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ABSTRACT9

Sigmoidal and double-sigmoidal dynamics are commonly observed in many areas of biology. Here we

present sicegar, an R package for the automated fitting and classification of sigmoidal and double-

sigmodial data. The package categorizes data into one of three categories, “no signal”, “sigmodial”,

or “double sigmoidal”, by rigorously fitting a series of mathematical models to the data. The data is

labeled as “ambiguous” if neither the sigmoidal nor double-sigmoidal model fit the data well. In addition

to performing the classification, the package also reports a wealth of metrics as well as biologically

meaningful parameters describing the sigmoidal or double-sigmoidal curves. In extensive simulations,

we find that the package performs well, can recover the original dynamics even under fairly high noise

levels, and will typically classify curves as “ambiguous” rather than misclassifying them. The package is

available on CRAN and comes with extensive documentation and usage examples.
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INTRODUCTION20

Growth patterns resembling sigmoidal or double sigmoidal curves are common in biological systems. In21

ecological systems the number of individuals in a population may follow a sigmoidal growth pattern over22

time, while in molecular systems the production of a reporter may have similar dynamics. Quantifying23

and comparing these kinds of growth dynamics can lead to valuable insight into the systems’ behavior.24

However, the automated quantification and classification of thousands of noisy growth curves, in a25

high-throughput manner, can be technically challenging.26

Here we present the sicegar package, an R package designed to automatically analyze and classify27

time course growth data. The input data is assumed to represent intensity measured over time, where28

intensity represents any metric of a system that may vary in a sigmoidal or double-sigmoidal pattern. Using29

these time course data, sicegar categorizes the data as “sigmoidal”, “double sigmoidal”, “ambigous”,30

or “no signal”, by first checking the data for the presence of signal (i.e., the intensity curve deviates31

significantly from a horizontal line and varies significantly) and then fitting two mathematical models32

to the data, a sigmoidal one and a double-sigmoidal one. The package automatically determines which33

curve provides the better fit, and it reports a wide range of parameters about the fitted models that enable34

easy comparison of the fitted curves within and among experiments.35

The sicegar package was originally written to study poliovirus infection and replication at the36

single-cell level (Guo et al., 2017), and the package name is inspired by this application (SIngle CEll37

Growth Analysis in R). However, the potential applications for the package go beyond this one use, and38

the package is designed as a generalized way to classify growth data from time course experiments. In the39

following, we describe the mathematical models used to classify the data, how the models are fit, and the40

inferences that can be made from them.41
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METHODS42

Model fitting and categorization43

We implemented R code that can fit data to the sigmoidal and double-sigmoidal curves defined by Eq. 144

and Eq. 5 in Results and Discussion. Before fitting, data is internally normalized to a [0,1] interval on45

both the x and y axis. The sigmoidal and double sigmoidal models are then fit to the internally normalized46

data via likelihood maximization, using the function nls.lm in the minpack.lm package (Elzhov47

et al., 2015). To guarantee robust fitting nls.lm is run multiple times using different starting estimates,48

chosen at random from a uniform distribution covering the allowed interval of parameters. For each fit,49

the quality of fit based on AIC scores is recorded, and the parameter estimates that produce the overall50

best fit across replicates are reported as the final estimates.51

The simplest way to use sicegar is via the function fitAndCategorize, which attempts to52

both identify the best-fitting model and determine whether this model is sigmoidal, double-sigmoidal, or53

neither. This function first checks whether there is any signal in the data, by testing whether the maximum54

observed intensity exceeds a user-defined threshold and the data range also exceeds a user-defined55

threshold. If either test fails, the data are labeled as “no signal”.56

Next, the function fits both a sigmoidal and a double-sigmoidal curve to the data and then assess which57

provides the better fit. This process considers a number of different factors. First, it assesses whether both58

models could actually be fitted (the fitting did not fail). Second, the AIC scores of the fitted models are59

examined to make sure they are greater than a threshold value (the default is -10). The starting time points60

of each model are then checked to insure that they are positive. The starting intensities are examined to61

insure that they are smaller than a threshold (the default is 0.05). Then the ratio of the models’ intensity62

prediction at the last observation to the models’ maximum intensity prediction is tested to insure that it is63

over 0.85 in the case of the sigmoidal model and below 0.75 in the case of the double sigmoidal model.64

