
A Simple Encryption Algorithm1

Joseph Keenan St. Pierre2

Worcester Polytechnic Institute3

Corresponding author:4

Joseph Keenan St. Pierre5

Email address: jkstpierre@wpi.edu6

ABSTRACT7

In this paper I present a Simple Encryption Algorithm (SEAL), by which 128-bit long blocks can be quickly
encrypted/decrypted. The algorithm is designed to run efficiently in software without any specialized
hardware while still guaranteeing a strong degree of confidentiality. The cipher is composed entirely of
simple bit-wise operations, such as the exclusive-or and circular shift, in addition to modular addition,
thereby making it exceedingly easy to implement in most programming languages as well as efficient in
terms of performance.

INTRODUCTION8

SEAL is a symmetric key block cipher that permutes a 128-bit block against a 128-bit key. Based off of9

statistical analysis, the cipher’s output exhibits strong avalanche effects as well as uniform distribution.10

Furthermore, as the name suggests, SEAL’s implementation in software is lightweight, straightforward,11

and requires minimal overhead.12

ENCRYPTION PROCEDURE13

Below is the encryption procedure for SEAL written in the C programming language:14

15
/*Substitute the bytes of a block chunk with the SEAL S-Box*/16

void S(uint32_t *block_chunk){17

for(int i = 0; i < 4; i++){18

uint8_t byte = (uint8_t)(*block_chunk >> 8*i);19

*block_chunk = *block_chunk & ˜(0xFF << 8*i);20

*block_chunk |= ((uint32_t)sbox[byte] << 8*i);21

}22

}23

/*Encrypts a 128-bit block against a 128-bit key using SEAL*/24

void seal_encrypt(uint32_t *block, uint32_t *key){25

/*The carry chunk used for rotation and feeding*/26

uint32_t carry = 0;27

28

/*Perform 8 rounds of encryption*/29

for(int i = 0; i < 8; i++){30

//Substitute first chunk and XOR against key and round number31

S(&block[0]); block[0] ˆ= key[i%4] ˆ i; carry = block[0];32

33

//Feed carry chunk through subsequent block chunks34

block[1] += carry; carry = block[1];35

carry = (carry >> 11) | (carry << 21); //Rotate carry chunk36

37

block[2] += carry; carry = block[2];38

carry = (carry >> 11) | (carry << 21);39

40

block[3] += carry; carry = block[3];41

carry = (carry >> 11) | (carry << 21);42

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3128v3 | CC BY 4.0 Open Access | rec: 15 Aug 2017, publ: 15 Aug 2017

43

//Rotate block chunks44

block[3] = block[2]; block[2] = block[1];45

block[1] = block[0]; block[0] = carry;46

}47

48

S(&block[0]); S(&block[1]); //Substitute chunks again49

S(&block[2]); S(&block[3]);50

51

for(int i = 0; i < 4; i++) //Perform "locking" round52

block[i] ˆ= key[i]; //XOR chunks against key53

}54
55

SUBSTITUTION BOX56

For added reference, below is the 16x16 lookup table used by the S-box to substitute the bytes of a block57

chunk. This table was generated randomly using a brute-force algorithm for finding a substitution box58

with strong avalanche effect. Any lookup table will suffice provided it too has good bit distributions59

and a strong avalanche effect. A byte is substituted by taking its hexadecimal value, reading its first and60

second digit which correspond to a row and column respectively, and replacing said byte with the value61

located at the corresponding cell. For example, the hexadecimal value ”ab” would be substituted with62

