utilizes both paired-end 16ठ⃚

reads from RADseq data to efficiently produce population-informative variant calls, 17ठ⃚

especially for organisms with large effective population sizes and high levels of genetic 18ठ⃚

polymorphism but for which no genomic resources exist.  dDocent is an analysis pipeline with 19ठ⃚

a user-friendly, command-line interface designed to process individually barcoded RADseq 20ठ⃚

data (with double cut sites) into informative SNPs/INDELs for population-level analyses.  The 21ठ⃚

pipeline, written in BASH, uses data reduction techniques and other stand-alone software 22ठ⃚

packages to perform quality trimming and adapter removal, de novo assembly of RAD loci, 23ठ⃚

read mapping, SNP and INDEL calling, and baseline data filtering.  Double-digest RAD data 24ठ⃚

from population pairings of three different marine fishes were used to compare dDocent with 25ठ⃚

Stacks, the first generally available, widely used pipeline for analysis of RADseq data.  26ठ⃚

dDocent consistently identified more SNPs shared across greater numbers of individuals and 27ठ⃚

with higher levels of coverage.  This is most likely due to the fact that dDocent quality trims 28ठ⃚

instead of filtering and incorporates both forward and reverse reads in assembly, mapping, 29ठ⃚

and SNP calling, thus enabling use of reads with INDEL polymorphisms.  The pipeline and a 30ठ⃚

comprehensive user guide can be found at (http://dDocent.wordpress.com). 31ठ⃚

  32ठ⃚
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3ठ⃚

ठ⃚

INTRODUCTION 33ठ⃚

 Next-generation sequencing (NGS) has transformed the field of genetics into genomics 34ठ⃚

by providing DNA sequence data at an ever increasing rate and reduced cost (Mardis, 2008).  35ठ⃚

The nascent field of population genomics relies on NGS coupled with laboratory methods to 36ठ⃚

reproducibly reduce genome complexity to a few thousand loci.  The most common approach, 37ठ⃚

restriction-site associated DNA sequencing (RADseq), uses restriction endonucleases to 38ठ⃚

randomly sample the genome at locations adjacent to restriction-enzyme recognition sites that, 39ठ⃚

when coupled with Illumina sequencing, produces high coverage of homologous SNP (Single 40ठ⃚

Nucleotide Polymorphism) loci.  As such, RADseq provides a powerful approach for 41ठ⃚

population level genomic studies (Ellegren, 2014;Narum et al., 2013;Rowe et al., 2011). 42ठ⃚

 The original RADseq approach (Baird et al., 2008), and initial population genomic 43ठ⃚

studies employing it (Hohenlohe et al., 2010), focused on SNP discovery and genotyping on 44ठ⃚

the first (forward) read only.  This is because the original RADseq method (Baird et al., 2008) 45ठ⃚

utilized random shearing to produce RAD loci; paired-end reads were not of uniform length 46ठ⃚

or coverage, making it problematic to find SNPs at high and uniform levels of coverage 47ठ⃚

across a large proportion of individuals.  As a result, the most comprehensive and widely used 48ठ⃚

software package for analysis of RADseq data, Stacks (Catchen et al., 2013, 2011), provides 49ठ⃚

SNP genotypes based only on first-read data.  In contrast, RADseq approaches such as 50ठ⃚

ddRAD (Peterson et al., 2012), 2bRAD (Wang et al., 2012), and ezRAD (Toonen et al., 2013) 51ठ⃚

rely on restriction enzymes to define both ends of a RAD locus, largely producing RAD loci 52ठ⃚

of fixed length (flRAD).  Paired-end Illumina sequencing of flRAD fragments provides an 53ठ⃚

opportunity to significantly expand the number of SNPs that can be genotyped from a single 54ठ⃚

RADseq library. 55ठ⃚
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ठ⃚

 Here, the variant-calling pipeline dDocent is introduced as a tool for generating 56ठ⃚

population genomic data; a brief methodological outline of the analysis pipeline also is 57ठ⃚

presented.  dDocent is a wrapper script designed to take raw RADseq data and produce 58ठ⃚

population informative SNP calls, taking full advantage of both paired-end reads.  dDocent is 59ठ⃚

configured for organisms with high levels of nucleotide and INDEL polymorphisms, such as 60ठ⃚

found in many marine organisms (Guo et al., 2012;Keever et al., 2009;Sodergren et al., 61ठ⃚