If any of these tests fail for either the sigmodial or double-sigmodial fit, then the data is not categorized65

as being described by that model. If both models fail any of these tests the data is categorized as being66

“ambiguous”. If only one model passes these tests while the other fails, then the data is considered to67

be best described by that model. If both of the fits pass all of these test a decision is made about which68

model best describes the data based on their AIC scores. If the sigmoidal AIC score is smaller than the69

double sigmoidal AIC score then the data is labeled as “sigmoidal”, if it is larger then the data is labeled70

as “double sigmoidal”.71

The complete decision process, as well as the specific parameters users can modifiy to adjust the72

package to their own needs, are explained in detail in the vignette “Identifying the best-fitting model73

category” supplied with the package.74

Simulations75

To assess sicegar performance, we simulated sigmoidal and double-sigmoidal data with different levels76

of noise. We first generated 50 distinct sets of parameters for both sigmoidal and double-sigmoidal curves.77

For the sigmoidal model, the maximum, slope, and midpoint parameters were chosen uniformly at random78

from the intervals [0.3,20], [0.001,40], and [3,27], respectively. For the double-sigmoidal model, the79

maximum, increasing slope, the first midpoint, the decreasing slope, the distance between midpoints, and80

final asymptote intensity ratio parameters were chosen uniformly at random from the intervals [0.3,20],81

[0.001,40], [3,26], [0.001,40], [1,27−first midpoint], and [0,0.85], respectively. Using these parameters82

we simulated data from t = 3 to t = 30 in increments of 0.5, for a total of 55 time points each.83

For each parameter set we then generated samples that included noise. We used 11 distinct noise84

amplitudes, ranging from 0% to 150% of the maximum value of the initial simulated data. We generated85

three noise vectors with the same maximum amplitude for each noise level and create a unique noise86

vector for each replicate. To generate a noise vector at a given amplitude for a sample, we created a vector87

of random numbers chosen from the uniform distribution between -0.5 and 0.5 for each time value in the88

dataset. We then multiplied each random number with the noise amplitude and the maximum intensity of89

the dataset. Finally, we added these noise values to the intensity values of the initial samples and obtained90

noisy samples. In total, this procedure generated 1650 sigmoidal and double-sigmoidal noisy samples91

with varying levels of uniform noise, for a total of 3300 samples.92

For each simulated sample, we used sicegar to estimate both the shape of the curve (”sigmoidal”,93

”double-sigmoidal”, or ”ambiguous”) and the curve’s original parameter values. To estimate the algo-94

rithm’s accuracy in fitting a model to the data, we calculated the mean absolute error between the initial95
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(without noise) and predicted intensity vectors, and we normalize this number relative to the maximum96

intensity of the initial sample. We calculated the normalized mean absolute error regardless of whether97

the algorithm predicted the category of the sample correctly or not.98

Package availability and documentation99

The sicegar package is implemented in R and available from CRAN at100

https://CRAN.R-project.org/package=sicegar. The sicegar source code is available101

on github at https://github.com/wilkelab/sicegar. Extensive user documentation is avail-102

able in multiple vignettes distributed as part of the package.103

The package depends on existing R packages dplyr (Wickham and Francois, 2015), minpack.lm104

(Elzhov et al., 2015), fBasics (Team et al., 2014), and ggplot2 (Wickham, 2009).105