”67” according to the provided table.63

Table 1. S-box64

S 0 1 2 3 4 5 6 7 8 9 a b c d e f
0 bc 7d 7b 93 01 15 30 21 a5 d6 f8 9b 48 db ce 29
1 61 b3 34 03 b1 d7 53 98 52 f3 bb ab b2 2d 2a eb
2 08 02 0c cb b0 9e 8f 96 40 92 e9 6e 58 6d 44 06
3 88 1c 1f 65 91 85 66 45 9d 4a b9 8d 20 ca a0 19
4 5d 5b 12 25 cc 9c 43 a2 50 da b4 f9 4f 69 17 4b
5 04 6c 11 dd 73 16 df 41 3a 5f 74 47 09 18 fe 99
6 84 62 00 0d 64 7c d5 72 e1 e5 24 ee 4d f2 3d 2c
7 26 3b 42 3f c2 7a d3 1d 57 0b fa 75 d0 c4 ec fb
8 0e e3 90 80 ff 0a 4e 2f d9 2e c8 e6 1b 94 55 9a
9 f5 60 79 d2 71 cf dc ad f7 7f c0 05 6b af 38 7e
a d8 35 70 c9 aa 83 a6 d1 39 e0 6a 67 a4 5a 13 8b
b f0 fc e7 c6 a3 97 c3 5e c7 63 46 ba 37 ea 77 c1
c cd 4c 33 bf 28 76 b5 b7 f4 ed 5c fd 68 ae e4 78
d e2 1e 2b ac 59 36 be 6f 1a b6 9f 22 87 8c 10 31
e 82 a9 07 f6 86 23 e8 95 54 a8 82 8a a1 49 f1 b8
f d4 3e 0f de 3c 8e 56 c5 27 89 14 bd 51 a7 32 ef

65

OVERVIEW AND DESIGN RATIONALE66

The cipher is a form of substitution-permutation network whereby both the block and the key are divided67

into equal 32-bit chunks. Through the combined usage of modular additions, circular shifts, and the68

XOR, a high degree of non-linearity is achieved. Prior to the start of each round, the round-key is XOR’d69

against the round number; this is done in order to protect the cipher against slide attacks by removing70

the symmetry of the internal rounds. The substitution boxes are included in order to rapidly introduce71

the avalanche effect resulting from a minor change in the input block. Furthermore, to ensure that any72

change in the key results in a major change in the output, at least eight rounds of encryption are required;73

however, if additional security is needed, the number of rounds can be scaled up provided that the number74

of rounds is a multiple of four. This guarantees that each chunk of the key is used the same number of75

times thereby preventing any bias from emerging. Lastly, in order to obfuscate the internal permutations76

of the block, the entire block is substituted and XOR’d against the key in a final ”locking” round.77

2/7

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3128v3 | CC BY 4.0 Open Access | rec: 15 Aug 2017, publ: 15 Aug 2017

SEAL has been specifically designed for efficiency in software without the need for dedicated78

hardware. For this reason, there is no key schedule in the default implementation presented here as such79

an additional process unnecessarily slows the rate of encryption. This omission is justified on the basis80

that the statistical analysis of the cipher’s output distribution and avalanche effect showed no conclusive81

advantage to using SEAL with a key schedule as opposed to using the same key repeatedly. That being82

said, if performance is not a concern, a key schedule could easily be implemented and used alongside83

SEAL if one so desired.84

CIPHER DIAGRAM85

Below is an overall outline of the SEAL cipher:86

Figure 1. SEAL Cipher Digram

3/7

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3128v3 | CC BY 4.0 Open Access | rec: 15 Aug 2017, publ: 15 Aug 2017

ANALYSIS87

Substitution Box88

The primary function of an S-box is to remove the linear relationship between a plaintext-ciphertext89

pair produced by a cryptographic function. In order to effectively accomplish this task, it is imperative90

that an S-box does not have any strong differential characteristics that could be feasibly exploited by91

cryptanalysis.92

The S-box articulated in this paper was produced via a brute-force algorithm that searched for a93

16x16 lookup table that followed an avalanche criterion in addition to possessing only weak differential94

characteristics; as such, the best differential characteristic across the SEAL S-box, (e5→ 8f), only holds95

true with a probability of 0.023438.96

While the S-boxes produced by this algorithm are probably not secure enough to resist an extensive97

differential attack on their own, it should be noted that when used in conjunction with other non-linear98

functions (such as modular addition), the cipher as a whole becomes infeasible to attack.99

