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Abstract 30 
Background: Metabarcoding studies allow a wide variety of taxa to be analysed 31 

simultaneously in a fraction of the time taken by morphological identification, but currently 32 

metabarcoding studies must rely on sequence similarity-based methodologies to delimit 33 

operational taxonomic units (OTUs). Similarity-based OTU clustering methodologies can 34 

lead to inaccurate estimates of diversity, species’ distributions or responses to change, 35 

meaning that there is a critical need for methods to delimit species in metabarcoding datasets. 36 

Methods: We introduce SNAPhy (Species delimitation using Niche And PHYlogeny), a 37 

novel approach which utilises ecological and phylogenetic information to delimit de novo 38 

OTUs in metabarcoding datasets and avoids the problems associated with current OTU 39 

clustering methods. Sequencing reads are first divided into ecological groups based on co-40 

occurrence, thereby reducing data complexity and facilitating the use of evolutionary and 41 

phylogenetic models (e.g. BEAST and GMYC) to delimit species-level groupings within 42 

discrete ecologically informed phylogenies. The utility of SNAPhy is demonstrated using an 43 

18S rDNA nuclear small subunit (nSSU) dataset representing replicated samples taken along 44 

the entire length of an estuarine salinity gradient, and SNAPhy is then compared to existing 45 

OTU clustering methods. 46 

Results: All of the OTU clustering methods compared yielded different numbers of OTUs 47 

and a different taxonomic distribution of OTUs, which we suggest is due to the taxon 48 

differences that are known to exist in the degree of intraspecific divergence. SNAPhy and 49 

UCLUST (with a 98% similarity threshold) gave the most plausible numbers of OTUs, 50 

especially within the Nematoda. Additionally, the degree of variation within nematode OTUs 51 

delimited by SNAPhy lies within the range of variation in deeply metabarcoded individuals. 52 

Discussion: SNAPhy avoids the static clustering threshold problems associated with current 53 

OTU clustering methods and instead focuses on genuine biological diversity delimited 54 
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according to a general lineage species concept. We suggest that the SNAPhy approach should 55 

play a crucial role in future sequencing-based biodiversity assessment by providing more 56 

accurate estimates of species diversity and distributions than current methods, thereby 57 

enabling more accurate impact assessments and better informing managerial decisions. 58 

  59 
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Introduction 60 

As the natural world experiences increasing pressure from habitat loss, fragmentation and 61 

global environmental change, researchers progressively focus on the relationship between 62 

biodiversity and ecosystem processes (Loreau et al. 2001). Ecologists are interested in the 63 

interactions between organisms and their environment in relation to questions involving 64 

macroecology (Brown 1995), trophic linkages (Hagen et al. 2012) and the relationship 65 

between biodiversity and ecosystem services (Schröter et al. 2005). Conversely, regulators 66 

and stakeholders are interested in monitoring biological indicators to estimate environmental 67 

status, in association with thresholds for management action (Friberg et al. 2011). In all these 68 

fields there is an implicit need to identify community level biodiversity across many time 69 

points and geographical locations, creating a substantial volume of work for ecologists and 70 

taxonomists. Recent improvements in the throughput and cost of next-generation sequencing 71 

(Loman et al. 2012) have resulted in the increasing use of DNA sequence data to identify 72 

biodiversity en masse, shortcutting the need for traditional taxonomic identification 73 

(Caporaso et al. 2011; Bik et al. 2012). 74 

A particularly useful approach for ecological studies is to assess biodiversity through en 75 

masse taxonomic classification of an environmental sample using high throughput 76 

sequencing of homologous gene markers (Creer et al. 2010; Hajibabaei 2012; Taberlet et al. 77 

2012), termed metagenetics (Creer et al. 2010), metasystematics (Hajibabaei 2012) or 78 

metabarcoding (Taberlet et al. 2012 – adopted hereon). Inspired by the work of microbial 79 

ecologists using 16S rDNA gene markers (Caporaso et al. 2011), such studies use highly 80 

degenerate oligonucleotide primers situated either side of informative regions of the genome 81 

to delimit biodiversity across a broad range of taxonomic groupings by PCR amplifying the 82 

region of interest. Metabarcoding can quickly and objectively identify the majority of 83 

biodiversity in thousands of samples simultaneously and is now employed to identify 84 
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prokaryotes (Caporaso et al. 2011), microbial eukaryotes (Dumbrell et al. 2011; Pawlowski et 85 

al. 2012), meiofaunal (Fonseca et al. 2014; Lallias et al. 2015) and macrofaunal (Carew et al. 86 

2013) size fractions, or from environmentally ‘free’ DNA (eDNA; Bohmann et al. 2014). 87 

Nevertheless, the volume of reads resulting from contemporary DNA sequencers (Loman et 88 

al. 2012) cannot be easily incorporated into hypothesis testing without transformation into a 89 

smaller number of dependent variables that emulate genuine taxon diversity. The currently 90 

preferred transformation is to perform operational taxonomic unit (OTU) clustering. Once 91 