RESULTS AND DISCUSSION106

Growth in many biologically systems can be though of as occurring in two phases (Fig. 1). In the first107

phase, intensity will increase exponentially until saturation is reached and it levels off at some asymptotic108

maximum level. In the second phase, the intensity may then decay from the maximum value to a lower109

one or even back to zero. Depending on the system and/or the length of the observation this second phase110

may or may not occur. These two phases can be modeled with two sigmoidal curves that describe the111

relationship between time and intensity. The first describes the increase of intensity and the second its112

decay.113

Based on this two-phase view of growth an observer of a system may observe three different types of114

behaviors of intensity over time. First, the observer may observe the full process and clearly see both the115

growth and the decay phases, i.e., the full double-sigmoidal curve. Second, if the observation ends before116

decay occurs, or if the decay phase is not relevant for the system under study, the observer may only see117

the first sigmoidal curve. Third, if the intensity is not produced in detectable amounts, the observer will118

not see any signal at all. We label these three types of behavior as “double sigmoidal”, “sigmoidal”, and119

“no signal”. If a given time course does not clearly fit into any of these three categories we label it as120

“ambiguous”.121

On the face of it, fitting a sigmoidal curve to time-course data appears to be a simple and solved122

problem. A sigmoidal curve is fully determined by only three parameters, and many non-linear curve-123

fitting algorithms exist that can be used to fit a simple three-parameter function. However, when we124

attempted to fit thousands of curves to experimentally measured data, we found that achieving numerical125

reliability was non-trivial. While a simple algorithm will work most of the time, it will fail eventually126

on cases that by manual inspection have a clear solution. The problem was further exacerbated for127

double-sigmoidal curves, where even guaranteeing that the curve is double-sigmoidal at all times was128

non-trivial (see Appendix). In the following, we describe the mathematical models and fitting procedures129

we developed to reliably obtain good fits and to be able to automatically categorize time courses into the130

different types of behavior.131

Sigmoidal and double-sigmoidal models132

A sigmoidal curve can be uniquely determined by three parameters, the maximum value, the midpoint,

and the slope of the curve (Fig. 2A). To represent a sigmoidal curve, the sicegar package uses the

Fermi function

I(t) = fsig(t) =
Imax

1+ exp(−a1(t − tmid))
. (1)

Here, I(t) is the intensity time course, given as a function of time t. The three parameters to be fitted133

are Imax, tmid, and a1. The parameter Imax represents the maximum intensity observed, the parameter tmid134

indicates the time at which intensity has reached half of its maximum, and the parameter a1 is related to135

the slope of I(t) at t = tmid via the formula d/dt I(t)|t=tmid
= a1Imax/4 (Fig. 2A).136

A double sigmoidal curve can be uniquely determined by six parameters, two midpoints and slopes137

parameters, a maximum value, and an asymptotic final value after decay (Fig. 2B). We define the double-138

sigmoidal model by combining two regular sigmoidal functions. This combined function rises from 0 to a139

maximum value Imax at time t∗ and then decays to the final value Ifinal. The function is divided into two140

parts, one to the left of the maximum, for t < t∗ (the growth phase) and one to the right of the maximum,141
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for t > t∗ (the decay phase). The two parts are rescaled separately, such that the maximum value of I(t) is142

given by Imax and the final value of I(t) for large times is given by Ifinal > 0.143

To define our double-sigmoidal model, we begin with a simple double-sigmoidal function, obtained

by multiplying together two sigmoidal functions:

fdsig-base(t) =
1

1+ exp(−a′1(t − t ′mid1))

1

1+ exp(−a′2(t − t ′mid2))
. (2)

We then define the time t∗ at which this function is maximal,

t∗ = argmax fdsig-base(t), (3)

and the value of the function at that time point,

fmax = fdsig-base(t
∗). (4)

We then write

I(t) = fdsig(t) =

{

c1 fdsig-base(t) for t ≤ t∗ (growth phase)

c2 fdsig-base(t)+ Ifinal for t > t∗ (decay phase)
, (5)

with

c1 =
Imax

fmax
(6)

and

c2 =
(Imax − Ifinal)

fmax
. (7)