2006;Waples, 1998;Ward et al., 1994).  As input, dDocent takes paired FASTQ files for 62ठ⃚

individuals and outputs raw SNP and INDEL calls as well as filtered SNP calls in VCF format.  63ठ⃚

The pipeline and a comprehensive online manual can be found at 64ठ⃚

(http://dDocent.wordpress.com).  Finally, results of pipeline analyses, using both dDocent and 65ठ⃚

Stacks, of populations of three species of marine fishes are provided to demonstrate the utility 66ठ⃚

of dDocent compared to Stacks, the first and most comprehensive existing  software package 67ठ⃚

for RAD population genomics. 68ठ⃚

METHODS 69ठ⃚

Implementation and basic usage 70ठ⃚

 The dDocent pipeline is written in BASH and will run using most Unix-like operating 71ठ⃚

systems.  dDocent is largely dependent on other bioinformatics software packages, taking 72ठ⃚

advantage of programs designed specifically for each task of the analysis and ensuring that 73ठ⃚

each modular component can be updated separately.  Proper implementation depends on the 74ठ⃚

correct installation of each third-party packages/tools.  A full list of dependencies can be 75ठ⃚

found in the user manual at (http://ddocent.wordpress.com/ddocent-pipeline-user-guide/) and 76ठ⃚

a sample script to automatically download and install the packages in a Linux environment 77ठ⃚

can be found at the dDocent repository (https://github.com/jpuritz/dDocent). 78ठ⃚
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5ठ⃚

ठ⃚

 dDocent is run by simply switching to a directory containing the input data and starting 79ठ⃚

the program.  There is no configuration file; dDocent will proceed through a short series of 80ठ⃚

command-line prompts, allowing the user to set up analysis parameters.  After all required 81ठ⃚

variables are configured, including an e-mail address for a completion notification, dDocent 82ठ⃚

provides instructions on how to move the program to the background and run, undisturbed, 83ठ⃚

until completion.  The pipeline is designed to take advantage of multiple processing core 84ठ⃚

machines and, whenever possible, processes should be invoked with multiple threads or 85ठ⃚

occurrences.  For most Linux distributions, the number of processing cores should be 86ठ⃚

automatically detected.  If dDocent cannot determine the number of processors, it will ask the 87ठ⃚

user to input the value. 88ठ⃚

 There are two distinct modules of dDocent: dDocent.FB and dDocent.GATK.  89ठ⃚

dDocent.FB uses minimal, BAM-file preparation steps before calling SNPs and INDELs, 90ठ⃚

simultaneously using FreeBayes (Garrison & Marth, 2012).  dDocent.GATK uses GATK 91ठ⃚

(McKenna et al., 2010) for INDEL realignment, SNP and INDEL genotyping (using 92ठ⃚

HaplotypeCaller), and variant quality-score recalibration, largely following GATK Best 93ठ⃚

Practices recommendations (Auwera & Carneiro, 2013;DePristo et al., 2011).  The modules 94ठ⃚

represent two different strategies for SNP/INDEL calling that are completely independent of 95ठ⃚

one another.  The remainder of this paper focuses on dDocent.FB; additional information on 96ठ⃚

dDocent.GATK may be found in the user guide and results from dDocent.GATK can be 97ठ⃚

found in Appendix S1. 98ठ⃚

Data input requirements 99ठ⃚

 dDocent requires demultiplexed forward and paired-end FASTQ files for every 100ठ⃚

individual in the analysis.  A simple naming convention (a single-word locality code/name 101ठ⃚
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6ठ⃚

ठ⃚

and a single-word sample identifier separated by an underscore) must be followed for every 102ठ⃚

sample; examples are LOCA_IND01.F.fq and LOCA_IND01.R.fq.  A sample script for using a 103ठ⃚

text file with barcodes and sample names and process_radtags from Stacks (Catchen et al., 104ठ⃚

2013) to properly demultiplex samples and put them in the proper dDocent naming 105ठ⃚

convention can be found at the dDocent repository (https://github.com/jpuritz/dDocent). 106ठ⃚

