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ABSTRACT

Minor syntax errors are made by novice and experienced programmers alike; however, novice program-
mers lack the years of intuition that help them resolve these tiny errors. Standard LR parsers typically
resolve syntax errors and their precise location poorly. We propose a methodology that helps locate
where syntax errors occur, but also suggests possible changes to the token stream that can fix the error
identified. This methodology finds syntax errors by checking if two language models “agree” on each
token. If the models disagree, it indicates a possible syntax error; the methodology tries to suggest a
fix by finding an alternative token sequence obtained from the models. We trained two LSTM (Long
short-term memory) language models on a large corpus of JavaScript code collected from GitHub. The
dual LSTM neural network model predicts the correct location of the syntax error 54.74% in its top 4
suggestions and produces an exact fix up to 35.50% of the time. The results show that this tool and
methodology can locate and suggest corrections for syntax errors. Our methodology is of practical use to
all programmers, but will be especially useful to novices frustrated with incomprehensible syntax errors.

Keywords: syntax error correction; LSTM; JavaScript; RNN; syntax error; deep learning; neural
network; n-gram; program repair; GitHub

1 INTRODUCTION
Computer program source code is often expressed in plain text files. Plain text is a simple, flexible
medium that has been preferred by programming languages for decades. Yet, plain text can be a major
hurdle for novices learning how to code (Tabanao et al., 2008; Jadud, 2005; Tabanao et al., 2011). Not
only do novices have to learn the semantics of a programming language, but they also have to learn how
to place arcane symbols in the right order for the computer to understand their intent. The positioning of
symbols in just the right way is called syntax, and sometimes humans, especially novices (Tabanao et al.,
2008), get it wrong.

The tools that interpret human-written source code, parsers, are often made such that they excel in
understanding well-structured input; however, if they are given an input with so much as one mistake,
they can fail catastrophically. What’s worse, the parser may come up with a misleading conclusion as
to where the actual error is. Consider the JavaScript source code in Listing 1. A single token — a { at
the end of line 1 — in the input is different from that of the correct file that the programmer intended to
write. Give this source file to a JavaScript interpreter such as Mozilla’s SpiderMonkey (Mozilla Developer
Network Contributors, 2016), and it reports that there is an error, but provides misleading help to identify
the location of the mistake made by the programmer.

1 if (process.argv.length < 3)
2 console.error("Not enough args!");
3 process.exit(1);
4 }

Listing 1. Syntactically invalid JavaScript code. An open brace ({) is missing at the end of line 1.
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broken.js:4: SyntaxError: syntax error:
broken.js:4: }
broken.js:4: ˆ

Node.js (Node.js Foundation, 2017) (using Google’s V8 JavaScript engine (Google Developers, 2016))
fares even worse—stating that the syntax error is on sixth line of a four-line file:

/home/nobody/broken.js:6
});
ˆ

SyntaxError: Unexpected token }
at checkScriptSyntax (bootstrap_node.js:457:5)
at startup (bootstrap_node.js:153:11)
at bootstrap_node.js:575:3

Unbalanced braces are the most common error among new programmers (Brown and Altadmri, 2014).
Imagine a novice programmer writing their for-loop for the first time and being greeted with Unexpected
token } as their welcome to computer programming. SpiderMonkey suggests the programmer has
added an extra right curly brace, despite the fact that the programmer actually forgot a left curly brace.
On top of that, SpiderMonkey identified the problem as being on line 4 when the mistake is actually on
line 1. However, an experienced programmer could look at the source code, ponder, and exclaim: “Ah!
There is a missing open brace ({) at the end of line 1!”

In this paper, we created a tool called GrammarGuru that seeks to find and fix single token syntax
errors, using long short-term memory neural network (LSTM) language models trained on a large corpus
of hand-written JavaScript source code. The general problem we seek to solve is:

Given a source code file with a syntax error, how can one accurately pinpoint its location and produce
a single token suggestion that will fix it?

The intuition for GrammarGuru, a syntax error detector and corrector, is that if a tool mimics the
mental model of an expert programmer GrammarGuru can find and perhaps correct syntax errors like an
expert programmer. When expert programmers try to find a syntax error, often they read the source code
and find the section of the source code that they do not understand, or code that surprises them. Then they
fix that source code in order to compile or run it. The mental model of the programmer may be something
like a language model for speech, but rather applied to code. Language models are typically applied to
natural human utterances but they have also been successfully applied to software (Hindle et al., 2012;
Raychev et al., 2014; White et al., 2015), and can be used to discover unexpected segments of tokens in
source code (Campbell et al., 2014).

Parsers typically lack probabilistic language models and rely on formal grammar, unsuited to handle
errors. Parsers sometimes get lost in a production that was unintended. A language model can tell us if a
token is surprising or rare. Multiple language models can be combined to determine agreement. Thus
GrammarGuru uses language models to capture code regularity or naturalness and then looks for irregular
code (Campbell et al., 2014). Once the location of a potential error is found, code completion techniques
that exploit language models (Hindle et al., 2012; Raychev et al., 2014; White et al., 2015) can be used to
suggest possible fixes. Traditional parsers do not rely upon such information.

The primary contribution in this paper is the use of two language models working in opposite directions.
One model predicts what comes after a sequence of tokens, and the other predicts what comes before
a sequence of tokens. Using two recurrent neural network hidden layers—one working “forwards in
time” and one working “backwards in time”—has been used in speech recognition (Hannun et al., 2014;
Amodei et al., 2015); however, to our knowledge this concept has yet to be applied to source code. Using
the predictions of the two language models, our command-line tool suggests the fixes for single-token
syntax errors.

2 PRIOR WORK
A number of researchers have sought to improve error messages as a result of incorrect syntax. The
long history of work on syntax error messages is often motivated by the need to better serve novice
programmers (Tabanao et al., 2008; Jadud, 2005; Tabanao et al., 2011; Jadud, 2006; Jackson et al., 2005;
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Garner et al., 2005; McIver, 2000; Kummerfeld and Kay, 2003; Hristova et al., 2003). More recently,
Denny et al. (Denny et al., 2012) categorized common syntax errors that novices make by the error
messages the compiler generates and how long it takes for the programmer to fix them.