This definition may seem awkward and overly complex, but it guarantees that certain non-sigmoidal144

corner cases are eliminated (see Appendix).145

The meaning of the parameters in the double-sigmoidal model mirror those of the regular sigmoidal146

model. The time point t ′mid1 determines (but does not exactly represent) the time at which the intensity147

has risen to half of its maximum, and the time point t ′mid2 (enforced to be larger than t ′mid1) determines148

(but does not exactly represent) the time at which the intensity has decayed halfway from its maximum to149

its final value. The prime in t ′mid1 and t ′mid2 indicates that these time points are not the final parameters150

of interest. The final parameters of interest, the true midpoints tmid1 and tmid2, have to be calculated151

numerically. Similarly, the parameters a′1 and a′2 determine the speed of growth and speed of decay,152

respectively, but do not represent the slopes at times tmid1 and tmid2. The true midpoint slopes also have to153

be calculated numerically, by numerically differentiating fdsig at each midpoint time. As stated before, the154

parameters Imax and Ifinal represent the maximum intensity and the final intensity after decay, respectively.155

In addition to the parameters that uniquely determine the sigmoidal and double-sigmoidal functions,156

the sicegar package calculates other useful metrics that describe aspects of the curves (Fig. 2). For the157

sigmoidal model, we calculate the starting time of growth by finding the point that a line which passes158

though the midpoint tmid with the slope a1 intersects with the x-axis. This value gives the length of time159

between the start of observations and the first observable increase in the response variable. Using the same160

line which passes through tmid with slope a1, we can also determine the amount of time that has elapsed161

during exponential growth, by looking at the time point where the line intersects with the maximum162

intensity (Imax) and subtracting the starting time. For the double-sigmoidal function the time until decay163

can be calculated in a similar way (Fig. 2B).164

Performance against simulated data165

To evaluate sicegar’s performance more systematically, we created simulated datasets with sigmoidal166

and double-sigmoidal curves to which we applied increasingly higher amounts of random noise, and we167

assessed how well sicegar performed on these datasets.168

First, we studied how well sicegar recovers the type of the curve (sigmoidal or double-sigmoidal)169

at varying noise levels. For curves that were simulated as sigmoidal, sicegar virtually never identified170

4/11

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3116v1 | CC BY 4.0 Open Access | rec: 31 Jul 2017, publ: 31 Jul 2017



them as double-sigmoidal (Fig. 3A). However, starting at noise levels of around 45% (corresponding171

to a noise amplitude of half the total amplitude of the sigmoidal curve), sicegar classified a fraction172

of the curves as ambiguous. The fraction of curves classified as ambiguous increased with increasing173

noise level until virtually all curves were classified as ambiguous at noise levels of around 100%. Results174

were similar for curves simulated as double-sigmoidal, except that a small fraction of curves was always175

identified as sigmoidal, regardless of noise level. These were generally curves for which the parameter176

values happened to cause very little decay at large times, either because the final asymptotic value was177

close to the maximum or because decay started late relative to the maximum time point simulated. Finally,178

at high noise levels, double-sigmoidal curves can appear sigmoidal, and sicegar classified those curves179

as such.180

We also compared the fits sicegar obtained from noisy data to the initial curves before applying181

noise. For each fit, we calculated the normalized mean absolute error, which is the mean of the absolute182

differences of fitted and original intensity levels, normalized by the maximum original intensity. We found183

that these errors were near zero for low noise levels and increased only gradually as noise increased (Fig184

