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Abstract 16	
  

Metabarcoding and metagenomic approaches are becoming routine techniques in 17	
  

biodiversity assessment and ecological studies. The assignment of taxonomic 18	
  

information to sequences is challenging, as many reference libraries are lacking 19	
  

information on certain taxonomic groups and can contain erroneous sequences. 20	
  

Combining different reference databases is therefore a promising approach for 21	
  

maximizing taxonomic coverage and reliability of results. This tutorial shows how to 22	
  

use the  “BOLD_NCBI_Merger” script to combine sequence data obtained from the 23	
  

National Center for Biotechnology Information (NCBI) GenBank and the Barcode of 24	
  

Life Database (BOLD) and prepare it for taxonomic assignment with the software 25	
  

MEGAN. 26	
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Background 27	
  

High-throughput biodiversity assessment techniques such as metagenomics (Yu et al., 28	
  

2012) and metabarcoding (Taberlet et al., 2012) produce millions of sequences in a 29	
  

short amount of time. These techniques are becoming standard in many fields of 30	
  

research (Macher et al. 2016; Choo et al., 2017; Deiner et al., 2015), but also 31	
  

application (Elbrecht et al., 2017). One of the challenges connected to the analyses of 32	
  

millions of DNA sequences is the assignment of the obtained Operational Taxonomic 33	
  

Units (OTUs) to taxonomic names. Taxonomic information is often needed, 34	
  

especially in ecological studies and for the assessment of ecosystem health, which 35	
  

largely relies on the knowledge of species’ ecological traits (Gayraud et al., 2003; 36	
  

Hering et al., 2006). Several databases containing millions of reference sequences 37	
  

exist, which can be used to assign taxonomic names to OTUs (Santamaria et al., 38	
  

2012). These databases are often specialised, containing mostly data for certain 39	
  

genetic markers (e.g. rRNA: SILVA (Quast et al., 2013) or selected taxonomic groups 40	
  

(e.g. fungi: UNITE (Kõljalg et al., 2005)). Two of the largest reference databases are 41	
  

the Barcode of Life Database (BOLD, Ratnasingham & Hebert, 2007), which 42	
  

contains mostly metazoan sequences, and the National Center for Biotechnology 43	
  

Information (NCBI) GenBank database (Benson et al., 2012), which contains 44	
  

reference sequences for all domains of life. Sequence data is usually available for 45	
  

download via websites and/or command line applications and can be used for 46	
  

taxonomic assignment. This is a standard approach in metabarcoding and 47	
  

metagenomic studies, as manual blasting and identification of millions of sequences is 48	
  

not feasible. For the identification of sequences from metabarcoding studies targeting 49	
  

metazoan taxa, the BOLD Identification API 50	
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 (http://www.boldsystems.org/index.php/resources/api?type=idengine) is often used 51	
  

(e.g. Elbrecht & Leese, 2015; Prosser et al., 2016; Kranzfelder, Ekrem & Stur, 2016). 52	
  

Blast+ (Camacho et al., 2009) searches against the NCBI GenBank are often used for 53	
  

the identification of microbial sequences obtained through metagenomic approaches 54	
  

(Hasan et al., 2014; Shi et al., 2013), but also to confirm results of the BOLD API 55	
  

when metazoan taxa are studied (Kranzfelder, Ekrem & Stur, 2016; Elbrecht & Leese, 56	
  

2015). Web tools and APIs remotely accessing databases tend be rather slow, making 57	
  

fast identification of millions of sequences and OTUs a time-consuming task. In 58	
  

addition, the BOLD database is somewhat restricted and does not contain all 59	
  

sequences that are deposited in the NCBI GenBank, due to the focus on genetic 60	
  

barcodes of a certain length (several hundred basepairs). On the other hand, reliability 61	
  

of information in the curated BOLD database is expected to be higher than that in the 62	
  

NCBI database, although errors occur (e.g. Lis, Lis & Ziaja, 2016). The NCBI 63	
  

GenBank, however, does not include all sequences available in the BOLD database, 64	
  

as many scientists do not submit data to both databases, and data needs to be 65	
  

downloaded to a local hard drive in order to speed up blast searches.  66	
  

Studies have shown that both databases can be used to successfully identify metazoan 67	
  

taxa (Sonet et al., 2013), but uncertainties remain. Metagenomic studies and 68	
  

metabarcoding studies have been shown to produce data not only from either 69	
  

microbial or metazoan taxa, but all trees of life (Capra et al., 2016; Macher & Leese, 70	
  

