
 

A peer-reviewed version of this preprint was published in PeerJ
on 23 May 2018.

View the peer-reviewed version (peerj.com/articles/4794), which is the
preferred citable publication unless you specifically need to cite this
preprint.

Harrison XA, Donaldson L, Correa-Cano ME, Evans J, Fisher DN, Goodwin
CED, Robinson BS, Hodgson DJ, Inger R. 2018. A brief introduction to
mixed effects modelling and multi-model inference in ecology. PeerJ
6:e4794 https://doi.org/10.7717/peerj.4794

https://doi.org/10.7717/peerj.4794
https://doi.org/10.7717/peerj.4794


Best practice in mixed effects modelling and multi-model

inference in ecology

Xavier A Harrison Corresp.,   1  ,  Lynda Donaldson  2  ,  Maria Eugenia Correa-Cano  2  ,  Julian Evans  3, 4  ,  David N Fisher  3, 5 

,  Cecily Goodwin  2  ,  Beth Robinson  6  ,  David J Hodgson  3  ,  Richard Inger  2, 3 

1 Institute of Zoology, Zoological Society of London, London, United Kingdom

2 Environment and Sustainability Institute, University of Exeter, Penryn, United Kingdom

3 Centre for Ecology and Conservation, University of Exeter, Penryn, United Kingdom

4 Department of Biology, University of Ottawa, Ottawa, Canada

5 Department of Integrative Biology, University of Guelph, Guelph, Canada

6 WildTeam Conservation, Surfside, St Merryn, Padstow PL28 8NU, United Kingdom

Corresponding Author: Xavier A Harrison

Email address: x.harrison@ucl.ac.uk

The use of linear mixed effects models (LMMs) is increasingly common in the analysis of

biological data. Whilst LMMs offer a flexible approach to modelling a broad range of data

types, ecological data are often complex and require complex model structures, and the

fitting and interpretation of such models is not always straightforward. The ability to

achieve robust biological inference requires that practitioners know how and when to apply

these tools. Here, we provide a general overview of current methods for the application of

LMMs to biological data, and highlight the typical pitfalls that can be encountered in the

statistical modelling process. We tackle several issues relating to the use of information

theory and multi-model inference in ecology, and demonstrate the tendency for data

dredging to lead to greatly inflated Type I error rate (false positives) and impaired

inference. We offer practical solutions and direct the reader to key references that provide

further technical detail for those seeking a deeper understanding. This overview should

serve as a widely accessible code of best practice for applying LMMs to complex biological

problems and model structures, and in doing so improve the robustness of conclusions

drawn from studies investigating ecological and evolutionary questions.
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32  

33 Introduction

34  

35 In recent years, the suite of statistical tools available to biologists and the complexity of 

36 biological data analyses have grown in tandem (Low-Decarie et al 2014; Zuur et al 

37 2016; Kass et al 2016). The availability of novel and sophisticated statistical techniques 

38 means we are better equipped than ever to extract signal from noisy biological data, but 

39 it remains challenging to know how to apply these tools, and which statistical 

40 technique(s) might be best suited to answering specific questions (Kass et al 2016). 

41 Often, simple analyses will be sufficient (Murtaugh 2007), but more complex data 

42 structures often require more complex methods such as linear mixed effects models 

43 (Zuur et al 2009), generalized additive models (Wood et al 2015) or Bayesian inference 

44 (Ellison 2004). Both accurate parameter estimates and robust biological inference 

45 require that ecologists be aware of the pitfalls and assumptions that accompany these 

46 techniques and adjust modelling decisions accordingly (Bolker et al 2009).

47 Linear mixed effects models (LMMs) and generalized linear mixed effects models 

48 (GLMMs), have gained significant traction in the last decade (Zuur et al 2009; Bolker et 

49 al 2009). Both extend traditional linear models to include a combination of fixed and 

50 random effects as predictor variables. The introduction of random effects affords several 

51 non-exclusive benefits. First, biological datasets are often highly structured, containing 

52 clusters of non-independent observational units that are hierarchical in nature, and 

53 LMMs allow us to explicitly model the non-independence in such data. For example, we 

54 might measure several chicks from the same clutch, and several clutches from different 

55 females, or we might take repeated measurements of the same chick9s growth rate over 

56 time. In both cases, we might expect that measurements within a statistical unit (here, 

57 an individual, or a female9s clutch) might be more similar than measurements from 

58 different units. Explicit modelling of the random effects structure will aid correct 

59 inference of fixed effects, depending on which level of the system9s hierarchy is being 

60 manipulated. In our example, if the fixed effect varies or is manipulated at the level of 

61 the clutch, then pseudoreplicated measurements of each chick can be controlled 
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62 carefully using random effects. Alternatively, if fixed effects vary at the level of the chick, 

63 then non-independence among clutches or mothers can be accounted for. Random 

64 effects typically represent some grouping variable (Breslow and Clayton 1993) and 

65 allow the estimation of variance in the response variable within and among these 

66 groups. This reduces the probability of false positives (Type I error rates) and false 

67 negatives (Type II error rates, e.g. Crawley 2013). Second, inferring the magnitude of 

68 variation within and among statistical clusters or hierarchical levels can be highly 

69 informative in its own right. In our bird example, understanding whether there is more 

70 variation in a focal trait among females within a population, rather than among 

71 populations, might be a central goal of the study.

