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Introduction

The rise of superbugs resistant to all FDR-approved antibiotics poses a massive health issue predicted
to kill 10 million people per year in 2050, more than heart disease and cancer combined [1]. A potential
solution is to target surface proteins for a given species or strain to decrease the viability of that bac-
terium in the host; one needs to know the identity of the infectious agent for this to work, something that
the recent development of fast and accurate diagnostics might enable. Bacterial surfaces are complex,
built of from membranes, peptide-glycans and, importantly, proteins. The proteins play crucial roles as
the key regulator of how the bacterium interacts with its environment. Unsurprisingly, these proteins play
key roles in the infectious process, and the number of protein-protein interactions is surprisingly high.
Over 150 surface proteins found in S. pyogenes, an important human pathogen, binds about 250 hu-
man plasma proteins in significant amounts (as measured by enrichment over background plasma) [2].
High-resolution models of the protein-protein interactions enable the design of inhibitors, for example,
large L/D-mixed synthetic circular peptides [3]. The majority of these models were created using high-
resolution data such as NMR or X-ray crystallography, but these datasets remain challenging to produce.
One of the key surface proteins of S. pyogenes is the M protein, a coiled-coil homodimer that extends
over 500 A from the cell wall; the M protein is thought to bind several plasma proteins such as fibrinogen
[4] and albumin [5]. The crystal structure of M and fibrinogen was published in 2011, and the authors
postulate that the M and fibrinogen form a complex structure on the surface of the bacterium. Further,
the M protein is composed of several repeats that are present a variable number of times; some of these
repeats overlap with protein-protein interactions. A full catalog of the motifs in coiled-coil proteins and
their relative conservation grade is a pre-requisite to target the protein-protein interaction that bacterial
surface protein makes to host proteins [6]. In this paper, we present a greedy approach to iteratively
identify conserved motifs in large sequence collections, identify all occurrences of these motifs and mask
them. Remaining unmasked sequences are subjected to the second round of motif detection until no
more significant motifs can be found or all protein segments have been assigned to a motif. We present
the results for the S. pyogenes M protein.

Methods

We collected a large sequence collection of M proteins from four sources: Patric BRC, genomes we have
previously sequenced and assembled, the M database from CDC and TrEMBL. Any protein sequence
without anchor or signal peptide was discarded, and the remaining sequences were reduced to a 98%
sequence identity using CD-HIT [7]. As Figure 1 shows, MEME [8] was applied to the sequence collec-
tion, restricting the number of found motifs to a single motif. Motif occurrences were discovered in the
sequence collection using FIMO [9] and only occurrences with e-values of 1e-6 or lower were considered.
Proteins were split using the occurrences and remaining parts longer than ten amino acids were carried
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forward to create a new sequence collection, mixed with full-length and partial proteins. This sequence
collection was the input iterative rounds of MEME, FIMO, split until no more significant motifs could be
discovered, or all remaining sub-sequences were below ten amino acids. All the motif occurrences with
corresponding features were stored in an SQLite database. Known motifs were integrated from [5] and
the InterPro database and visualized using pViz.js [10].

Figure 1: A- Two rounds (first to the left, second to the right) of the algorithm is displayed. It
starts with a collection of sequences and then discovers motifs in this collection using MEME.
It uses FIMO to find additional occurrences of the motif within the sequence collection. In the
second round, the motifs are masked (gray bars) before MEME is applied once more. The
algorithm iterates until no more motifs are found, or the sequence collection is fully annotated.
B- The auto-generated result of our approach on M1 protein.
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Results

We parsed an M protein sequence collection of 123 sequences, and the algorithm ended after 18 rounds,
resulting in 18 motifs. We used the SF370 M1 protein as the reference which contains motifs M01-M03,
M05-M08, M11-M14, M16-M17 but not M04, M09-10, M15, and M18-20. We found a total of 123 ar-
chitectures and of these, 85% (104) are associated with a single serotype. Architecture m01:3, m02:1,
m03:1, m05:1, m06:4, m07:3, m08:1, m11:1, m12:1, m14:1, m16:1, m17:1 is the architecture that exists
in most serotypes (emm52, emm23, emm16, emm83, emm10). For the 18 emm1 proteins, we identified
seven architectures, see Table 1 for emm1 architectures. For emm1.1, we see that M08 and M02 are the
first and second part of the YSIRK signal peptide. M03 largely overlap with the anchor region. M1 and
M6 correspond to the C repeats, M07 overlaps with the B repeats although we fail to identify the second
and third B-domain. M13 finds the S region and M14 overlap partly with the A domain. The D domain
is largely split into several motifs - M12, M18 followed by M05. These results are also shown in Figure 1-B.

Table 1: Architectures identified for emm1 protein.
m07:3 m01:1 m06:2 m05:1 1
m07:3 m01:2 m06:4 m05:1 1
m07:3 m01:3 m06:4 m05:0 1
m07:3 m01:4 m06:5 m05:1 1
m07:3 m01:2 m06:3 m05:1 2
m07:2 m01:3 m06:4 m05:1 2
m07:3 m01:3 m06:4 m05:1 10

Conclusions

In this paper, we demonstrate a proof-of-principle approach to parsing large sequence families into motifs
using a greedy approach. This simple approach can easily handle situations where parts of proteins are
repeated or re-arranged, and this can be time-consuming using other approaches. We observe that we
over-parse some domains, but also observe that many of these large domains are only partly conserved
over the sequence collection. Our results recapitulate the [5] paper, but in a completely automated fash-
ion allowing us to scale to an arbitrary number of protein families. Given the speed and flexibility of our
approach, we believe it will be useful in breaking analyzing surface protein of pathogens as these proteins
are under high selective pressure and therefore cannot be analyzed using more traditional approaches
such as multiple-sequence alignments (MSAs). Our attempts to use various MSA algorithms failed due
to high sequence variability in regions between motifs and the varying number of motifs. Also, motif
searching approaches failed and only identified a small subset of the motifs our approach discovered.
Preliminary data indicates that many of the newly discovered motifs are not always present together with
adjacent motifs, indicating that they might have different and independent functions. Interestingly, many
of our newly discovered motifs are not found in any of the emm1 strains, and some of these might be
responsible for binding other ligands, such as plasminogen [11].
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