This research shows that novices and advanced programmers alike struggle with syntax errors and
their accompanying error messages—such as missing semicolons, extraneous tokens, and missing close
brackets. Dy and Rodrigo (Dy and Rodrigo, 2010) developed a system that detects compiler error
messages that do not indicate the actual fault, which they name “non-literal error messages”, and assists
students in solving them. Nienaltowski et al. (Nienaltowski et al., 2008) found that more detailed compiler
error messages do not necessarily help students avoid being confused by error messages. They also
found that students presented with error messages only including the file, line and a short message
did better at identifying the actual error in the code more often for some types of errors. Marceau et
al. (Marceau et al., 2011) developed a rubric for grading the error messages produced by compilers.
Becker’s dissertation (Becker, 2015) attempted to enhance compiler error messages in order to improve
student performance. Barik et al. (Barik et al., 2014) studied how developers visualize compilation
errors. They motivate their research with an example of a compiler misreporting the location of a fault.
Pritchard (Pritchard, 2015) shows that the most common type of errors novices make in Python are syntax
errors.

Earlier research attempted to tackle errors at the parsing stage. In 1972, Aho (Aho and Peterson,
1972) introduced an algorithm to attempt to repair parse failures by minimizing the number of errors that
were generated. In 1976, Thompson (Thompson, 1976) provided a theoretical basis for error-correcting
probabilistic compiler parsers. He also criticized the lack of probabilistic error correction in then-modern
compilers. However, this trend continues to this day. Parr et al. (Parr and Fisher, 2011) discusses the
strategy used in ANTLR, a popular LL(*) parser-generator. This strategy involves an increased look-ahead
strategy to produce error messages that take into account more of the surrounding code as context, and
uses single-token insertion, deletion, replacement and predictive parsing to produce better error messages.
In essence, the parser attempts to repair the code when it encounters an error using the context around
the error so it can continue parsing. This strategy allows ANTLR parsers to detect multiple problems
instead of stopping on the first error. Jeffery (Jeffery, 2003) created Merr, an extension of the Bison parser
generator, which allows the grammar writer to provide examples of expected syntax errors that may occur
in practice, accompanied with a custom error message. Merr automatically generates a yyerror()
function that recovers the parser state in an error condition to determine if any of the given errors occurred,
and displays the provided error message appropriately. While the grammar writer could compose an error
message that suggests the fix to a syntax-error in Merr, our work is explicitly focused on providing the
possible fix. In contrast to Merr, our work does not require any hand-written rules in order to provide a
suggestion for a syntax error, and is not reliant on the parser state, which may be oblivious to the actual
location of the syntax error.

More recent research has applied language models to syntax error detection and correction. Campbell
et al. (Campbell et al., 2014) created UnnaturalCode which leverages n-gram language models to locate
syntax errors in Java source code. UnnaturalCode wraps the invocation of the Java compiler. Every time
a program is syntactically-valid, it would augment the existing n-gram model. When a syntax error is
detected, UnnaturalCode calculates the entropy of each token. The token sequence with the highest entropy
with respect to the language model would be the likely location of the true syntax error, in contrast to the
location where the parser may report the syntax error. Using code-mutation evaluation, the authors were
able to find that a combination of UnnaturalCode’s reported error location and the Java compiler’s reported
error locations would yield the best mean-reciprocal rank for the true error location. Using a conceptually
similar technique to UnnaturalCode, our work detects the location of syntax errors; unlike UnnaturalCode,
our work can also suggest the token that will fix the syntax error. Our work trains language models with
a bounded vocabulary using deep-learning LSTM recurrent neural networks (described in Section 3).
In contrast, UnnaturalCode’s n-gram models use an unbounded vocabulary. Gupta et al. (Gupta et al.,
2017) used an encoder-decoder framework with Gated Recurrent Units (GRU)—a type of recurrent neural
network—to detect and correct compiler errors in C source code. . . Bhatia and Singh (Bhatia and Singh,
2016). . .

Others have applied recurrent neural networks (RNNs) to source code. White et al. (White et al.,
2015) trained RNNs on source code and showed their practicality in code completion. Similarly, Raychev
et al. (Raychev et al., 2014) used RNNs in code completion to synthesize method call chains in Java code.
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Dam et al. (Dam et al., 2016) provides a good overview of using LSTMs instead of ordinary RNNs as
language models for code. Our work is similar to code completion, in that given a file with one token
missing, GrammarGuru may suggest how to complete it; however, our focus is on syntax errors, rather
than helping complete code as it is being written.

Others still have considered making syntax errors impossible to make, even in text-based languages,
by blurring the line between the program editor and the language itself. Omar et al. (Omar et al., 2017)
proposed Hazel, a new programming language and environment, which offers formal semantics between
edit states in the language and defines explicit “holes” in the abstract syntax tree where the program is
incomplete.

Numerous compilers have placed a focus on more user-friendly error messages that explain the error
and provide solutions. Among these are Clang (Clang, 2016), Rust (Turner, 2016), Scala (Mulder, 2016),
and Elm (Czaplicki, 2015). Our work is directly influenced by the “fix-it hints” provided by Clang.

3 METHODOLOGY

10 pani c
20 got o 10
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Collect

Input

Predict
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Figure 1. An overview of our methodology. First we trained two long short-term memory (LSTM)
neural networks on JavaScript source code collected from GitHub. Then we used the LSTMs to predict
tokens from JavaScript files with syntax errors. We applied a naı̈ve heuristic that relies on the
disagreement between the LSTMs to pinpoint the syntax error location and suggest possible fixes.

In order to suggest a fix for a syntax error, first we must find the error. For both finding errors and
fixing syntax errors, it is useful to have a function that determines the likelihood of the adjacent token in
the token stream given some context from the incorrect source code file (Equation 1).