OTUs are constructed, a representative sequence (e.g. dominant/consensus) with associated 92 

frequency data forms the dependent variable for downstream analysis (Bik et al. 2012). 93 

Almost all current studies cluster metabarcoding datasets into OTUs using a static clustering 94 

threshold (although see e.g. Malviya et al. (2016)), despite the known problems with this 95 

approach: in particular, that a single clustering threshold cannot accurately delimit species, or 96 

any desired taxonomic level, because of the heterogeneous nature of intra-genomic, 97 

intraspecific and interspecific genetic diversity throughout the tree of life (Schloss & 98 

Westcott 2011). Therefore, OTUs do not accurately reflect species diversity in genuine 99 

biological communities; OTU construction may split some species and lump others. An 100 

alternative to OTU clustering is therefore critically needed in order to accurately delimit 101 

species-level diversity in metabarcoding studies. Several recent approaches have aimed to 102 

find solutions to the problems inherent in clustering with a static threshold. For example, 103 

Swarm uses a local clustering threshold, d, to generate clusters through an iterative process 104 

(Mahé et al. 2014). An alternative approach is to include distribution information in addition 105 

to sequence similarity in order to ensure OTUs are ecologically meaningful (Preheim et al. 106 

2013). Information about read distributions has also been used to inform denoising 107 

approaches (Morgan et al. 2013; Tikhonov et al. 2014). 108 
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Here we describe and test SNAPhy (Species delimitation using Niche And PHYlogeny), an 109 

alternative framework to define genetic units in metabarcoding data under the general lineage 110 

species concept (de Queiroz 2007). Phylogenetic models are more powerful than simple 111 

metrics of sequence divergence (Barraclough et al. 2009), but are too computationally 112 

demanding for use on current metabarcoding datasets. Ecology here provides a convenient 113 

parsing mechanism: in the current approach we first divide the dataset based on ecological 114 

co-occurrence (or where this was not possible, based on taxonomy) in order to obtain subsets 115 

of data on which it is possible to apply phylogenetic models. In metabarcoding studies, reads 116 

are derived from species that are distributed in time and space according to ecological niches, 117 

environmental tolerances or neutral processes (Legendre & Fortin 1989; Vellend 2010). 118 

Importantly, variation caused by real intra-genomic and intra-specific diversity will also be 119 

accompanied by associated PCR and sequencing errors. If therefore, species delimitation is 120 

focused on co-occurring reads, the complexity of multiple sequence alignments can be 121 

reduced into a number of smaller tasks, according to niche or neutral occupancy models, 122 

based on genuine biological diversity (Chase & Myers 2011). 123 

In the current manuscript, we test SNAPhy on an estuarine dataset based on the 18S rDNA 124 

nuclear small subunit (nSSU) DNA marker derived from (Lallias et al. 2015) because: (a.) 125 

ecological heterogeneity is exemplified across an ecological cline, (b.) the 18S nSSU marker 126 

is predicted to display valuable, intragenomic and intraspecific diversity (Bik et al. 2013; 127 

Stage & Eickbush 2007) for phylogenetic species delimitation and (c.) we were able to 128 

deeply sequence individuals belonging to representative nematode species in order to validate 129 

the approach.130 
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Materials and Methods 131 

Metabarcoding dataset 132 

The SNAPhy workflow was used to identify OTUs in an already well-characterised marine 133 

meiobenthic dataset described in Lallias et al. (2015). Briefly, three sediment cores were 134 

collected from each of twenty sites (n=60) along the full salinity range of the Thames Estuary 135 

(UK). Following community and DNA extraction, a 450bp region of the 18S nSSU region 136 

was amplified and sequenced on a 454 Roche GSFLX (454 Life Sciences, Roche Applied 137 

Science) sequencing platform (Lallias et al. 2015). 138 

SNAPhy workflow 139 

The SNAPhy workflow does not begin with trying to estimate and remove minor sequencing 140 

errors from the dataset. Such processes can be computationally intensive (Quince et al. 2009), 141 

restricted to either specific loci or sequencing chemistries (Quince et al. 2009), or unable to 142 

discriminate between errors and the intra-genomic/intra-specific genetic diversity 143 

characteristic of nuclear taxonomy markers (Bik et al. 2013; Stage & Eickbush 2007). 144 

Instead, SNAPhy focuses on identifying the ecological and genetic signal (including 145 

PCR/sequencing errors) derived from spatially and/or temporally dispersed individuals of 146 

different species using next-generation sequencing platforms. Nevertheless, the issue of DNA 147 

chimeras still persists in environmental DNA sequencing datasets (Fonseca et al. 2012) and 148 

their removal should be incorporated into emerging workflows as below. The workflow can 149 

be broadly broken down into the identification of unique reads, chimera detection and 150 

removal on a sample by sample basis; clustering reads into ecological co-occurrence 151 

networks and species delimitation based on a phylogenetic approach (Fig. 1). The first quality 152 

control step involves demultiplexing, length homogenisation and merging of identical reads 153 

into unique reads. These three processes were carried out simultaneously using the Perl script 154 
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“1_Filter_by_truncation.pl” from the Amplicon Pyrosequencing Denoising Program (APDP 155 

v1.1; Morgan et al. 2013). Reads were truncated at 225bp reflecting optimal quality 156 