3B). Thus, overall, our algorithm results in reliable fits, it fails gradually with increasing noise levels, and185

it is conservative in assessing whether it has correctly identified a sigmoidal or double-sigmoidal curve or186

not.187

Comparison to existing packages188

The sicegar package provides a generalized way to analyze growth dynamics. However, sicegar is189

not the only package with the ability to fit data to these types of models. The qpcR (Ritz and Spiess, 2008)190

package fits linear, exponential, a number of sigmodial, and log-logistic functions to qPCR (realtime191

quantitative polymerase chain reaction) data. Unlike sicegar this package was designed to analyze192

a specific type of data (qPCR) and uses a log-logistic function rather then a double sigmoidal function193

to describe data that includes both a growth and decay phase. A similar package, grofit (Kahm194

et al., 2010), uses a number of parametric growth curves and a model-free spline approach to estimate195

parameters from dose-response data. This package does not include a parametric model that would196

account for a decay phase in the data, though an interface to construct custom models is provided. The197

intended use of this package is to model pharma-/toxicological data and it produces estimates of values198

such as half maximum effective concentration (EC50). While sicegar can estimate theses same types199

of parameters, it was designed for more general usage. For example, the first midpoint estimated by200

sicegar could refer to the EC50, though depending on the system it may or may not make sense to refer201

to that point in those terms. Another package, FlexParamCurve (Oswald et al., 2012), fits in excess202

of 30 models to data. While this package is useful for teasing apart exactly which variant of a model203

best describe dynamics, sicegar is better suited for classifying data as either containing sigmoidal or204

double-sigmoidal dynamics.205
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APPENDIX: PROPERTIES AND DERIVATIONS OF THE SIGMOIDAL AND
DOUBLE-SIGMOIDAL MODELS

The sicegar package uses two distinct models that represent growth and growth-like data obtained

from time course experiments. The sigmoidal model describes situations in which the signal starts from

zero and rises to a maximum level, and the double-sigmoidal model describes situations in which signal

starts from zero, rises to a maximum level, and then declines towards an asymptotic value below the

maximum.

Two factors were considered when choosing the corresponding mathematical functions. First, the

models should be as simple as possible while being well-behaved. Well-behaved implies that the models

should not take on unexpected shapes under specific parameter combinations, they should have few

variables, they should be continuous, and they should be defined for all time points from minus infinity to

plus infinity. As we will see below, achieving these constraints is non-trivial for the double-sigmoidal

model. Second, as much as possible, model parameters should have simple interpretations and so represent

or be related to biologically meaningful parameters.

Properties of the sigmoidal function

The sicegar package uses for its sigmoidal fit the Fermi function (Eq. 1). Here we describe the

properties of a more general variant of this function,

I(t) =
Imax − Iinit

1+ exp [−a1(t − tmid)]
+ Iinit. (8)

The Fermi function is recovered by setting Iinit = 0.

The more general function discussed here has four parameters, each of which has a clear meaning in

terms of the shape of the function:

1. Iinit represents the initial value of the sigmoidal curve at minus infinity,

Iinit = lim
t→−∞

I(t). (9)

2. Imax represents the maximum value of the curve at plus infinity,

Imax = lim
t→∞

I(t). (10)

3. tmid represents the time point at which the slope of I(t) is maximal,

tmid = argmax
d

dt
I(t). (11)

4. The parameter a1, constrained to be positive at all times, is related to the maximum slope of I(t),

a1

4
(Imax − Iinit) =

d

dt
I(t)

∣

∣

∣

∣

t=tmid

(12)

In the following, we will also need the inverse sigmoidal function,

I(t) =
Imax − Ifinal

1+ exp [a2(t − tmid)]
+ Ifinal, (13)

which differs from Eq. 8 in that it does not have a minus sign in front of the slope parameter a2. We also

have renamed Iinit as Ifinal, to indicate that it now corresponds to the limit t → ∞. The inverse sigmoidal

function represents sigmoidal decay rather than sigmoidal growth, starting at its maximum and decaying

to its final value.
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Properties of the double-sigmoidal function

The double-sigmoidal function is defined in Eq. 5 in the main text. It rises from zero to a maximum value

and then decays towards an asymptotic final value, and it is defined for all t. The function is continuous

with a continuous first derivative and a discontinuous second derivative.

The parameters Imax and Ifinal represent the maximum and asymptotic values of the curve, respectively.