Internal Round Functions100

SEAL’s internal round functions in and of themselves are not secure as only the first chunk is technically101

kept a secret via the XOR. However, when used in a group of 4, the entire block is permuted and cannot102

easily be recovered despite the fact that intermediary computations can be trivially found if the ciphertext103

output is known. This is best articulated using a 1x4 matrix which represents the outputted permuted104

block, a 4x4 matrix which represents the states of the various XOR and ADD nodes for each internal105

round, and a final 1x4 matrix which represents the original inputted plaintext block. For demonstration106

purposes, the matrices below will only contain 8-bit values and the circular shifts will be by 3 bits instead107

of 11.108

C
ab
16
99
f 2

⇐
Round1−4

ab a0 c2 5c
16 d6 e4 xx
99 b f xx xx
f 2 xx xx xx

⇐
P
xx
xx
xx
xx


Figure 2. After 4 internal rounds, the plaintext is impossible to recover by simply reversing the modular
additions as shown in the cipher diagram on page 3.

Due to the modular additions feeding into eachother, the circular shifts, and the chunk rotations at the109

end of each round, each bit of the block becomes highly dependent on every other bit thereby creating110

a strong avalanche effect with respect to changes in the input block. However, it is not enough for the111

avalanche effect to only occur for changes in the input block. In order for the cipher to be secure, an112

avalanche effect must also occur for changes in the key. Fortunately, this problem can be easily solved by113

adding another four internal rounds to the cipher, hence why SEAL has 8 internal rounds.114

Locking Round Function115

The reason behind the addition of a final locking round to the cipher was twofold. First, by adding a round116

composed entirely of XOR’ing the block chunks against the key, no information about the internal rounds117

is leaked via the ciphertext produced. This prevents the analysis shown in Figure 2 from even being able118

to occur. Secondly, by adding this fundamentally different round to the end of the cipher, a slide attack is119

no longer possible since there is no longer any way to partition the cipher into symmetric components.120

Round Keys121

In a similar manner to TEA, SEAL has no key schedule and as such each round key is nothing more than122

a 32-bit chunk taken from the 128-bit key. This was done in order to maximize ease of use as well as123

processing speed. That being said, the absence of a key schedule potentially leaves the internal rounds124

vulnerable to a slide attack. In order to alleviate this concern, the key is XOR’d against the round number125

before being XOR’d against the first chunk thereby removing the symmetry between the internal rounds126

needed for a slide attack to take place.127

4/7

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3128v3 | CC BY 4.0 Open Access | rec: 15 Aug 2017, publ: 15 Aug 2017

PERFORMANCE128

On a modest system using an Intel Core i7-7500U 2.7 GHz processor, SEAL was able to perform at a rate129

of 45 MB/s, on average, making it a competitive cipher in terms of speed. If dedicated hardware were to130

be introduced for SEAL, this speed would undoubtedly increase.131

CONCLUSION132

In this paper, I have presented a Simple Encryption Algorithm which can be easily implemented in133

software, performs quite well in spite of the lack of dedicated hardware, and is seemingly secure without134

the need for a key schedule or more than eight internal rounds.135

REFERENCES136

1. A. F. Webster and Stafford E. Tavares, ”On the design of S-boxes”, Advances in Cryptology -137

Crypto ’85 (Lecture Notes in Computer Science), vol. 219, pp. 523–534, 1985.138

2. Wheeler, David J.; Needham, Roger M. (1994-12-16). ”TEA, a tiny encryption algorithm”. Lecture139

Notes in Computer Science. Leuven, Belgium: Fast Software Encryption: Second International140

Workshop. 1008: 363–366. ISBN: 978-3-540-47809-6141

3. Alex Biryukov and David Wagner (March 1999). Slide Attacks. 6th International Workshop on142

Fast Software Encryption (FSE ’99). Rome: Springer-Verlag. pp. 245–259. Retrieved 2007-09-03.143

5/7

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3128v3 | CC BY 4.0 Open Access | rec: 15 Aug 2017, publ: 15 Aug 2017

APPENDIX144

Decryption Procedure145

Below is the decryption procedure for SEAL written in the C programming language:146