(including removal of reads that were less than 225bp) and identical reads were binned 157 

together. Chimeras were removed from the dataset using the UCHIME algorithm run in de 158 

novo mode (Edgar et al. 2011) within USEARCH v6.0.307 with the default settings. 159 

Singletons and reads that only occurred in one sample were removed. These reads could not 160 

be assigned to co-occurrence networks and reads that only occur in single samples have little 161 

comparative power in ecological studies and/or can represent sequencing artefacts. Read 162 

abundances were normalised by conversion into a proportion of total reads in a given sample. 163 

Further error removal steps (e.g. homopolymer correction; Quince et al. 2009; Caporaso et al. 164 

2011) were not carried out because ecological co-occurrence networks should link sequence 165 

errors to the genuine genomic diversity from which they originated. 166 

Following the above pre-processing steps, reads were clustered into ecological co-occurrence 167 

networks based on Pearson correlation using the CoNet package for Cytoscape (v3.01; Faust 168 

et al. 2012). Pairwise correlation coefficients were calculated for all read pairs, and an edge 169 

(connection) was drawn between each pair of reads (nodes) where R2 was 0.95 or greater - 170 

this value of R2 was found to give co-occurrence networks of appropriate size for 171 

downstream analysis while allowing for cases of incomplete co-occurrence. A given read was 172 

included in a network if it had at least one connection to another read in that network (nearest 173 

neighbour clustering/single-linkage clustering; Sun et al. 2011). 174 

The next step of the workflow was to delimit species using a phylogenetic modelling 175 

approach. We tested several approaches on simulated data in order to select the most 176 

appropriate model for future applications of SNAPhy to 18S nSSU data. For testing, four 177 

artificial datasets containing between 19 and 60 reads (Table 1; Table S1) were generated 178 
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from 18S nSSU sequences downloaded from GenBank. Artificial datasets were generated 179 

using Grinder (v0.5.3; Angly et al. 2012) in order to mimic typical error patterns obtained 180 

using 454-Roche sequencing (homopolymer error model based on Balzer et al. (2010) and a 181 

uniform error rate of 0.1%). The species richness and evenness within each artificial dataset 182 

was based on the approximate richness and evenness within four co-occurrence networks 183 

within the real dataset. 184 

Once the Grinder simulated datasets had been generated, two coalescent-based models for 185 

species delimitation were compared on the artificial datasets: Generalized Mixed Yule 186 

Coalescent (GMYC; Fujisawa & Barraclough 2013; implemented in R using package splits 187 

1.0–11) and Poisson Tree Processes (PTP; Zhang et al. 2013; implemented using webserver 188 

found at http://species.h-its.org/). These methods combine coalescent theory with 189 

diversification models to infer the transition point between population and species-level 190 

processes on a gene tree; such a shift is indicative of the switch from between-species to 191 

within-species processes, expected if a sample comprises multiple individuals from a set of 192 

independently evolving species. Both methods delimit Evolutionarily Significant Units 193 

(ESUs) of diversity indicative of species (Barraclough et al. 2009) and require phylogenetic 194 

trees as input. These trees were reconstructed  by first aligning reads using MAFFT (v7.147b; 195 

Katoh & Standley 2013) and then using both Bayesian Evolutionary Analysis by Sampling 196 

Trees (BEAST; v1.8.0; Drummond & Rambaut 2007) and Randomised Axelerated Maximum 197 

Likelihood (RAxML; Stamatakis et al. 2005), both of which were identified by Tang et al. 198 

(2014a) as being appropriate for these analyses. 199 

Once an optimal phylogenetic method had been chosen, ESUs were delimited for each co-200 

occurrence network from the estuarine dataset which contained at least 10 unique reads (i.e. 201 

adequate for accurate phylogenetic species delimitation). The results of the phylogenetic 202 

species delimitation were combined with the support for nodes on the phylogenetic tree, 203 
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which served two purposes. Initially, in cases where the phylogenetic model for a given tree 204 

was insignificant, combining the two methods gave a more discriminatory and 205 

phylogenetically plausible result. Secondly, the use of nodal support overcame a tendency of 206 

the GMYC to ‘lump’ reads into species with abnormally high intraspecific divergence. 207 