However, the paramters t ′mid1, t ′mid2, a′1, and a′2 do not directly represent midpoints and slopes. Instead, the

two midpoints and two slopes need to be calculated numerically.

Derivation of the double-sigmoidal function

The double-sigmoidal as defined in Eq. 5 may seem overly complex and awkward. However, we had to

define it in this way to avoid problems that arise with other formulations.

In particular, a seemingly more straightforward double-sigmoidal could be obtained by multiplying

together a regular sigmoidal (Eq. 8) and an inverse sigmoidal (Eq. 13):

I(t) =

(

Imax − Iinit

e−a1(t−tmid1)+1
+ Iinit

)(

1− Ifinal

ea2(t−tmid2)+1
+ Ifinal

)

(14)

Even though this function behaves appropriately for most parameter choices, there are parameter regions

in which this function is not a double sigmoidal. This occurs in general when the interval between tmid1

and tmid2 is very small, and one of the slopes is very steep while the other one is not. As an example,

consider the case shown in Fig. 4, where Eq. 14 generates a local minimum in addition to a local maximum.

These kinds of corner cases will be discovered by the fitting algorithm when used on sufficiently many

diverse datasets, and therefore we ruled out Eq. 14 as an appropriate choice for our double-sigmoidal

function.

However, Eq. 14 will never have a local minimum if we set both Iinit and Ifinal to zero (see next section

for proof). Thus, we define the base double sigmoidal as

fdsig-base(t) =
1

(

e−a1(t−tmid1)+1
)(

ea2(t−tmid2)+1
) (15)

This function has the correct shape in principle, except that the intensity always decays back to zero for

large t.

One possible solution to the problem that the function approaches zero for t → ∞ is to cut it into two

parts, rescale them separately, and then merge them together again. We cut the function at its maximum,

where t = t∗. Thus, the part from t =−∞ to t = t∗ represents sigmoidal growth and the part from t = t∗ to

t = ∞ represents sigmoidal decay. Both parts are rescaled such that the desired Imax and Ifinal are obtained.

This procedure leads to the definition of the double-sigmoidal we use, as defined in Eq. 5. This function

has the desired limiting properties and is guaranteed to have only one maximum. However, the cutting

and rescaling procedure causes its second derivative to be discontinuous at t = t∗.

The base double sigmoidal has exactly one local maximum

For the base double sigmoidal as defined in Eq. 15 we can prove the following Lemma.

Lemma. fdsig-base(t) has one local maximum.

Proof. At its local maximums and minimums, i.e. when t = t∗, the derivative of fdsig-base(t) must be equal

to zero,

d

dt
fdsig-base(t)

∣

∣

∣

t=t∗
= 0. (16)

By definition, tmid2 > tmid1, so without loss of generality we can write tmid2 = tmid1 +L, where L is a

positive number. Then we obtain

d

dt

[

1

(e−a1(t−tmid1)+1)(ea2(t−L−tmid1)+1)

]

∣

∣

∣

∣

∣

t=t∗

= 0 (17)
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We define new variables u ≡ t − tmid1 and u∗ ≡ t∗− tmid1. We also define the function g(u) = fdsig-base(u+
tmid1). Finding the roots of g(u) is equivalent to finding the roots of fdsig-base(t), and it involves solving

the following equation for u∗:

d

du
g(u)

∣

∣

∣

u=u∗
=

d

du

[

1

(e−a1u +1)(ea2(u−L)+1)

]

∣

∣

∣

∣

∣

u=u∗

= 0 (18)

After taking the derivative, we can rewrite this equation as

e(a1u∗+a2(L−u∗))
[

a1(e
a2(L−u∗)+1)−a2(e

a1u∗ +1)
]

(ea1u∗ +1)2(ea2(L−u∗)+1)2
= 0 (19)

For the left-hand side to be equal to zero, the term in the square brackets in the numerator must be equal to

zero, because all other terms in the expression are always positive. We next define the term in the square

brackets as a function of u,

h(u) = a1(e
a2(L−u)+1)−a2(e

a1u +1). (20)