P(adjacent-token|context) (1)

We trained long short-term memory (LSTM) recurrent neural networks to approximate the function
in Equation 1. In order to train the LSTM, we needed a vast corpus of positive examples. For this, we
mined a large corpus of over nine thousand of the most popular open source JavaScript repositories from
GitHub (Section 3.1). This source code was tokenized (Section 3.2) such that it could be used to train
the JavaScript language model (Section 3.5). Finally, we used the approximated functions expressed in
Equation 1 to detect a syntax error in a file (Section 3.6) and suggest a plausible fix (Section 3.7). Figure 1
graphically describes this process.

4/18

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3123v1 | CC BY 4.0 Open Access | rec: 3 Aug 2017, publ: 3 Aug 2017



3.1 Building a corpus through mining
To obtain the training data, we downloaded JavaScript source code from GitHub. Since we required
JavaScript tokens from each file, other GitHub mining resources such as Boa (Dyer et al., 2013) and
GHTorrent (Gousios, 2013) were insufficient. Thus, at the end of June 2017, we downloaded the
top 10,000 Java repositories by stars (as an analog of popularity). Since GitHub’s search Application
Programming Interface (API) outputs a total of 1,000 search results per query, we had to perform 10
separate queries, each time using the previous least popular repository as the upper bound of stars per
repository for the next query. In total, we successfully downloaded Java repositories.

For each repository, we downloaded an archive containing the latest snapshot of the Git repository’s
default branch (usually named master). We extracted every file whose filename ended with .js, storing
a SHA-256 hash to avoid storing byte-for-byte duplicate files. We used Esprima 3.1.1 (Hidayat, 2016), a
high-performance parser for JavaScript, to tokenize and parse every JavaScript file downloaded. Fully-
parsing the JavaScript source code allowed us to filter only the JavaScript files that were syntactically
valid according to the 7th edition of the ECMAScript standard (ECMA TC39, 2016), commonly known as
ES2016 or ES7. In total, we tokenized 494,352 syntactically-valid JavaScript files (as parsed by Esprima)
out of 594,681 total .js files downloaded.

We further reduced the number of files used, both in training, validation, and testing, by using a simple
heuristic to remove minified source code files. Minification is JavaScript source code obfuscation that
attempts to reduce the file size of the source code. Often, minification eliminates any whitespace that does
not make a difference to the syntax of the code. However, some minification strategies, such as replacing
undefined (9 bytes) with the semantically-equivalent expression void 0 (6 bytes), alter the token
stream of the code, and hence do not represent “handwritten JavaScript”. Our simple heuristic simply
discarded all files whose filename ends with .min.js, as this is a common convention for indicating
minified JavaScript code (Rutter, 2013). Finally, after finding and removing 14,354 minified files, we were
left with 479,998 JavaScript source code files available for training, model validation, and evaluation.

All relevant data—repository metadata, source code, and repository licenses—were stored in an
SQLite3 database.1

3.2 Tokenization

Min Max Median Skew Kurtosis

0 1,809,948 248.00 33.25 1,721.98

Table 1. A summary of the number of tokens per file

A token is the smallest meaningful unit of source code, and usually consists of one or more characters.
For example, a semicolon is a token that indicates the end of a statement.

The set of all possible unique tokens tracked by a language model is called the vocabulary. Every
new source file likely contains novel variable names or string literals that have never been seen before.
Thus, to keep a generally small, bounded vocabulary that has enough unique tokens to faithfully represent
the syntax and regularity of handwritten JavaScript, we present the concept of open and closed classes.

3.3 Open and closed classes
A natural-language analogy provides the motivation behind open and closed classes. In English, there
are different word classes such as nouns, verbs, adjectives, determiners, prepositions, and conjunctions.
Some of these word classes are open, such as nouns, verbs, and adjectives. They are open classes because
it is quite easy to coin new nouns, adjectives, and verbs, and have them become words that are widely
used by a community of people. However, other word classes in English are closed such as determiners
(“the”, “that”, “this”), conjunctions (“and”, “or”, “but”), and prepositions (“of”, “for”, “with”). It is much
more difficult to invent a new determiner with its own meaning independent of the existing determiners
and furthermore convince all your friends to use it.

Similarly, tokens in JavaScript source code can be classified as either belonging to an open or to a
closed class. The goal of the proposed method is to merely learn the syntax of JavaScript and does not

1Available: https://archive.org/details/sensibility-replication-package
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Esprima kind Class Examples

Boolean Closed true, false
Keyword Closed if, for, with, new, this
Null Closed null
Punctuator Closed {, +, ;, **=
Identifier Open undefined, $, buñuelo
Numeric Open 42, 0xC0FFEE, 0755
RegularExpression Open /a*|(ab)+/gi
String Open ’hello’, "hello"
Template Open ‘hello‘, ‘hello ${, }!‘

Table 2. Esprima token kinds. Any token text belonging to closed classes are used verbatim, whereas
tokens from open classes were abstracted.

require predicting the exact next token text of an identifier, or a literal. Therefore, we can abstract each
open class with a single vocabulary entry. For closed classes, there is a small and finite number of unique
tokens that belong to each class. Thus, we entered these items verbatim into the vocabulary.

Esprima provides tokens as the triple: (kind, text, location). We can determine whether a token
belongs to an open or a closed class by simply examining its kind. Table 2 shows every Esprima token
kind, whether its tokens belong to an open or a closed class, and some illustrative examples.