Where the phylogenetic model was significant at the 0.05 level, OTUs were further split at 208 

any node with a support value of 0.9 or greater. For trees which produced an insignificant 209 

species delimitation result, only OTUs which were supported by a posterior probability of 0.9 210 

or greater were kept and unsupported OTUs were divided into singleton representatives of 211 

putative species - an example is given in Fig. 2. These units can be defined as species under 212 

the general lineage species concept (de Queiroz 2007). 213 

‘Orphan’ Reads 214 

A different workflow was adopted to assign ‘orphan’ reads to OTUs, i.e. reads that either did 215 

not belong to a co-occurrence network or belonged to a network that contained fewer than 10 216 

reads. Orphan reads were extracted using a custom Perl script (Supplementary script 217 

‘Orphan_Sequence_Workflow.pl’) and were partitioned into phyla (or higher taxon levels) 218 

following megablast (v2.2.28 with a minimum percentage ID of 90%; Camacho et al. 2009) 219 

and lowest common ancestor annotation using MEGAN (v4; Huson et al. 2007) and the 220 

SILVA 111 database (Quast et al. 2012). Therein, OTUs were delimited within the defined 221 

taxonomic groups using identical methods to those used for co-occurrence groupings (Table 222 

S2), thereby overcoming the lack of phylogenetic signal encountered in orphan groups. 223 

Testing/validating the SNAPhy Workflow 224 

Assessing read abundances and divergence within SNAPhy OTUs 225 

Within each SNAPhy OTU, the majority of reads are expected to be variations of one or few 226 

dominant 18S nSSU reads (Bik et al. 2013), caused by a combination of 227 
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intragenomic/intraspecific variation and PCR or sequencing errors. In order to assess read 228 

frequencies within OTUs, five OTUs were chosen at random and used to generate neighbour 229 

joining trees in MEGA5.2 (Tamura et al. 2011; parameters chosen were phylogeny test: 230 

bootstrap with 1,000 replications; substitution type: nucleotide; model: p-dist; gaps: pairwise 231 

deletion). Abundances of each unique read were then mapped onto the SNAPhy OTU in 232 

order to test for the expected pattern (Bik et al. 2013). The percentage divergence within each 233 

OTU was calculated using “calc_distmx” command in USEARCH (Edgar 2010). 234 

Comparisons with UCLUST and Swarm 235 

Results obtained using the SNAPhy workflow were compared to existing methods. First, data 236 

were quality checked and denoised using FlowClus (Gaspar & Thomas 2013), as described in 237 

(Lallias et al. 2015). Reads were then trimmed to 225bp in order to match the data which was 238 

input into the SNAPhy workflow. Next, OTU clustering was carried out using UCLUST 239 

(Edgar 2010) at two similarity thresholds (96% and 98% similarity,) and Swarm (Mahé et al. 240 

2014). Both UCLUST and Swarm were implemented in QIIME v1.9.0 (Caporaso et al. 241 

2010). To enable comparison, taxonomy was assigned to OTUs from all methods using the 242 

Silva 111 database using identical methods to those described in (Lallias et al. 2015). 243 

Mapping individually metabarcoded estuarine nematode species 18S nSSU diversity onto 244 

SNAPhy OTUs 245 

To ensure that variability within the OTUs obtained using the SNAPhy workflow was within 246 

the range expected for the intragenomic variability within a species, reads were compared to 247 

the results of “deep-metabarcoded” ecologically representative individuals (i.e. one amplicon 248 

library as above/individual nematode) of nematode worms co-extracted from the Thames 249 

Estuary, thereby creating an 18S nSSU genomic reference database of individual nematode 250 

worms. 251 
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Highly related matches between the 18S nSSU genomic database and the SNAPhy OTUs 252 

were obtained using megablast (parameters –D 2 –p 99 – m 7 –a 4 –b 1 –v 1 –F F). Where a 253 

deep metabarcoded individual 18S nSSU identity matched a read belonging to a SNAPhy 254 

OTU, that individual’s deep-sequenced reads were combined with those within the SNAPHy 255 

OTU. The resulting set of reads was aligned using MUSCLE (Edgar 2004) and used to 256 

construct neighbour-joining trees, both in MEGA (v5.2; Tamura et al. 2011). 257 

Results 258 

SNAPhy Workflow 259 

Sequencing yielded a total of 1,085,607 reads, which were collapsed into 10,699 unique reads 260 

by APDP. Chimera removal reduced the dataset to 10,529 reads, and removal of singletons 261 

(reads and ecological occurrences) further reduced this to 4,596 unique reads that were used 262 

as input for the SNAPhy workflow. 263 

Based on the Grinder simulated datasets, the optimal method for species delimitation was 264 

found to be a combination of BEAST and GMYC with a single threshold (applied using splits 265 

1.0–11; Ezard et al. 2009), which gave both the closest number of species to the ‘true’ value 266 

and the lowest number of erroneous species assignments (Table 1; Table S1). Application of 267 

GMYC to small BEAST trees was found to give unreliable results and so reads from co-268 

occurrence networks with fewer than 10 reads were treated differently –see “‘Orphan’ reads”. 269 