Quality trimming 107ठ⃚

 After dDocent checks that it is recognizing the proper number of samples in the current 108ठ⃚

directory, it asks the user if s/he wishes to proceed with quality trimming of sequence data.  If 109ठ⃚

directed, dDocent can use the program Trim Galore! 110ठ⃚

(http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/) to simultaneously remove 111ठ⃚

Illumina adapter sequences and trim ends of reads of low quality.  By default, Trim Galore! 112ठ⃚

looks for double-digest RAD adapters (Peterson et al., 2012) and trims bases with quality 113ठ⃚

scores less than Phred 10.  Typically, quality trimming only needs to be performed once on 114ठ⃚

data, so the option exists to skip this step in subsequent dDocent analyses. 115ठ⃚

De novo assembly 116ठ⃚

 Without reference material, population genomic analyses from RADseq depend on de 117ठ⃚

novo assembly of a set of reference contigs.  Inherently, not all RAD loci appear in all 118ठ⃚

individuals due to stochastic processes inherent in library preparation and sequencing and to 119ठ⃚

polymorphism in restriction-enzyme restriction sites (Catchen et al., 2011).  Moreover, 120ठ⃚

populations can contain large levels of within locus polymorphism, making generation of a 121ठ⃚

reference sequence computationally difficult.  dDocent minimizes the amount of data used for 122ठ⃚

assembly by taking advantage of the fact that flRAD loci present in multiple individuals 123ठ⃚

should have higher levels of exactly matching reads (forward and reverse) than loci that are 124ठ⃚
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7ठ⃚

ठ⃚

only present in a few individuals.  Caution is advised for unique reads with low levels of 125ठ⃚

coverage throughout the data set as they likely represent sequencing errors or polymorphisms 126ठ⃚

that are shared only by a few individuals. 127ठ⃚

 During assembly, paired-end reads are reverse complemented and concatenated to 128ठ⃚

forward reads.  Unique paired reads are identified and their occurrences are counted in the 129ठ⃚

entire data set.  These data are tabulated into the number of unique reads per levels of 1X to 130ठ⃚

50X coverage; a graph is then generated and printed to the terminal.  The distribution usually 131ठ⃚

follows an asymptotic relationship (Figure 1), with a large proportion of reads only having 132ठ⃚

one or two occurrences, meaning they likely will not be informative on a population scale.  133ठ⃚

Highly polymorphic RAD loci still should have at least one allele present at the level of 134ठ⃚

expected sequence coverage, so this can be used as a guide for informative data.  The user 135ठ⃚

chooses a cut-off level of coverage for reads to be used for assembly – note all reads are still 136ठ⃚

used for subsequence steps of the pipeline. 137ठ⃚

 After a cut-off level is chosen, remaining reads are returned in forward- and reverse-read 138ठ⃚

files and then input directly into the RADseq assembly program Rainbow (Chong et al., 2012).  139ठ⃚

The default parameters of Rainbow are used except that the maximum number of mismatches 140ठ⃚

used in initial clustering should be changed from four to six.  In short, Rainbow clusters 141ठ⃚

forward reads based on similarity; clusters are then recursively divided, based on reverse 142ठ⃚

reads, into groups representing single alleles.  Reads in merged clusters are then assembled 143ठ⃚

using a greedy algorithm (Pop & Salzberg, 2008).  dDocent then selects the longest contig for 144ठ⃚

each cluster as the representative reference sequence for that RAD locus.  If the forward read 145ठ⃚

does not overlap with the reverse read (almost always the case with flRAD), the forward read 146ठ⃚

is concatenated to the reverse read with ten ‘N’ characters as padding.  Finally, reference 147ठ⃚
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8ठ⃚

ठ⃚

sequences are clustered based on overall sequence similarity (chosen by user, 90% by default), 148ठ⃚

using the program CD-HIT (Fu et al., 2012;Li & Godzik, 2006).  This final cluster step 149ठ⃚

reduces the data set further, based on overall sequence identity after assembly.  Alternatively, 150ठ⃚

de novo assembly can be skipped and the user can provide a FASTA file with reference 151ठ⃚

sequences. 152ठ⃚

Read mapping 153ठ⃚

 dDocent uses the MEM algorithm (Li, 2013) of BWA (Li & Durbin, 2009, 2010) to map 154ठ⃚

quality-trimmed reads to the reference contigs.  Users can deploy the default values of BWA 155ठ⃚

or set an alternative value for each mapping parameter (match score, mismatch score, and 156ठ⃚

gap-opening penalty).  The default settings are meant for mapping reads to the human genome, 157ठ⃚

so users are encouraged to experiment with mapping parameters.  BWA output is ported to 158ठ⃚