The vocabulary used to build the LSTM models was discovered by exhaustively iterating through all
1.58 billion tokens in the corpus (Table 1), and then adding each unique token to the vocabulary. The
result was 98 unique tokens from the ECMAScript 2016 standard (ECMA TC39, 2016). In addition to
these tokens, we added synthetic /*<START>*/ and /*<END>*/ tokens such that we could encode
beyond the start and end of a source file, respectively. Thus, the total size of our vocabulary was 100
unique tokens.2

3.4 Tokenization Pipeline

Original source code var greeting = ’hello’
Esprima tokenization Keyword("var"), Identifier("greeting"),

Punctuator("="), String("'hello'")
Vocabulary normalization var Identifier = String

Vectorization
[3

0
2
1

]
One-hot vectorization

[0 1 0 0
0 0 0 1
0 0 1 0
1 0 0 0

]
Table 3. The series of token transformations from source code to one-hot matrices suitable for training
the LSTM models. The simplified vocabulary indices are “Identifier” = 0, “String” = 1, “=” = 2, and
“var” = 3.

To convert a source file to a form that is suitable for training the LSTMs, we performed a series of
transformations (Table 3). The raw source code was tokenized in a form that is suitable as input for a
parser. As mentioned in Section 3.1, this was done for each JavaScript file using Esprima. Then, we
normalized the token stream such that each token was an entry of the vocabulary; consequently, the
exact text of tokens belonging to open classes was discarded. Each token in the vocabulary is assigned a
non-negative integer index. Each file was converted into a numeric vector, representing the tokens of an
entire file. Each subsequent token in the file was replaced with its corresponding numeric index into the
vocabulary. Finally, each vector was converted into a one-hot encoded matrix, also known as one-of-k
encoding. In a one-hot encoding exactly one item in each column is given the value one; the rest of the
values in the column are zero. The one-hot bit in this encoding represents the index in the vocabulary.

2Available: https://github.com/eddieantonio/training-grammar-guru/blob/icsme2017/sensibility/js vocabulary.py
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1 if (window === undefined) {
2 this.isBrowser = false;
3 }

Listing 2. Syntactically-Valid Javscript

Thus, the matrix has as many columns as tokens in the file and one row for each vocabulary entry. Each
column corresponds to a token at that position in the file, and has a single one bit assigned to the row
corresponding to its (zero-indexed) entry in the vocabulary.

3.5 Training the LSTMs
The modelling goal is to approximate a function that, given a context from source code, determines the
likelihood of the adjacent token. If this function judges the token as unlikely, it indicates a syntax error.
This function solves the first problem: finding the location of a syntax error, as demonstrated by Campbell
et al. (Campbell et al., 2014). However, to fix errors, it is also necessary to know what tokens actually are
likely for each given context. We rephrase Equation 1 such that, instead of predicting the likelihood solely
of the adjacent token, it returns the likelihood of every entry in the vocabulary. In other words, we want a
function that returns a categorical distribution (Equation 2).

ad jacent [context] =



P(if|context)
P(else|context)
P(Identifer|context)
P(Number|context)
. . .

P(}|context)

(2)

The categorical distribution can also be seen as a vector where each index corresponds to the likelihood
of an entry in the vocabulary being the adjacent token. Being a probability distribution, the sum of the
elements in this vector add up to 1.0. The probability distribution works double duty—because it outputs
probabilities, it can determine what the most probable adjacent token should be; hence, it can be used to
determine possible fixes (discussed in Section 3.7).

To approximate such a function, we used machine learning to map contexts to categorical distributions
of the adjacent token. For this task, we employed long short-term memory (LSTM) recurrent neural
networks, as they were successfully used by prior work in predicting tokens from source code (Raychev
et al., 2014; White et al., 2015). Unlike the prior work, we have trained two models—the forwards model,
given a prefix context and returning the distribution of the next token; and the backwards model, given a
suffix context and returning the distribution of the previous token. Using recurrent neural networks in
two different directions was used successfully in speech recognition (Hannun et al., 2014; Amodei et al.,
2015), but has yet to be applied to source code.

Our insight is that models with opposite viewpoints (that is, different contexts for the same adjacent
token) may return different categorical distributions. That is, whilst the forwards model may declare that
the keyword this is likely for the next token, the backwards model may declare that an open brace ({) is
far more likely than the keyword this. With this formulation, we are able to both detect the location of
syntax errors and produce possible fixes using just these two models.

As an example, consider the syntactically-valid JavaScript snippet in Listing 2. Figure 2 illustrates the
contexts—both prefix and suffix—when estimating the likelihood of the open brace ({) on the first line of
Listing 2.

As training input, we iterated over each token in each file, moving a sliding window over the tokens of
the source code file. Based on empirical work done by White et al. (White et al., 2015) we chose a context
length τ of 20 tokens. This corresponds to an n-gram length of 21 tokens, as an n-gram traditionally
includes both the context and the adjacent token. The prefix was provided as the example input to the
forwards model, and the suffix was provided to the backwards model. Both contexts were provided as
a one-hot matrix (alternatively, a sequence of one-hot vectors). As example output to both models, we
provided the adjacent token, as a one-hot vector. To handle tokens whose contexts extend beyond the
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forwards

backwards

n-gram

suffix (context)adjacent

{ Identifier. =this ;false

)=== IdentifierIdentifier(if {

adjacentprefix (context)

Figure 2. The relationship between an n-gram, the contexts, and the adjacent token. In this diagram,
n = 7, and the adjacent token is the { in both cases. Thus, the contexts (both prefix and suffix) are n−1
or 6 tokens long.

start and end of the file, we inserted synthetic /*<START>*/ and /*<END>*/ tokens, collectively
called padding tokens. This means that the first prefix context in the file is comprised entirely of 20
/*<START>*/ tokens; likewise, the last suffix context in the file is comprised of 20 /*<END>*/
tokens.

Input One-hot matrix, dimensions = τ · |V |
Type Output dim. Activation Recurrent activation

Layers LSTM τ ·300 tanh hard sigmoid
LSTM 300 tanh hard sigmoid
Dense |V | softmax

Output Categorical distribution, size = |V |
Loss Categorical cross-entropy
Optimizer RMSprop, initial learning rate = 0.001

Table 4. Summary of the neural network architecture we trained. |V |= 100 is the size of the vocabulary
(Section 3.3) and τ = 20 is the length of each context in number of tokens.