Analysis of the estuarine dataset in CoNet yielded a total of 45 co-occurrence networks 270 

containing at least 10 unique reads, with an overall clustering coefficient of 0.769 (for a given 271 

node, the clustering coefficient is the proportion of neighbours that are connected). The 272 

largest network contained a total of 231 unique reads. However, the majority of networks 273 

were much smaller (Table S3). Altogether, the co-occurrence networks included a total of 274 

2,331 reads. 275 
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BEAST and GMYC modelling alone gave a total of 589 OTUs belonging to co-occurrence 276 

networks, and further splitting GMYC units by highly supported clades (i.e. with posterior 277 

probabilities higher than 0.9) gave a total of 851 OTUs (Table S2). 278 

‘Orphan’ Reads 279 

A large number of ‘orphan’ reads either did not belong to a co-occurrence network (1,381 280 

reads) or belonged to a co-occurrence network which was too small to be analysed by GMYC 281 

(884 reads). GMYC species delimitation thresholds were significant for orphan phylum 282 

groupings for Annelida, Mollusca, Fungi, Nematoda, Panarthropoda, Rhizaria, 283 

Platyhelminthes and Alveolata (Table S2) and were split into 206 OTUs by GMYC, and 284 

further split to give 478 OTUs once posterior probabilities were applied (see Fig. 2 for 285 

example). 286 

Testing the SNAPhy Workflow 287 

Of the five OTUs chosen at random, only two were present at high abundances (several 288 

hundred reads) and both of these show the expected pattern of a single dominant read with a 289 

number of rare variants present at much lower abundances (Fig. 3A; 3E). The remaining 290 

OTUs were present at low abundances, and lacked an obvious dominant read (Fig. 3B-3D). 291 

Percentage similarity within SNAPhy-delimited OTUs varied greatly, ranging from 74.7% to 292 

99.6%. However, percentage similarity was very high within the majority of OTUs: just 293 

under half (49%) of OTUs had mean intra-OTU similarity values of 99-100% and an 294 

additional one third (33%) had mean intra-OTU similarity values of 98-99% (Fig. 4). 295 

Each of the methods compared delimited a different number of OTUs: 1,329 for SNAPhy, 296 

1,005 for UCLUST with a 96% threshold, 2,021 for UCLUST with a 98% threshold, and 297 

3,683 for Swarm. The taxonomic composition within taxa also varied between methods (Fig 298 

5). For example, a higher proportion of SNAPhy OTUs belonged to the Metazoa and Fungi 299 
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compared to other methods, while UCLUST (96% threshold) detected the highest proportion 300 

of ‘Unassigned’ taxa. 301 

Three SNAPhy OTUs were matched to nematode sequences from the deep-sequencing 302 

dataset and used to generate neighbour-joining trees. For each deep-sequenced individual the 303 

majority of reads belonged to a well-supported grouping of very similar reads (corresponding 304 

to the target individual, confirmed by chain termination sequencing), and this grouping 305 

included all reads belonging to the SNAPhy OTU (Fig. 6). A number of reads formed 306 

outlying clades, which belonged to non-target taxa. 307 

Discussion 308 

We have demonstrated a novel method for delimiting ecologically and phylogenetically 309 

informed species units in metabarcoding datasets using a combination of co-occurrence 310 

patterns and phylogenetic modelling. Unlike commonly used static OTU clustering methods, 311 

the SNAPhy workflow explicitly reflects the general lineage species concept. 312 

SNAPhy Workflow 313 

Relatively few chimeras were removed from the database (170 reads in total), probably as a 314 

result of trimming the reads to a length of 225bp, thereby reducing the opportunity to detect 315 

3’ PCR recombination events (Wintzingerode et al. 1997). 316 

Grouping reads based on co-occurrence patterns vastly reduces the size of the dataset within 317 

which species can be delimited (e.g. here 4,596 reads to 45 networks), thereby allowing the 318 

use of computationally expensive species delimitations methods such as phylogeny-based 319 

approaches. Incorporating phylogeny-based delimitation methods is more powerful than 320 

relying on sequence divergence alone because it relies on a statistical model of branching 321 

rates that allow for optimisation, assignment of confidence limits and hypothesis testing 322 
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(Barraclough et al. 2009). Genetic sequence data is much more complex than static similarity 323 

thresholds take into account, and incorporating models of evolution (explicitly explored 324 

within the SNAPhy framework) gives a more nuanced perspective on how sequences differ. 325 

Previous assessments of the GMYC and 18S nSSU, according to chain termination 326 

sequencing data, have been found to underestimate diversity owing to the lumping of separate 327 

species (Tang et al. 2012); the high degree of divergence within OTUs delimited by GMYC 328 

suggests this may also be true for the current dataset. Predicted lumping here was amended 329 

via the application of posterior probabilities (using an objective intervention of 0.9 that can 330 

be adapted by the user to suit specific datasets), where well supported clades within GMYC 331 

entities were further partitioned into potential OTUs. These units represent species under a 332 

general lineage species concept (de Queiroz 2007), wherein species are defined as “seperately 333 

evolving metapopulation lineages”. The units defined by SNAPhy also have the potential to 334 

reflect species under evolutionary or monophyletic species concepts (de Queiroz 2007). In 335 

the current example posterior probabilities were applied in order to split clades within GMYC 336 

entities, meaning that the evolutionary species concept was not applicable: importantly, 337 

however, it is likely that if the SNAPhy workflow were applied to another marker gene (e.g. 338 