SAMtools (Li et al., 2009), saving disk space, and alignments are saved to the disk as binary 159ठ⃚

alignment/Map (BAM).  BAM files are then sorted and indexed. 160ठ⃚

SNP and INDEL discovery and genotyping 161ठ⃚

 dDocent uses a two-step process to optimize the computationally intensive task of 162ठ⃚

SNP/INDEL calling.  First, quality-trimmed forward and reverse reads are reduced to unique 163ठ⃚

reads.  This data set is then mapped to all reference sequences using the previously entered 164ठ⃚

mapping settings (see Read Mapping above).  From this alignment, a set of intervals is created 165ठ⃚

using BEDtools (Quinlan & Hall, 2010).  The interval set saves computational time by 166ठ⃚

directing the SNP-/INDEL-calling software to examine only reference sequences along contigs 167ठ⃚

that have high quality mappings.  Second, the interval list is then split into a single file for 168ठ⃚

each processing core, allowing SNP/INDEL calling to be optimized with a scatter-gather 169ठ⃚

technique.  The program FreeBayes (Garrison & Marth, 2012) is then executed multiple times 170ठ⃚
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9ठ⃚

ठ⃚

simultaneously (one execution per processor and genomic interval).  FreeBayes is a Bayesian-171ठ⃚

based, variant-detection software that uses assembled haplotype sequences to simultaneously 172ठ⃚

call SNPs, INDELS, multi-nucleotide polymorphisms (MNPs), and complex events (e.g., 173ठ⃚

composite insertion and substitution events) from alignment files; FreeBayes has the added 174ठ⃚

benefit for population genomics of using reads across multiple individuals to improve 175ठ⃚

genotyping (Garrison & Marth, 2012).  FreeBayes is run with minimal changes to the default 176ठ⃚

parameters; minimum mapping quality score and base quality score are set to PHRED 10.  177ठ⃚

After all executions of FreeBayes are completed, raw SNP/INDEL calls are concatenated into a 178ठ⃚

single variant call file (VCF), using VCFtools (Danecek et al., 2011). 179ठ⃚

Variant Filtering 180ठ⃚

 Final SNP data-set requirements are likely to be highly dependent on specific goals and 181ठ⃚

aims of individual projects.  To that end, dDocent uses VCFtools (Danecek et al., 2011) to 182ठ⃚

provide only basic level filtering, mostly for run diagnostic purposes.  dDocent produces a 183ठ⃚

final VCF file that contains all SNPs, INDELS, MNPs, and complex events that are called in 184ठ⃚

90% of all individuals, with a minimum quality score of 30.  Users are encouraged to use 185ठ⃚

VCFtools and vcflib (part of the FreeBayes package; https://github.com/ekg/vcflib) to fully 186ठ⃚

explore and filter data appropriately. 187ठ⃚

Comparison between dDocent and Stacks 188ठ⃚

 Two sample localities, each comprised of 20 individuals, were chosen randomly from 189ठ⃚

unpublished RADseq data sets of three different, marine fish species: red snapper (Lutjanus 190ठ⃚

campechanus), red drum (Sciaenops ocellatus), and silk snapper (Lutjanus vivanus).  These 191ठ⃚

three species are part of ongoing RADseq projects in our laboratory, and preliminary analyses 192ठ⃚

indicated high levels of nucleotide polymorphisms across all populations.  Double-digest 193ठ⃚
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10ठ⃚

ठ⃚

RAD libraries were prepared, generally following Peterson et al. (2012).  Individual DNA 194ठ⃚

extractions were digested with EcoRI and MspI.  A barcoded adapter was ligated to the EcoRI 195ठ⃚

site of each fragment and a generic adapter was ligated to the MspI site.  Samples were then 196ठ⃚

equimollarly pooled and size-selected between 350 and 400 bp, using a Qiagen Gel Extraction 197ठ⃚

