

The inheritance of viable mitochondria

Mitochondria cannot be produced de novo by the cell, but are inherited across generations. Their peculiar genetics (multiple genomes per cell, no meiosis, replication independent from cell cycle, high mutation rate) and the possible exposition to Reactive Oxygen Species (ROS) are predicted to produce a fast accumulation of deleterious mutations, a phenomenon known as Müller's ratchet. Nonetheless, mitochondrial genomes persist accurately over million years. How is a viable mitochondrial genetic information preserved? To answer this question we review the following relevant topics: 1) the sources of mtDNA mutation (replication and ROS); 2) the origin of mitochondrial membrane potential; 3) the activity of germ line mitochondria; 4) the mitochondrial bottleneck; 5) mtDNA drift and selection. Finally we discuss such topics in the light of an unusual biological system (Doubly Uniparental Inheritance of mitochondria, DUI), in which also sperm mtDNA is regularly transmitted to the progeny.

The inheritance of viable mitochondria

Liliana Milani & Fabrizio Ghiselli

Department of Biological, Geological and Environmental Sciences (BiGeA) University of Bologna, Bologna, Italy

Mitochondria cannot be produced de novo by the cell, but are inherited across generations. Their peculiar genetics (multiple genomes per cell, no meiosis, replication independent from cell cycle, high mutation rate) and the possible exposition to Reactive Oxygen Species (ROS) are predicted to produce a fast accumulation of deleterious mutations, a phenomenon known as Müller's ratchet. Nonetheless, mitochondrial genomes (mtDNAs) persist accurately over million years.

How is a viable mitochondrial genetic information preserved?

The "division of labour" (DOL) hypothesis postulates that male gametes maximize energy production for motility by sacrificing mitochondrial DNA (mtDNA) to oxidative phosphorylation (OXPHOS) and its mutagenic by-products, while non-motile female gametes repress OXPHOS, thus being somewhat inactive [1].

However, many studies failed to support a causal link between high OX-PHOS activity and generation of hazardous amounts of ROS, so caution is advised [2]. The high energy demand for flagellar movements may even produce a lower amount of ROS (compared to "basal" ROS production), as documented during high exercise activity [3].

s-t0

s-t0

. SNP profiles of the M-type

-t0 = just spawned sperm

s-t1 = the same sperm after 1 h

ntDNA of four males, three samples each:

An unusual biological system (Doubly Uniparental Inheritance of mitochondria, DUI) [2,4]

- ~100 species of gonochoric bivalves;
- two mitochondrial lineages inherited uniparentally;
- mitochondrial lineages separated for million years (up to 40% of DNA sequence divergence).

in DUI animals A) Mitochondria at Transmission Electron Microscopy show a compa rable complexity of morphology between gamete types. B,C) Mitochondrial activity in gametes: B) oocyte; C) spermatozoa. Mitochondria with $\Delta \psi m$ in red. m = mitochondria; N = nucleus; ax = axoneme; sh = spermhead; Y = yolk.

comparing mtDNAs of just spawned sperm with the same sperm after 1 h of swimming...

Activity of gamete mitochondria

According to the presence of high inner membrane potential ($\Delta \psi m$) (Fig. 1), mitochondria of both gamete types are active [2]. Sperm mitochondria are active both in species that do not transmit sperm mitochondria and in DUI species. So, high mitochondrial activity does not necessarily imply mtDNA damage (Fig. 2) and may actually promote the inheritance of mitochondria [2,5].

	STAGE	LEVEL	TARGET	MECHANISM
	Gametogenesis	Organelle	mtDNA	Autophagy of unfit mitochondria Selection of high Alpm mitochondria (Balbiani body mitochondria or sperm mitochondria) Replication advantage of wild-type mtDNA
	Gametogenesis Fertilizing gametes	Cell	mtDNA	Apoptosis of unfit cells Fertilization failure
	Zygote Early embryos	Organism	mtDNA nuclear genes for mitochondrial function	Development failure
				Selection on

Is the DUI system undermining the DOL hypothesis?

Man 1 III

Two possibilities by which the DOL would still hold true easily come to mind [6]: i) DUI species might use alternative energy-production pathways and/or produce less ROS;

ii)DUI species might have evolved specific mechanisms of ROS scavenging and/or mtDNA protection.

An alternative hypothesis to DOL to explain how viable mitochondria are transmitted through generations is that the most active mitochondria are inherited. A combination of drift and selection on germ line mtDNA population might be responsible for the

Minn 1 w

Scientific Independence of young Researchers" 2014 Grant to Liliana Milani liliana Milani
liliana.milani@unibo.it

References
[1] Allen JF. 1996 Separate sexes and the mitochondrial theory of ageing, J. Theor. Biol. 180, 135—140 (doi: 10.1006/jtbi.1996.00891); [2] Millani L. Ghiselli F. 2015 Mitochondrial activity in gametes and transmission of viable mtDNA. Biol. Direct 10, 22 (doi: 10.1186/s13062-015-0057-9); [3] Baing. 2013 Updating the Mitochondrial Free Radical Theory of Aging. An Integrated View. Key Aspects, and Confounding Concepts. Antioxid. Redox Sign. 19, 1420—1445 (doi:10.1089/drs.2012.5148], [4] Zouros E. 2013 Biparental inheritance through uniparental transmission: the doubly uniparental inheritance (DUI) of mitochondrial DNA. Evol. Biol. 40, 1–31; [3] Millani L. 2015 Mitochondrial amembrane potential: a trait involved in organelle inheritance? Biol. Letters 11, 2015/0732 (doi: 10.1088/rsbl.2015.0732); [6] Ghiselli F. Berton S. Millani L. 2017 Mitochondrial activity in gametes and uniparental inheritance — a comment on 'What can we infer about the origin of sex in early eukaryotes?'.

MIUR - FIR 'Futuro In Ricerca'' 2013 Grant to Fabrizio Ghiselli fabrizio.ghiselli@unibo.it