CO1), the greater ratio between intra- and interspecific genetic divergence would allow 339 

delimitation of species without posterior probabilities, representing species under the 340 

evolutionary species concept. Nevertheless, SNAPhy takes large next-generation sequencing 341 

datasets as input and returns robust OTU numbers that are defined following the general 342 

lineage species concept. 343 

Community distribution patterns are affected by four key processes: selection, drift, dispersal, 344 

and speciation (Vellend 2010). When sampling along an environmental gradient (such as an 345 

estuary) selection plays a strong role in determining species distribution patterns (Ferrero et 346 

al. 2008; Fonseca et al. 2014; Lallias et al. 2015), with dispersal and potentially drift also 347 
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playing a role (Fonseca et al. 2014). In the existing dataset, it is interesting to see a breadth in 348 

sizes of co-occurrence networks that likely reflect varying levels of environmental tolerances, 349 

stochastic processes and/or niche breadth (Vellend 2010). Moreover, the SNAPHy workflow 350 

also yields robust, ecologically informed co-occurrence phylogenies for downstream “eco-351 

evo” analyses. 352 

‘Orphan’ Reads 353 

Almost half of the total reads did not belong to a co-occurrence network with more than 10 354 

reads (again here, a parameter that can be adjusted by the user to facilitate phylogenetic 355 

modelling). This is unsurprising: most species exist at low abundances (Lim et al. 2012) and 356 

have few variants of the 18S nSSU gene (Ganley & Kobayashi 2007; Stage & Eickbush 357 

2007). Also, the true distribution patterns of species may be obscured by incomplete 358 

sampling (for rare species) or the scale at which sampling was carried out (e.g. small species 359 

with microscopic niches). More surprising was the small number of OTUs delimited within 360 

the orphan reads. Despite similar numbers of unique reads being analysed as co-occurrence 361 

networks and orphans, the co-occurrence networks gave 851 OTUs while orphans gave only 362 

478 OTUs. The discrepancy was due to a small number of very large OTUs within the orphan 363 

groupings, amongst a large numbers of smaller OTUs, most likely representing different 364 

sequence coverage focused on different species with unique occurrences or represented by 365 

smaller networks. 366 

Testing the SNAPhy Workflow 367 

As predicted, of the OTUs that contained a substantial number of reads (more than 400) (Fig. 368 

3A; 3E), a single read was highly dominant amongst variants occurring at much lower 369 

abundances (Porazinska et al. 2010). While intragenomic rRNA variation is widespread 370 

amongst eukaryote taxa, in almost all cases examined so far a single variant is dominant, 371 

suggesting that concerted evolution is occurring (Bik et al. 2013; Ganley & Kobayashi 2007; 372 
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Stage & Eickbush 2007). Rarer OTUs represented by less than 100 reads did not show a clear 373 

pattern, likely due to low sequencing coverage for these genomes. 374 

The percentage similarity within SNAPhy OTUs was high (Fig. 5) with the majority of OTUs 375 

having mean intra-OTU similarity of 98% or higher, as would be expected given the low 376 

divergence within the 18S nSSU gene (Tang et al. 2012; Wu et al. 2015). However, several 377 

OTUs had very low intra-OTU similarity values, with 18 OTUs containing mean divergence 378 

values of >10%. These OTUs were nonetheless strongly supported by either significant 379 

GMYC models and/or posterior probabilities, and therefore likely represent accurate 380 

groupings at higher taxonomic levels than species. These groups may in part be an artefact of 381 

low sequencing depths (meaning that there is not enough diversity within certain branches of 382 

the BEAST trees to distinguish species-level and genus-level differences). Alternatively, 383 

some may be a result of undetected chimeras or other errors, or may even be a result of 384 

extremely high levels of heterogeneity within the 18S nSSU region of some species (Lowe et 385 

al. 2005). 386 

OTU clustering using a static similarity threshold (e.g. using UCLUST) is the most 387 

commonly-used method for OTU delimitation in sequencing datasets. Here, two similarity 388 

thresholds were chosen for comparison with the SNAPhy workflow: 96%, which has been 389 

shown to produce biologically plausible numbers of OTUs for nematode metabarcoding 390 

datasets (Fonseca et al. 2010), and 98%, which is closer to the average percentage similarity 391 

between SNAPhy OTUs (Fig. 5). An additional approach, Swarm, was included in the 392 

comparison as it avoids many of the pitfalls of clustering with a static threshold (Mahé et al. 393 