Kit.  Final library enhancement was completed using 12 cycles of PCR, simultaneously 198ठ⃚

enhancing properly ligated fragments and adding an Illumina Index for additional barcoding.  199ठ⃚

Libraries were sequenced on three separate lanes of an Illumina HiSeq 2000 at the University 200ठ⃚

of Texas Genomic Sequencing and Analysis Facility. 201ठ⃚

 Demultiplexed individual reads were analyzed with dDocent, using three different levels 202ठ⃚

of final reference contig clustering (90%, 96%, and 99% similarity) in an attempt to alter the 203ठ⃚

most comparable analysis variable in dDocent to match analysis variables of Stacks.  The 204ठ⃚

coverage cut-off for assembly was 12 for red snapper, 13 for red drum, and nine for silk 205ठ⃚

snapper.  All dDocent runs used mapping variables of one, three, and five for match-score 206ठ⃚

value, mismatch score, and gap-opening penalty, respectively.  For comparisons, complex 207ठ⃚

variants were decomposed into canonical SNP and INDEL representation from the raw VCF 208ठ⃚

files, using vcfallelicprimitives from vcflib (https://github.com/ekg/vcflib). 209ठ⃚

 For Stacks, reads were demultiplexed and cleaned using process_radtags, removing reads 210ठ⃚

with ‘N’ calls and low-quality base scores.  Because dDocent inherently uses both reads for 211ठ⃚

SNP/INDEL genotyping, forward reads and reverse reads were processed separately with 212ठ⃚

denovo_map.pl (Stacks version 1.08), using three different sets of parameters.  The first set 213ठ⃚

had a minimum depth of coverage of two to create a stack, a maximum distance of two 214ठ⃚

between stacks, and a maximum distance of four between stacks from different individuals, 215ठ⃚

with both the deleveraging algorithm and removal algorithms enabled.  The second set had a 216ठ⃚

PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.314v1 | CC-BY 4.0 Open Access | received: 28 Mar 2014, published: 28 Mar 2014

P
re
P
ri
n
ts



11ठ⃚

ठ⃚

minimum depth of coverage of three to create a stack, a maximum distance of four between 217ठ⃚

stacks, and a maximum distance of eight between stacks from different individuals, with both 218ठ⃚

the deleveraging algorithm and removal algorithms enabled.  The third set had a minimum 219ठ⃚

depth of coverage of three to create a stack, a maximum distance of four between stacks, and 220ठ⃚

a maximum distance of 10 between stacks from different individuals, with both the 221ठ⃚

deleveraging algorithm and removal algorithms enabled.  SNP calls were output in VCF 222ठ⃚

format. 223ठ⃚

 For both dDocent and Stacks runs, VCFtools was used to filter out INDELs and SNPs that 224ठ⃚

had a minor allele count of less than five.  SNP calls were then evaluated at different 225ठ⃚

individual-coverage levels: the total number of SNPs; the number of SNPS called in 75%, 226ठ⃚

90%, and 99% of individuals at 3X coverage; the number of SNPS called in 75% and 90% of 227ठ⃚

individuals at 5X coverage; the number of SNPS called in 75% and 90% of individuals at 10X 228ठ⃚

coverage; and the number of SNPS called in 75% and 90% of individuals at 20X coverage.  229ठ⃚

Overall coverage levels for red snapper were lower and likely impacted by a few low-quality 230ठ⃚

individuals; consequently, the number of 5X and 10X SNPs shared among 90% of individuals 231ठ⃚

(after removing the bottom 10% of individuals in terms of coverage) were compared instead 232ठ⃚

of SNP loci shared at 20X coverage.  Results from two runs of Stacks (one using forward and 233ठ⃚

one using reverse reads) were combined for comparison with dDocent, which inherently calls 234ठ⃚

SNPs on both reads.  All analyses and computations were performed on a 32-core Linux 235ठ⃚

workstation with 128 GB of RAM. 236ठ⃚

RESULTS AND DISCUSSION 237ठ⃚

 Results of SNP calling, including run times (in minutes) for each analysis (not including 238ठ⃚

quality trimming), are presented in Table 1.  Data from high coverage SNP calls, averaged 239ठ⃚
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12ठ⃚