We used Keras 1.2.2 (Chollet, 2015), a Python deep neural network framework, to define our model
architecture, using the Theano (Theano Development Team, 2016) backend to train the models proper. A
summary of the precise architecture that we used is given in Table 4. Each LSTM layer has 300 outputs,
based on the observation by White et al. (White et al., 2015) that recurrent neural networks with 300
outputs with 20 tokens of context or 400 output with 5 tokens of context have the lowest perplexity with
respect to the corpus of source code. We used the RMSprop (Tieleman and Hinton, 2014) gradient descent
optimizer with an initial learning rate of 0.001, optimizing to minimize categorical cross-entropy. We ran
a variable number of epochs—full iterations of the training examples—to train the models, using early
stopping to determine when to stop training. Early stopping was configured to stop upon detecting three
consecutive epochs (its patience parameter) that yield no improvement to the categorical cross-entropy
with respect to the validation examples.

We arrived at this neural network architecture by starting with the work of White et al. (White et al.,
2015) and using LSTMs rather than plain recurrent neural networks (RNNs). We tried models in which
we varied the amount of neurons in the hidden layer, as well as keeping the number neurons per layer
constant while adjusting the number of layers. We settled on the architecture of two LSTM layers of 300
neurons each due to it consistently achieving the lowest loss across validation partitions.

Once each model was trained, it was serialized in Hierarchical Data Format 5 (HDF5). In total, the
weights and biases of each individual model resulted in 9.4 MiB of data.3 Section 5.1 discusses how files
were chosen for the training, validation, and testing sets.

3.6 Detecting syntax errors
We use the output of the two models trained in Section 3.5 to find the likely location of the syntax error.
Given a file with one syntax error, we tokenize it using Esprima. Esprima is able to tolerate erroneous

3Available: https://archive.org/details/sensibility-replication-package
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input in the tokenization phase, which produces a token stream (as opposed to the full parsing stage,
which produces an abstract syntax tree).

Recall that each model outputs the probability of the adjacent token given a context from the token
stream, but each model differs in where the context is located relative to the adjacent token. We
use the two independent probability distributions to determine which tokens are quantifiably unlikely,
or “unnatural” (Campbell et al., 2014). We use two measures—total variation distance and the joint
probability—and combine them using an average for each token in the file. Once the naturalness of every
single token in the file is computed, we return a sorted list of the least likely tokens, or, in other words, the
locations that are most likely to be a syntax error.

To obtain a “global” measure of the difference at a particular token location, we use the total variation
distance to compare the difference of the two independent categorical distributions. For two discrete
distributions n and p, both with cardinality |V |, the total variation distance is defined as half the `1 norm
of the pairwise difference of elements in the distribution (Gibbs and Su, 2002), written as:

globalt =
1
2

|V |

∑
i=1
|ni− pi|

This returns a value in the [0,1] where 0 indicates that the two distributions are equal, and 1 which indicates
that the two distributions are completely different. Here, n is the categorical distribution produced by
the LSTM working in the forwards direction given the prefix; likewise, p is the categorical distribution
produced by the LSTM working in the backwards direction given the suffix. Notice that this measure
ignores the value of the token under inspection.

To obtain a “local” measure of the naturalness of a given token, we consider both distributions as
independent events. Given a token t in the erroneous file, whose vocabulary index is i, we calculate the
joint probability of the adjacent token being t given the prefix, and the probability of the adjacent token t
given the suffix.

localt = P(t|prefixand t|suffix)

= P(t|prefix)P(t|suffix)

= next[prefix]i prev[suffix]i
= ni pi

This returns a value in [0,1] where 0 indicates that the token witnessed is unlikely (“unnatural”), and 1
indicates that the token witnessed is very likely (“natural”).

We then combine the two measures using an arithmetic average. Notice that total variation distance
and joint probability have the same range, but opposite semantics. For this, we simply take the complement
of one measure—total variation distance—and take the average. The average is in [0,1], but the semantics
follow that of probability, where 0 is unlikely, and 1 is certain. Finally, the naturalness for a single token
in a source code file is given as follows:

scoret =
1
2
((1−globalt)+ localt)

We calculate the scoret of each token t in the erroneous file, and then sort tokens in the file in order of
increasing naturalness. The first elements in the list are the least natural, and thus the most likely locations
of the syntax error. Thus, we produce a ranked list of possible syntax error locations.

3.7 Fixing syntax errors
Given the top-k most likely syntax error locations (as calculated in Section 3.6), we use a naı̈ve “guess-
and-check” heuristic to produce and test a small set of possible fixes. Using the categorical distributions
produced by the models, we obtain the most likely adjacent token which may be inserted or substituted at
the estimated location of the fault. Each fix is tested to see if, once applied, it produces a syntactically-valid
file. Finally, we output the valid fixes.

For a given syntax location, we obtain the most likely next token tnext (an entry of the vocabulary V )
from the distribution returned by the forwards LSTM:

tnext = argmaxi∈V next[prefix]i
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1 if (name)) {
2 $form.addClass(’highlight’);
3 return;
4 }

Listing 3. Invalid JavaScript with one extraneous token

Likewise, we obtain the most likely previous token tprev from the distribution returned by the backwards
LSTM:

tprev = argmaxi∈V prev[suffix]i

Using tnext and tprev, we try the following five edits, each time applying them to the incorrect file,
and parsing the result with Esprima to check if the edit produces a syntactically-valid file. If it does, we
consider the edit to be a valid fix. We use the following strategies:

1. Assume the token at this location was erroneously inserted. Delete this token.

2. Assume a token at this location was erroneously deleted. Insert tnext at this location.

3. Assume a token at this location was erroneously deleted. Insert tprev at this location.

4. Assume the token at this location was erroneously substituted for another token. Substitute it with
tnext .

5. Assume the token at this location was erroneously substituted for another token. Substitute it with
tprev.

We repeat this process for the top-k most likely syntax error locations. k should be calibrated according
to the expected value of finding the syntax error in the ranked list (discussed in the evaluation, Section 5.3).