2014). 394 

Swarm yielded by far the highest number of OTUs: a total of 3,139, despite using a local 395 

clustering threshold (d) which was higher than recommended for most datasets 396 
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(https://github.com/torognes/swarm). This is potentially due to the relatively low sequencing 397 

depth in the current dataset: Swarm works in an iterative fashion, connecting reads to their 398 

‘neighbours’ to form multi-branched chains (Mahé et al. 2014). If a given read is missing 399 

then the chain will be broken and an OTU may be split. More recent datasets have much 400 

higher coverage, e.g. due to the application of Illumina sequencing, and Swarm is therefore 401 

likely to perform better on these datasets. 402 

The other three methods gave far fewer OTUs than Swarm: clustering in UCLUST yielded a 403 

total of 2,021 OTUs for the 98% similarity threshold and 1,002 for the 96% threshold, while 404 

SNAPhy yielded a total of 1,329 OTUs. Comparison of the four methods is difficult without 405 

knowing the ‘true’ number of species. However, focusing on the Nematoda suggests that 406 

Swarm overestimated the number of species present, giving a total of 802 nematode OTUs, 407 

while UCLUST with a 96% similarity threshold, underestimated the number with 149 OTUs. 408 

A previous study based on morphology (Ferrero et al. 2008) found a total of 153 nematode 409 

species along the Thames estuary, similar to the number detected by UCLUST with a 96% 410 

threshold, but the number in the current dataset would be expected to be considerably higher: 411 

the latter study included eight sites compared to 20 in the current work. In addition, 412 

molecular methods can detect cryptic species or eDNA (Bohmann et al. 2014), that studies 413 

based on morphospecies will not record. The WoRMS database (WoRMS Editorial Board 414 

2015) recognises 416 Nematoda in UK marine habitats and so the OTU counts obtained by 415 

SNAPhy and by UCLUST with a 98% threshold (355 and 402, respectively) both seem 416 

reasonable given the wide range of conditions along the estuarine gradient (including 417 

freshwater environments, which are not featured in the WoRMS database) and the well-418 

acknowledged hidden diversity in the phylum Nematoda (Fonseca et al. 2010). 419 

As well as differences in the overall numbers of detected OTUs, different approaches differed 420 

considerably in the taxonomic distribution of OTUs. While Metazoa were the most abundant 421 
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phylum regardless of the OTU-delimitation method chosen, they made up a larger proportion 422 

of SNAPhy OTUs than they did of OTUs delimited by other methods. Conversely, protist 423 

groups (Alveolata, Rhizaria) and ‘Unassigned’ taxa made up a smaller proportion of SNAPhy 424 

OTUs than of OTUs delimited by other methods. The difference in taxonomic composition of 425 

OTUs between UCLUST and SNAPhy may result from inter-phylum differences in the 426 

degree of intraspecific variation found in the 18S nSSU region. For example, large 427 

intraspecies variation exists within the 18S nSSU region for many Alveolata and Rhizaria 428 

(Lowe et al. 2005; Caron et al. 2009; Weber & Pawlowski 2014) although other protists show 429 

much lower levels of intraspecies variation in 18S nSSU (Caron et al. 2009). Therefore, it is 430 

unclear whether protists and Metazoa consistently differ in the degree of variability within 431 

the 18S nSSU region. Another interesting feature of the SNAPhy OTUs was the low 432 

proportion of ‘Unassigned’ OTUs in comparison to standard OTU clustering. In standard 433 

OTU-clustering workflows undetected chimeras or erroneous reads may form OTUs based on 434 

similarity to one another. Since errors must always co-occur with parent sequences, SNAPhy 435 

is likely better able to link them to the true genomic sequences. 436 

In each deep-sequenced nematode tree, reads belonging to the SNAPhy OTU fell within the 437 

clade formed by reads from the target organism, indicating that the range of variation within a 438 

SNAPhy OTU is well within the range of expected intragenomic variation. The deep-439 

sequenced datasets also contained a number of reads that did not belong to the target 440 

nematode, most likely originating from stomach contents/contamination. The use of 441 

molecular methods to unravel food webs is a developing area of interest (Clare 2014) and the 442 

present data provides a glimpse into the potential of 18S nSSU metabarcoding to unravel 443 

trophic interactions in the meiofaunal biosphere (Pompanon et al. 2012). 444 

A limited number of recent studies have demonstrated that co-occurrence patterns can be a 445 

powerful tool in the interpretation of microbial metabarcoding datasets, including a recently 446 
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described 16S rDNA denoising workflow, providing improved performance over error 447 

model-based denoising algorithms (Tikhonov et al. 2014). Preheim et al. (2013) have also 448 

incorporated distribution patterns into an OTU-calling method (Distribution-Based 449 