147
/*Substitute the bytes of a block chunk with the SEAL inverse S-Box*/148

void INV_S(uint32_t *block_chunk){149

for(int i = 0; i < 4; i++){150

uint8_t byte = (uint8_t)(*block_chunk >> 8*i);151

*block_chunk = *block_chunk & ˜(0xFF << 8*i);152

*block_chunk |= ((uint32_t)inv_sbox[byte] << 8*i);153

}154

}155

/*Decrypts a 128-bit block against a 128-bit key using SEAL*/156

void seal_decrypt(uint32_t *block, uint32_t *key){157

/*The carry chunk used for rotation and feeding*/158

uint32_t carry = 0;159

160

/*Unlock the block by XOR’ing against key*/161

for(int i = 0; i < 4; i++)162

block[i] ˆ= key[i];163

164

/*Substitute the block chunks through the inverse S-box*/165

INV_S(&block[0]); INV_S(&block[1]);166

INV_S(&block[2]); INV_S(&block[3]);167

168

/*Perform 8 rounds of decryption*/169

for(int i = 7; i >= 0; i--){170

/*Set the carry*/171

carry = block[0];172

173

/*Rotate the block chunks*/174

block[0] = block[1]; block[1] = block[2];175

block[2] = block[3]; block[3] = carry;176

177

/*Perform modular subtraction on the subsequent chunks*/178

carry = block[2];179

carry = (carry >> 11) | (carry << 21); //Rotate carry chunk180

block[3] -= carry;181

182

carry = block[1];183

carry = (carry >> 11) | (carry << 21);184

block[2] -= carry;185

186

carry = block[0];187

carry = (carry >> 11) | (carry << 21);188

block[1] -= carry;189

190

/*XOR the block chunk against the key chunk and round number and run191

through inverse S-box*/192

block[0] ˆ= key[i%4] ˆ i;193

INV_S(&block[0]);194

}195

}196
197

6/7

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3128v3 | CC BY 4.0 Open Access | rec: 15 Aug 2017, publ: 15 Aug 2017

Inverse Substitution Box198

Below is the 16x16 inverse lookup table utilized by the decryption routine. The same rules described199

previously apply to this table with regards to byte substitution.200

Table 2. Inverse S-box201

S 0 1 2 3 4 5 6 7 8 9 a b c d e f
0 62 04 21 13 50 9b 2f e2 20 5c 85 79 22 63 80 f2
1 de 52 42 ae fa 05 55 4e 5d 3f d8 8c 31 77 d1 32
2 3c 07 db e5 6a 43 70 f8 c4 0f 1e d2 6f 1d 89 87
3 06 df fe c2 12 a1 d5 bc 9e a8 58 71 f4 6e f1 73
4 28 57 72 46 2e 37 ba 5b 0c ed 39 4f c1 6c 86 4c
5 48 fc 18 16 e8 8e f6 78 2c d4 ad 41 ca 40 b7 59
6 91 10 61 b9 64 33 36 ab cc 4d aa 9c 51 2d 2b d7
7 a2 94 67 54 5a 7b c5 be cf 92 75 02 65 01 9f 99
8 83 ea e0 a5 60 35 e4 dc 30 f9 eb af dd 3b f5 26
9 82 34 29 03 8d e7 27 b5 17 5f 8f 0b 45 38 25 da
a 3e ec 47 b4 ac 08 a6 fd e9 e1 a4 1b d3 97 cd 9d
b 24 14 1c 11 4a c6 d9 c7 ef 3a bb 1a 00 fb d6 c3
c 9a bf 74 b6 7d f7 b3 b8 8a a3 3d 23 44 c0 0e 95
d 7c a7 93 76 f0 66 09 15 a0 88 49 0d 96 53 f3 56
e a9 68 d0 81 ce 69 8b b2 e6 2a bd 1f 7e c9 6b ff
f b0 ee 6d 19 c8 90 e3 98 0a 4b 7a 7f b1 cb 5e 84

202

7/7

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3128v3 | CC BY 4.0 Open Access | rec: 15 Aug 2017, publ: 15 Aug 2017