Finally, all valid fixes are output to the user. These are suggestions, but every single fix is guaranteed
to produce a syntactically-valid file. Ultimately, it is up to the programmer to determine whether a fix is
appropriate.

4 PROTOTYPE IMPLEMENTATION
We created a prototype of GrammarGuru that implements the algorithms described in Sections 3.6 and 3.7.
It is available on GitHub.4

Given the program from Listing 1, GrammarGuru produces the following output:

broken.js:4:38: try inserting ’{’
if (scorer.nextDoc() == NO_MORE_DOCS)

ˆ
{

Given the full program from Listing 3, GrammarGuru produces similar output:

insertion.js:5:14: try removing ’)’
if (name)) {

ˆ
)

The formatting of the output is inspired by that of Clang’s “fix it” hints (Clang, 2016). It uses coloured
command line output to emphasize the error. The concise wording of the message tells the user of the tool
what they should try in order to fix the error, and the caret tells the user precisely which token should be
removed, or where the token should be inserted.

4Available: https://github.com/eddieantonio/training-grammar-guru/blob/icsme2017/bin/detect.py
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Train set
~19M tokens

Validation set
~3M tokens
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128 files

Figure 3. Each of the five partitions are further divided into three mutually-exclusive sets

5 EVALUATION
To determine the practical usefulness of GrammarGuru, we ask the following questions:

1. How well does GrammarGuru find syntax errors?

2. How often does GrammarGuru produce a valid fix?

3. If a fix is produced, how often is it the true fix?

A “true fix” is the edit that precisely reverses the mistake that introduced the error.
To answer these questions, we have adapted the evaluation methodology used by Campbell et

al. (Campbell et al., 2014). We discuss how we partitioned the data collected in Section 3.1 into
mutually-exclusive subsets in order to evaluate GrammarGuru (Section 5.1); we describe how we
procedurally altered syntactically-correct JavaScript to synthesize a corpus of labelled syntax errors,
called mutants (Section 5.2); finally, we describe the metrics we used to answer the evaluation questions
(Sections 5.3, 5.4).

5.1 Partitioning the data
To empirically evaluate GrammarGuru, we repeated our experiments five times on mutually-exclusive
subsets of source code files called partitions. Each of the five partitions are subdivided further into three
mutually-exclusive sets: the train set, the validation set, and the test set, thus resulting in 15 sets total
(Figure 3). We populated every set with JavaScript source code from the corpus collected in Section 3.1.
The training and validation sets were used in the training phase (Section 3.5), whereas the test sets were
used in the mutation testing phase (Section 5.2).

When assigning source code files to sets, we imposed the following constraints to ensure the indepen-
dence of training and test sets:

1. The source code files of a single repository cannot be distributed over multiple sets; in other words,
every source code file in a given repository must be assigned to one and only one set.

2. Each corresponding set of each partition must be approximately the same size.

The first constraint is to make the evaluation more realistic, considering the expected use case of
GrammarGuru. If a user is trying to figure out a syntax error in their own hand-written source code, it is
unlikely that their source code belongs to a well-established open source repository that our models have
already been trained on. Therefore, we do not mix files from other repositories between sets, to simulate
the prediction of syntax errors in a file from a totally unknown source code repository.

We split our evaluation into five partitions to demonstrate how the performance of GrammarGuru
changes when trained and evaluated on completely different data. Keeping each corresponding set the
same size facilitates the comparison of results between partitions. This also represents the expected use
case of an end-user who will never retrain GrammarGuru.

Mean S.D. Median Min Max

Train 19.23 M 814,607.66 18.89 M 18.76 M 20.68 M
Validation 3.05 M 715,868.73 2.76 M 2.51 M 4.24 M

Table 5. Number of tokens in partitions in the train and validation sets
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5.2 Mutation testing
In order to evaluate GrammarGuru, we need a set of labelled syntax errors—JavaScript source files with
a single syntax-error whose cause is known prior to evaluation. One option to collect invalid source code
files is to collect them from mistakes made by real programmers; however collecting such a corpus is
time-consuming, and the process of manually labelling the syntax errors is error-prone and potentially
subjective. Instead, we adapted the evaluation methodology used by Campbell et al. (Campbell et al.,
2014). Recall that all files that are retained in the corpus (and thus, all files assigned to the test sets) are
syntactically-valid JavaScript files. We sampled the test sets of valid source code files to synthesize invalid
files, called mutants, through a process called mutation. To mutate a source code file, we applied one of
the following three edit operations:

Insertion A token is chosen randomly in the file.5 A random token from the vocabulary6 is inserted
before this token.

Deletion A token is chosen randomly in the file. This token is removed from the file.

Substitution A token is chosen randomly in the file. This token is replaced with a random token from
the vocabulary.6

For each file in the test set, we recorded at most 120 unique mutations for each of the three edit
operations (insertion, deletion, and substitution), resulting in a total of 360 unique mutations per file.
However, applying random edit operations to a file does not guarantee that the mutant will be syntactically
incorrect. Consider inserting the unary negation operator (!) before a boolean expression, or substituting
a variable name for a numeric literal. These examples show that a single random edit operation may still
produce a syntactically-valid file. Thus, after a file is mutated we check its syntax using Esprima. We
discard any mutants that are syntactically valid and try a different mutation instead.

5.3 Finding the syntax error
To quantify GrammarGuru’s accuracy in finding the error, we calculated the mean reciprocal rank (MRR)
of the ranked syntax error location suggestions, by line number. Reciprocal rank is the inverse of the
rank of the first correct line number found in an ordered list of syntax error locations for a mutant q.
Mean reciprocal rank is the average of the reciprocal rank for every in mutant q in the set of total mutants
attempted Q:

MRR =
1
|Q| ∑q∈Q

1
rankq

MRR is always a value in [0,1], where an MRR of 1 is the best possible score, obtained when the
first suggestion is always has the correct line number of the error. Conversely, an MRR of 0 means that
the correct line number is never found in the ranked list of suggestions. For example, if for one mutant,
the correct line was given first, for another mutant, the correct line was given third, and for yet another
mutant the correct line was never found, the MRR would be 1

3

( 1
1 +

1
3 +0

)
= 0.44. MRR is considered

quite conservative: in the case that the correct result is first half of the time and second the rest of the
time, the MRR score is only 0.75.