2017; Horton, Kershner & Blackwood, 2017). For such studies, taxonomic 71	
  

assignment with the BOLD database only will result in the loss of information, as 72	
  

many microbial taxa cannot be identified. Using the NCBI GenBank only can 73	
  

circumvent this problem, but at the cost of losing information on metazoan taxa and 74	
  

lowered accuracy.  Thus, combining information from both databases improves both 75	
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speed of identification, reliability of results and taxonomic coverage. However, 76	
  

although theoretically possible, studies are currently not directly combining databases 77	
  

in order to improve speed and accuracy of analyses. This might be partly due to the 78	
  

several gigabytes of data that need to be downloaded onto a local hard drive and the 79	
  

needed reformatting of data in order to make it compatible, which requires basic 80	
  

bioinformatic skills. Several tools for analyses and taxonomic assignment of 81	
  

sequences downloaded from reference databases are available and could theoretically 82	
  

be used with combined databases, e.g. RDP Classifier (Wang et al., 2007), KRAKEN 83	
  

(Wood & Salzberg, 2014), SPINGO (Allard et al., 2015) and MEGAN (Huson et al., 84	
  

2007). 85	
  

Here we introduce our bash-script called “BOLD_NCBI_Merger” that builds 86	
  

databases containing sequence data from both BOLD and NCBI GenBank. In the 87	
  

tutorial coming along with the script we explain how to prepare data for analyses in 88	
  

the MEGAN software. The built database is stored separately and can also be used for 89	
  

other analyses and software other than MEGAN. MEGAN implements a lowest 90	
  

common ancestor (LCA) approach for taxonomic assignment of sequences and was 91	
  

originally developed for analyses of metagenomic datasets (Huson et al., 2007), but 92	
  

the LCA approach can be used for taxonomic assignment of sequences obtained 93	
  

through metabarcoding (Hänfling et al., 2016; Horton, Kershner & Blackwood, 2017). 94	
  

 95	
  

Technical specification 96	
  

Prior to analyses Blast+ (v. 2.6), vsearch (Rognes et al., 2016) and MEGAN need to 97	
  

be installed. All analyses for this tutorial were conducted on a Mac running Yosemite 98	
  

10.10.5. 99	
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The bash script “BOLD_NCBI_Merger” concatenates multiple filed downloaded 100	
  

from BOLD and NCBI, respectively. Then, COI sequences are extracted from the 101	
  

downloaded BOLD fasta file. Headers of both BOLD and NCBI files are formatted so 102	
  

that vsearch can dereplicate the sequences without cutting the header, and files are 103	
  

concatenated. Then, vsearch is used to dereplicate the sequences in order to prevent 104	
  

overrepresentation of sequences in the final database. In the next step, the headers are 105	
  

formatted so that MEGAN can identify species names. A local blast database is built 106	
  

from the concatenated BOLD and NCBI dataset. Finally, a blast search against the 107	
  

database is performed with a metabarcoding or metagenomics dataset. The resulting 108	
  

txt file can be imported into MEGAN and taxonomic assignments can be exported 109	
  

subsequently.  110	
  

The detailed tutorial including all commands can be found in supplementary material 111	
  

1. The package including the script used for processing and preparing sequence files 112	
  

can be found in supplementary material 2. 113	
  

Sequence data for the tutorial can be obtained from BOLD and NCBI GenBank, 114	
  

respectively. All Trichoptera sequences can be downloaded as one fasta file from 115	
  

BOLD via the Public Data Portal 116	
  

(http://www.barcodinglife.org/index.php/Public_BINSearch?searchtype=records; 117	
  

search term: “Trichoptera”, “Public Data”). All Trichoptera sequences from GenBank 118	
  

can be downloaded from the nucleotide database 119	
  

(https://www.ncbi.nlm.nih.gov/nucleotide/; search term: Trichoptera AND (COI OR 120	
  

CO1 OR COX1 OR COXI; sequence length: 1-1000 bp) and saved on a local hard 121	
  

drive.  122	
  

For the ease of use, a dataset containing few sequences (Trichoptera, COI barcoding 123	
  

region) was used for this tutorial, but it should be noted that for reliable results and 124	
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real analyses, a larger reference database containing as many taxa as possible should 125	
  

be used in order to prevent erroneous assignments (Porter et al., 2014; Garcia-126	
  

Etxebarria, Garcia-Garcerà & Calafell, 2014; Ueno, Ishii & Ito, 2014). In-depth 127	
  

studies comparing different software usable for taxonomic assignment and different 128	
  

combinations of databases should be conducted in order to quantify the benefits and 129	
  

possible pitfalls of combining data from several databases. It should also be 130	
  

mentioned that the approach of assigning taxonomy to OTUs by using local databases 131	
  

has limitations. As the created database is stored on a local hard drive, it does not 132	
  

receive automated updates and will age. Thus, the databases need to be updated on a 133	
  

regular basis. This requires some effort, since several gigabytes of data need to be 134	
  

downloaded from NCBI and BOLD databases, respectively, which can take several 135	
  

hours. Processing large amounts of data on a local hard drive also requires machines 136	
  

powerful enough to complete the task within a reasonable amount of time. Still, the 137	
  

approach of combining databases will be worth the efforts for many studies targeting 138	
  

diverse biological communities, as taxonomic assignment is fast and reliable once the 139	
  

local databases have been constructed, and the gained information can help improve 140	
  

results.  141	
  

 142	
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