Clustering, or DBC) that has been shown to outperform both de novo and closed reference 450 

clustering methods on mock bacterial communities. However, DBC differs from SNAPhy in 451 

several crucial ways. Firstly, DBC uses sequence similarity as the primary step in OTU 452 

clustering despite the known disadvantages. Secondly, while SNAPhy clusters sequences 453 

based on correlated occurrence patterns as a first step, DBC first matches reads based on 454 

sequence similarity and merges the two as long as the two distributions are not significantly 455 

different. While SNAPhy is currently limited to marker gene sequences, shotgun sequencing 456 

is likely to become a more common tool in eukaryote ecology (Tang et al. 2015; Tang et al. 457 

2014b; Zhou et al. 2013), and the use of co-occurrence patterns will become an even more 458 

powerful approach to facilitate data analysis as the volume of sequence data increases. A 459 

number of related approaches use co-occurrence patterns in order to bin metagenomics reads 460 

into individual genomes (e.g. Albertsen et al. 2013; Alneberg et al. 2014). 461 

Unlike other OTU clustering based approaches, SNAPhy presents a totally novel approach to 462 

the delimitation of de novo species units in eukaryotic metabarcoding datasets, informed by 463 

ecology and phylogeny. While we have tested SNAPhy on an 18S nSSU metabarcoding 464 

dataset generated using 454-Roche pyrosequencing, our approach is easily adapted to other 465 

sequencing technologies (e.g. Illumina, Pacific Biosciences) or genetic markers (such as 466 

mtDNA) and will only be enhanced by increasing read lengths and increased genetic 467 

variation (Tang et al. 2012). We envisage that broader scale testing will signal a move away 468 

from computationally intensive quality control algorithms and static OTU-clustering and 469 

towards an ecologically informed approach for delimiting species level biodiversity in 470 

metabarcoding datasets. Once species can be effectively delimited in metabarcoding datasets, 471 
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accurate estimates of taxon diversity can be more effectively integrated into ecological 472 

studies, biomonitoring programs, with consequent benefits to ecologists and stakeholders. 473 
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Figure 1: Summary of the key steps in the SNAPhy process. A. Quality-controlled sequences are 684 
clustered based on ecological co-occurrences. In the depicted co-occurrence matrix, columns 685 
represent samples and rows represent sequences. Different shades of blue cells represent occurrences 686 
of different species/ESUs. This gives clusters of reads, which co-occur in a subset of samples (e.g. 687 
ESU ‘ii’ contains reads which occur together in samples 6, 7 & 8). B. Species delimitation and 688 
phylogenetic modelling is applied to co-occurrence clusters. Numbered nodes on phylogenetic trees in 689 
B and C represent branch support. C. The reads that do not form co-occurrence clusters (‘orphans’, 690 
marked ‘O’ on A) are grouped based on taxonomy and species delimitation analysis proceeds as in B. 691 
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Figure 2: Example BEAST tree demonstrating a single co-occurrence network (network 290). Each 695 
multi-sequence OTU delimited by OTU is shown as a different colour, while black dots show nodes at 696 
which OTUs were split according to posterior probabilities. 697 
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Figure 3: Neighbour-joining trees representing five randomly chosen OTUs (generated using default 699 
settings in MEGA), including abundances of each unique read within a given OTU. Read counts in 700 
bold represent dominant reads - these are expected to be the “true” sequence, while other reads 701 
represent errors in sequencing/PCR or intraspecific variants. 702 

703 
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Figure 4: Histogram showing percentage divergence within all SNAPhy OTUs containing more than 
one sequence. Percentage divergence was calculated using “calc_distmx” command in USEARCH 
(Edgar 2010). 
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Figure 5: Proportion of Thames meiofaunal OTUs belonging to detected phyla using Swarm, 
UCLUST (at 96% and 98% thresholds) and SNAPhy. Taxonomic annotation was assigned using 
UCLUST within QIIME and the Silva 111 database for both SNAPhy and UCLUST OTUs. 
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Figure 6: Neighbour-joining trees showing reads from deep metabarcoded nematodes with reads from 
a matching SNAPhy OTU. In each case, reads belonging to the SNAPhy OTU are located within 
reads belonging to the target nematode (red triangles). Branches were collapsed if divergence was less 
than 3%. 
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Table 1: Total OTU counts identified within the Grinder simulated datasets using different 
combinations of the tree reconstruction methods and phylogenetic delimitation models. ML = 
maximum likelihood solution; BI = most supported Bayesian inference; BI mean = average Bayesian 
inference; ST = single threshold; MT = multiple threshold; † = P value could not be calculated due to 
polytomous nodes; * = not significant; • = webserver could not analyse. 

Alignment 

RAxML BEAST 
Total 
Read 
Count 

Expected 
OTU 
Count 

PTP GMYC PTP GMYC 
ML BI ST MT ML BI ST MT 

Mock 1 19 20 52† 29 NA• NA• 22 29 60 32 

Mock 2 28 28 8† 13 NA• NA• 14 24* 44 15 
Mock 3 9 9 12† 2 8 9 9 6 14 10 

Mock 4 3 3 6† NA 3 3 3 7* 19 3 
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