5.4 Fixing the syntax error
To quantify GrammarGuru’s ability to fix syntax errors, we determined how often it finds the correct
location and applies the correct fix. We report the success rate as a percentage, as well as the raw number
of mutations for which GrammarGuru produced a valid fix. We report the success rate per each mutation
kind (i.e., insertion, deletion, and substitution). We also report the mutation kind that GrammarGuru
provided to fix the given syntax error. We expect that, if the mutation inserted an extraneous token into
the file, then GrammarGuru would produce a deletion; if the mutation deleted a token from the file, we
expect GrammarGuru to produce an insertion; similarly, if the mutation substituted a random token, then
we would expect that GrammarGuru produces a fix that substitutes a token. In any case, if GrammarGuru
produces an edit that, when applied, produces a syntactically-valid file, we report it as a valid fix. A
stricter measure of success is how often GrammarGuru produces the true fix. That is, does the generated
fix exactly undo the original mutation edit?

5The end of the file is also considered a “token” for the purposes of the insertion operation.
6 Excluding the synthetic /*<START>*/ and /*<END>*/ tokens.
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6 RESULTS
6.1 Performance of finding syntax errors
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Figure 4. The mean reciprocal rank of determining the location of three kinds of mutation kinds, by
partition

Table 6 lists the mean reciprocal rank obtained when finding the syntax error for each mutation kind
and each partition. Both the kind of mutation and the partition have a significant effect on the reciprocal
rank of finding syntax errors (F = 4318.35, p≈ 0 and F = 545.41, p≈ 0, respectively).

Partition Insertion Deletion Substitution

1 0.51 0.49 0.28
2 0.54 0.52 0.32
3 0.48 0.47 0.28
4 0.62 0.60 0.38
5 0.46 0.44 0.26

Mean 0.52 0.50 0.30

Top-4 62.40% 61.01% 37.53%

Table 6. Mean reciprocal rank of mutation locations across each partition

Figure 4 is a series of violin plots with embedded interquartile ranges visualizing the reciprocal ranks
when varying the mutation kind and partition. This gives a more granular view of the results in Table 6.
The width of each “violin” displays the density of observations that have a reciprocal rank at that value.
In all cases, there is a clustering of reciprocal ranks at 1.0, meaning that GrammarGuru can suggest
the correct line number of a syntax error as its first suggestion 32.77% of the time. GrammarGuru can
suggest the correct line number in its top-4 suggestions 54.74% of the time.

However, it is apparent that GrammarGuru especially struggles with finding substitutions. Notice that
in all cases other than substitutions, the interquartile range of reciprocal ranks (inset in Figure 4) extends
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Fix created by GrammarGuru Summary

Insertion Deletion Substitution No fix Valid fix True fix
Mutation Total % Total % Total % Total % Total % Total %

Insertion 499 1.04% 18790 39.21% 42 0.09% 28587 59.66% 19331 40.34% 17012 35.50%
Deletion 7795 16.90% 9939 21.55% 358 0.78% 28035 60.78% 18092 39.22% 7182 15.57%
Substitution 305 0.66% 1024 2.21% 475 1.03% 44473 96.10% 1804 3.90% 277 0.60%

Table 7. Percent correctness of finding and fixing syntax errors within mutated JavaScript files.

to 1.0. This is true for only one partition—partition 4—in the substitution case.
Since fixing the syntax error is directly dependent on GrammarGuru’s ability to find the error first, we

should expect the results of fixing substitutions to suffer due to the relatively poor results in finding the
substitutions in the first place. Despite this, the correct syntax error location is in the top-3 49.19% of the
time, and in the top-4 53.74%.

Comparing the to prior work (Campbell et al., 2014), the n-gram model of order 10 outperforms
GrammarGuru when it is trained on the same repository as it is being tested on, achieving an MRR of up
to 0.99 on insertion, 0.88 for deletions, and 0.98 for substitutions. However, when evaluated against a
different repository than its training data (as is the case in all of our tests), GrammarGuru yields better
MRR for insertions and deletions. Compare the results in Table 6 to UnnaturalCode’s MRRs of 0.36
on insertion, 0.20 on deletion, and 0.36 on substituion as shown in Table 2 on pp. 256 of Campbell et
al. (Campbell et al., 2014). Similarly, GrammarGuru outperforms UnnaturalCode on insertions and
deletions even when the new files come from the same repository as its training data: 0.47 on insertions,
0.29 on deletions, and 0.48 on substitutions. In all cases, GrammarGuru struggles with substitutions.

GrammarGuru outperforms Campbell et al. (Campbell et al., 2014) on insertions and deletions when
finding syntax errors in unknown files.

As mentioned in Section 3.7, parameter k sets the amount of syntax error locations which are inspected
to try to synthesize a fix. This value should be calibrated to the expected value of the rank that locates
the true syntax error. The expected value of the rank is simply the reciprocal of the MRR. That is,
k = dMRR−1e. Plugging in the lowest MRR value obtained, 0.26, we get k = 4.

6.2 Performance of fixing syntax errors
Table 7 is a summary of how often GrammarGuru was able to fix syntax errors, for every given mutation.
Each row of Table 7 corresponds to the mutation kind; the first three columns correspond to the valid fix
that GrammarGuru generated to fix the given mutation. The cells that are highlighted show the dual of
the mutation—that is, if a token was erroneously inserted, then the expected fix should be a deletion; if
a token was erroneously substituted, then the expected fix should also be a substitution. The final three
columns summarize the results, by how many times GrammarGuru was unable to produce a valid fix;
how many times GrammarGuru did produce a valid fix; and how many of the total number of fixes were
the true fix that exactly reverses the original mutation.