ठ⃚

over all runs for each pipeline, are presented in Figure 1.  While Stacks called a larger number 240ठ⃚

of low coverage SNPs, limiting results to higher individual coverage and to higher individual 241ठ⃚

call rates revealed that dDocent consistently called more high-quality SNPs.  Run times were 242ठ⃚

equivalent for both pipelines. 243ठ⃚

 At almost all levels of coverage in three different data sets, dDocent called more SNPs 244ठ⃚

across more individuals than Stacks.  Two key differences between dDocent and Stacks likely 245ठ⃚

contribute these discrepancies: (i) quality trimming instead of quality filtering, and (ii) 246ठ⃚

simultaneous use of forward and reverse reads by dDocent in assembly, mapping, and 247ठ⃚

genotyping, instead of clustering as employed by Stacks.  As with any data analysis, quality of 248ठ⃚

data output is directly linked to the quality of data input.  Both dDocent and Stacks use 249ठ⃚

procedures to ensure that only high-quality sequence data are retained; however, Stacks 250ठ⃚

removes an entire read when a sliding window of bases drops below a preset quality score 251ठ⃚

(PHRED 10, by default), while dDocent via Trim Galore! trims off low-quality bases, 252ठ⃚

preserving high-quality bases of each read.  Filtering instead of trimming results in fewer 253ठ⃚

reads entering the Stacks analysis (between 65%-95% of the data compared to dDocent; data 254ठ⃚

not shown), generating lower levels of coverage and fewer SNP calls than dDocent. 255ठ⃚

 dDocent offers two advantages over Stacks: (i) it is specifically designed for paired-end 256ठ⃚

data and utilizes both forward and reverse reads for de novo RAD loci assembly, read 257ठ⃚

mapping, variant discovery, and genotyping; and (ii) it aligns reads to reference sequence 258ठ⃚

instead of clustering by identity.  Using both reads to cluster and assemble RAD loci helps to 259ठ⃚

ensure that portions of the genome with complex mutational events, including INDELs or small 260ठ⃚

repetitive regions, are properly assembled and clustered as homologous loci.  Additionally, 261ठ⃚

using BWA to map reads to reference loci enables dDocent to properly align reads with INDEL 262ठ⃚
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13ठ⃚

ठ⃚

polymorphisms, increasing coverage and subsequent variant discovery and genotyping.  263ठ⃚

Clustering methods employed by Stacks, whether clustering alleles within an individual or 264ठ⃚

clustering loci between individuals, effectively remove reads, alleles, and loci with INDEL 265ठ⃚

polymorphisms because the associated frame shift effectively inflates the observed number of 266ठ⃚

base-pair differences.  For organisms with large effective population sizes and high levels of 267ठ⃚

genetic diversity, such as many marine organisms (Waples, 1998;Ward et al., 1994), 268ठ⃚

removing reads and loci with INDEL polymorphisms will result in a loss of shared loci and 269ठ⃚

coverage. 270ठ⃚

CONCLUSION 271ठ⃚

 dDocent is an open-source, freely available population genomics pipeline configured for 272ठ⃚

species with high levels of nucleotide and INDEL polymorphisms, such as many marine 273ठ⃚

organisms.  The dDocent pipeline reports more SNPs shared across greater numbers of 274ठ⃚

individuals and with higher levels of coverage than current alternatives.  The pipeline and a 275ठ⃚

comprehensive online manual can be found at (http://dDocent.wordpress.com) and 276ठ⃚

(https://github.com/jpuritz/dDocent). 277ठ⃚
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ठ⃚

Table 1.  Results from individual runs of dDocent and Stacks.  dDocent runs varied in the 365ठ⃚

level of similarity used to cluster reference sequences: A (90%), B (96%), and C (99%).  For 366ठ⃚

Stacks, forward reads and reverse reads were separately processed with denovo_map.pl 367ठ⃚

(Stacks version 1.08), using three different sets of parameters: A, minimum depth of coverage 368ठ⃚

of two to create a stack, a maximum distance of two between stacks, and a maximum distance 369ठ⃚

of four between stacks from different individuals; B, minimum depth of coverage of three to 370ठ⃚

create a stack, a maximum distance of four between stacks, and a maximum distance of eight 371ठ⃚

between stacks from different individuals; and C, minimum depth of coverage of three to 372ठ⃚

create a stack, a maximum distance of four between stacks, and a maximum distance of 10 373ठ⃚

between stacks from different individuals.  SNP calls were evaluated at different individual 374ठ⃚

coverage levels: (i) total number of SNPs; (ii) number of SNPS called in 75%, 90%, and 99% 375ठ⃚

at 3X coverage; (iii) number of SNPS called in 75% and 90% of individuals at 5X coverage; 376ठ⃚