The number of roots of h(u) is equal to the number of local extrema of fdsig-base(t).
To determine the number of roots of h(u), we first note the following limiting properties:

lim
u→−∞

h(u) = ∞ (21)

lim
u→∞

h(u) =−∞ (22)

According to the mean value theorem, h(u) must thus have at least one root. Next, we note that h(u) is

strictly decreasing:

d

du
h(u) =−a1a2ea2(L−u)−a1a2ea1u < 0 (23)

Since the derivative of h(u) is not equal to zero for any u we can use Rolle’s Theorem to conclude that the

function cannot have more than one root. In conclusion, h(u) has exactly one root, which implies that

fdsig-base(u) has exactly one local extremum.

Finally, we demonstrate that the local extremum of fdsig-base(t) is a local maximum, by inspecting the

second derivative of g(u) at u = u∗.

d2

du2
g(u)

∣

∣

∣

u=u∗
=

ea1u−2a2(L−u)

(ea1u +1)3(e−a2(L−u)+1)3

×

[

(

a1(e
a2(L−u)+1)−a2(e

a1u +1)
)2

−a2
1ea1u(ea2(L−u)+1)2 −a2

2(e
a1u +1)2ea2(L−u)

]

∣

∣

∣

∣

∣

u=u∗

(24)

The first term in the square brackets is equal to h(u)2 and thus is zero at u = u∗. The two remaining terms

inside the square brackets are strictly negative, and the term outside the square brackets is strictly positive.

Therefore, g(u∗)< 0, which proves that the local extremum is a local maximum.
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Figure 1. The two phases that an observer of growth data might see. The first phase, shown in red, is the

“growth phase”, during which growth occurs at exponential rate until some asymptotic level is reached.

The second phase, shown in blue, is the “decay phase”, during which intensity declines towards some

lower asymptotic level.

9/11

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3116v1 | CC BY 4.0 Open Access | rec: 31 Jul 2017, publ: 31 Jul 2017



S
lo

p
e

 1

M
id

 p
o

in
t 

1

S
ta

rt
 p

o
in

t

E
n

d
 p

o
in

t 
1

Final

M
id

p
o

in
t

2

Time

Maximum

B

Growth �me

M
id

 p
o

in
t

Growth �me

S
ta

rt
 p

o
in

t

E
n

d
 p

o
in

t

Time

A

Maximum

In
te
n
si
ty

In
te
n
si
ty

Figure 2. The two models used to classify growth data, with key parameters of each model labeled. (A)

In the sigmoidal model the maximum value, the midpoint, and the slope of the curve uniquely describe

the function. Estimates of the start and end points of growth, as well as the growth time, can then be

calculated from this model. (B) The double sigmoidal model is uniquely determined by six parameters,

two midpoint and two slope parameters, a maximum value, and a final value. As in the case of the

sigmoidal model, the start point, end point, and duration of both the growth and the decay phases can be

calculated from these parameters.
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Figure 3. Assessment of sicegar performance on simulated data subjected to varying levels of noise.

Noise levels are measured relative to the maximum intensity of the simulated curves. (A) sicegar

tends to either recover the original type of curve correctly (for small to moderate amounts of noise) or

label the dataset as ambiguous (at high noise levels). (B) The difference between the original data

(without noise) and the fitted curve is near zero for low noise levels and increases gradually and slowly

for higher noise levels.
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Figure 4. Example combination of parameters that are problematic for the multiplicative

double-sigmoidal model (Eq. 14), which is obtained by multiplying the sigmoidal (Eq. 8) and inverse

sigmoidal (Eq. 13) functions. Parameter choices for this example are: Iinit = 0, Ifinal = 0.5, Imax = 2,

a1 = 1, a2 = 10, tmid1 = 10, tmid2 = 11. This example demonstrates that Eq. 14 is not guaranteed to be

double-sigmoidal.
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