As expected, since the MRR of finding substitutions is limited, so too will be the results of fixing the
substitutions. Curiously, GrammarGuru produces more fixes that delete a token rather than substitute a
token to fix the substitution. In general, our tool seems to be biased towards deleting tokens rather than
adding or substituting new tokens.

However we can evaluate the performance of GrammarGuru shown in Table 7 against a randomly
selected fix as a baseline. First we select a random type of fix, either deletion, insertion or substition, and
then we select a random token from the 98 tokens in the token vocabulary. Combining the baseline fix
and the top-4 accuracy of GrammarGuru in finding the correct location, we calculate that the baseline
would perform the true fix only 20.80% of the time for insertions, 0.13% of the time for substitutions, and
0.21% of the time for deletions. In all cases GrammarGuru outperforms the baseline for providing true
fixes without taking into account fix location.

We investigated one of these cases, when a valid fix was produced by deleting a token. We investigated
this snippet in Google Cloud’s Node.JS client (Google Inc., 2016):

nextQuery = extend(/* ... */);
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The mutation substitutes the variable nextQuery with the keyword new, making the statement
syntactically-invalid:

new = extend(/* ... */);

GrammarGuru calculates the score of all 5151 tokens in the 2485 line file and determines that the token
the = beside new has the lowest score at 8.14×10−5 in the file, making it the top syntax error location.
By comparison, new has a score of 0.27, quite a lot higher (and thus more “natural”) than that of the =
immediately beside it. Hence, GrammarGuru deletes the unnatural = sign, turning what was originally
an assignment to nextQuery into the invocation of a constructor, which is syntactically-valid—if
dubious—JavaScript code.

new extend(/* ... */);

7 DISCUSSION
Our work is complementary to other syntax error detection tools. We do not intend to make a replacement
for existing tools that work, such as Merr (Jeffery, 2003) and Clang’s “fix it” hints (Clang, 2016). However,
it can be used as one part of many to squash syntax errors.

The most pressing limitation is the speed of producing suggestions. There is a several second delay
when initializing Keras (Chollet, 2015) and Theano (Theano Development Team, 2016). Using two
models simultaneously is also computationally expensive. On one of our personal laptops (2.6 GHz
Intel® Core™ i5–3230M, 8 GiB RAM, Intel HD Graphics 4000 1536 MiB), it takes around eight seconds
for the tool to produce results for a relatively small file (46 tokens). The scalability issues are a real
concern if this tool were to be used as a developer’s companion. However, this concern can be mitigated
by keeping the models “warm” and memoizing results. We employed both techniques when performing
the evaluation: we initialized the models once per partition, and kept a least-recently-used (LRU) cache of
prediction results. The LRU cache is beneficial when evaluating several consecutive iterations of the same
file, such as when a developer is making incremental changes to one file. Each iteration of the file only
affects a few tokens, leaving most tokens in the file untouched since the last iteration—hence, there is no
need to compute predictions for these already-seen contexts (in other words, memoizing already computed
predictions). We suggest that any practical implementation of our technique use a persistent process that
initializes the models once, and maintains a prediction cache such that every subsequent run can benefit
from the prediction cache.

In order to achieve acceptable accuracy in both detecting syntax error locations, and correcting them,
one needs a large corpus with copious examples of all tokens in the vocabulary. However, this is not
always the case. This problem is at its worst when the language definition evolves, as is the case for
JavaScript. The latest versions of the JavaScript standard, ECMAScript 2015 and ECMAScript 2016,
have introduced new syntax, and new keywords. However, these new features are not witnessed uniformly
in the corpus; we have anecdotally observed that changing just one token to use newer syntax (such
as substituting a var to a let) will cause the tool to fail to find the appropriate syntax error where it
otherwise was able to produce a valid fix.

7.1 Threats to validity
Construct validity In Section 3.1, we obtained training data from the most popular repositories on
GitHub. This code is more likely to be written by experienced programmers and use advanced idioms. As
such, training on professional code to help fix novice code may be unrealistic.

The evaluation described in Section 5 chooses errors in a uniformly random manner, and as such, may
not accurately represent the mistakes that novices actually make. For example, it is unlikely that a novice
would substitute the === operator with the keyword const, yet our random evaluation created a mutant
that did just that. In order to make a more realistic evaluation, we would need a corpus of errors made by
actual programmers. An evaluation informed by a distribution of errors that novices actually make would
be far more realistic and informative.

External validity is addressed by the use of a large number of JavaScript source files; however these
source files where only collected from one source (GitHub), thus are not necessarily representative of all
JavaScript code. External validity is also harmed by only addressing one programming language.
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8 FUTURE WORK
To resolve even more syntax errors, a deep learning model may be trained to both detect and suggest
fixes for an arbitrary code location, rather than simply trained to predict the adjacent token as is in our
case. There is also the possibility of using ensemble models that combine the strengths of deep learning,
smoothed n-gram models, and other probabilistic models to achieve high precision in detecting and fixing
syntax errors.

9 CONCLUSIONS
We described a novel method of detecting and correcting arbitrary syntax errors. Our tool is able to
pinpoint the location of syntax errors where a standard LR parser would report a misleading error location.
We describe how to train our model on a large corpus of open-source code, and how to use the raw text
to train the model. We describe a two-LSTM system, and its syntax error detection strategy. We then
describe our prototype, and evaluate it on synthetic syntax errors.

Our prototype GrammarGuru can successfully locate many syntax errors (54.74% in the top-4) and
can repair many of them. The GrammarGuru models had difficulty with certain kinds of errors such as
substitutions, but could address insertion errors with modest success.

We believe that GrammarGuru is a good step toward lowering the anxiety novices may face when
dealing with syntax errors by providing find syntax errors suggesting fixes.
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