(iv) number of SNPS called in 75% and 90% of individuals at 10X coverage; and, (v) number 377ठ⃚

of SNPS called in 75% and 90% of individuals at 20X coverage.   Results from forward and 378ठ⃚

reverse reads of Stacks were combined for comparison with dDocent , which inherently calls 379ठ⃚

SNPs on both reads. 380ठ⃚

 381ठ⃚

 dDocent A dDocent B dDocent C Stacks A Stacks B Stacks C 

 Red snapper 

Total 3X SNPS  30,130   30,043   29,907   28,817   33,479   34,459  

75% 3X SNPs  12,507   12,249   12,012   4,150   5,735   5,728  

90% 3X SNPs  5,368   5,187   5,039   675   987   983  

99% 3X SNPs  52   25   5  0 0 0 

75% 5X SNPs  8,144   7,946   7,793   2,632   4,351   4,324  

90% 5X SNPs  2,775   2,696   2,606   179   579   574  

PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.314v1 | CC-BY 4.0 Open Access | received: 28 Mar 2014, published: 28 Mar 2014

P
re
P
ri
n
ts



19ठ⃚

ठ⃚

75% 10X SNPs  4,151   4,017   3,914   783   1,618   1,579  

90% 10X SNPS  785   729   682   7   48   47  

90% IND 90% 5X  5,625   5,499   5,332   806   1,807   1,079  

90% IND 90% 10x  2,403   2,298   2,196   129   441   434  

Run time  59   58   57   70   47   53  

 Red drum 

Total 3X SNPS  27,263   27,329   27,295   45,792   50,821   52,366  

75% 3X SNPs  23,339   23,328   23,226   24,134   28,991   28,981  

90% 3X SNPs  20,764   20,704   20,586   13,439   17,946   17,874  

99% 3X SNPs  7,121   7,022   6,937   828   1,264   1,259  

75% 5X SNPs  20,015   20,009   19,946   21,021   26,526   26,464  

90% 5X SNPs  16,739   16,680   16,588   10,494   15,282  15,207 

75% 10X SNPs  16,078   16,042   15,970   12,928   17,018   16,983  

90% 10X SNPS  10,988   10,942   10,842   4,159   6,734   6,705  

75% 20X SNPs  7,975   7,933   7,824   2,276   3,538   3,516  

90% 20X SNPs  3,534   3,512   3,455   243   1,974   1,961  

Run time  55   55   53   58   55   65  

 Silk snapper 

Total 3X SNPS  35,763   35,645   35,509   48,742   55,505   58,352  

75% 3X SNPs  17,518   17,244   16,992   7,596   9,705   9,696  

90% 3X SNPs  8,586   8,353   8,157   2,007   3,439   3,433  

99% 3X SNPs  2,552   2,380   2,276   132   527   523  

75% 5X SNPs  10,775   10,547   10,385   4,789   7,290   7,274  

90% 5X SNPs  4,936   4,725   4,606   1,225   2,573   2,570  

75% 10X SNPs  5,252   5,018   4,876   2,094   3,547   3,546  

90% 10X SNPS  2,191   2,058   1,938   489   1,224   1,223  

75% 20X SNPs  2,220   2,098   1,984   703   1,415   1,411  

90% 20X SNPs  801   721   675   136   417   418  

Run time 98 100 60 93 89 204 

 382ठ⃚
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Figure 1.  Levels of coverage for each unique read in the red snapper data set.  The horizontal 384ठ⃚

axis represents the minimal level of coverage and the vertical axis represents the number of 385ठ⃚

unique paired reads in thousands. 386ठ⃚
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Figure 2.  SNP results averaged across the three different run parameters for dDocent and 389ठ⃚

Stacks.  (A) Red snapper, (B) Red drum, (C) Silk snapper (see Methods or Table 1 for SNP 390ठ⃚

categories description).  Error bars represent standard error. 391ठ⃚

 392ठ⃚

 393ठ⃚
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