72 LMMs are powerful yet complex tools. Software advances have made these tools 

73 accessible to the non-expert and have become relatively straightforward to fit in widely 

74 available statistical packages such as R (R Core Team 2016). However, despite this 

75 ease of implementation, the correct use of LMMs in the biological sciences is 

76 challenging for several reasons: i) they make additional assumptions about the data to 

77 those made in more standard statistical techniques such as general linear models 

78 (GLMs), and these assumptions are often violated (Bolker et al 2009); ii) interpreting 

79 model output correctly can be challenging, especially for the variance components of 

80 random effects (Bolker et al 2009; Zuur et al 2009); iii) model selection for LMMs 

81 presents a unique challenge, irrespective of model selection philosophy, because of 

82 biases in the performance of some tests (e.g. Wald tests, AIC comparisons) introduced 

83 by the presence of random effects (Vaida & Blanchard 2005; Dominicus et al 2006; 

84 Bolker et al 2009). Collectively, these issues mean that the application of LMM 

85 techniques to biological problems can be risky and difficult for those that are unfamiliar 

86 with them. There have been several excellent papers in recent years on the use of 

87 generalized linear mixed effects models (GLMMs) in biology (Bolker et al 2009), the use 

88 of information theory and multi-model inference for studies involving LMMs (Grueber et 

89 al 2011), best practice for data exploration (Zuur et al 2009) and for conducting 

90 statistical analyses for complex datasets (Zuur et al 2016; Kass et al 2016). At the 

91 interface of these excellent guides lies the theme of this paper: an updated guide for the 

92 uninitiated through the model fitting and model selection processes when using LMMs. 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3113v1 | CC BY 4.0 Open Access | rec: 27 Jul 2017, publ: 27 Jul 2017



93 A secondary but no less important aim of the paper is to bring together several key 

94 references on the topic of LMMs, and in doing so act as a portal into the primary 

95 literature that derives, describes and explains the complex modelling elements in more 

96 detail. 

97 We provide a best practice guide covering the full analysis pipeline, from 

98 formulating hypotheses, specifying model structure and interpreting the resulting 

99 parameter estimates. The reader can digest the entire paper, or snack on each 

100 standalone section when required. First, we discuss the advantages and disadvantages 

101 of including both fixed and random effects in models. We then address issues of model 

102 specification, and choice of error structure and/or data transformation, a topic that has 

103 seen some debate in the literature (e.g. O9Hara & Kotze 2010; Ives 2015).  We also 

104 address methods of model selection, and discuss the relative merits and potential 

105 pitfalls of using information theory (IT), AIC and multi-model inference in ecology and 

106 evolution. At all stages, we provide recommendations for the most sensible manner to 

107 proceed in different scenarios.

108 Understanding Fixed and Random Effects

109  

110 A key decision of the modelling process is specifying model predictors as fixed or 

111 random effects. Unfortunately, the distinction between the two is not always obvious, 

112 and is not helped by the presence of multiple, often confusing definitions in the literature 

113 (see Gelman and Hill 2007 p. 245). Absolute rules for how to classify something as a 

114 fixed or random effect generally are not useful because that decision can change 

115 depending on the goals of the analysis (Gelman and Hill 2007). We can illustrate the 

116 difference between fitting something as a fixed (M1) or a random effect (M2) using a 

117 simple example of a researcher who takes measurements of mass from 100 animals 

118 from each of 5 different groups (n= 500) with a goal of understanding differences among 

119 groups in mean mass. We use notation equivalent to fitting the proposed models in the 

120 statistical software R (R Core Team 2016), with the LMMs fitted using the R package 

121 lme4 (Bates et al. 2015):

122  
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123 M1 <- glm (mass ~ group)

124 M2 <- lmer(mass ~ 1 + (1|group)

125  

126 Fitting 8group9 as a fixed effect in model M1 assumes the 5 8group9 means are all 

127 independent of one another, and share a common residual variance. Conversely, fitting 

128 group as a random intercept model in model M2 assumes that the 5 measured group 

129 means are only a subset of the realised possibilities drawn from a 8global9 set of 

130 population means that follow a Normal distribution with its own mean (¿group, Fig. 1A) 

131 and variance (Ã2
group). Therefore, LMMs model the variance hierarchically, estimating 

132 first the process generating among-group variation in means, and subsequently 

133 variation within groups. Treating groups from a field survey as only a subset of the 

134 possible groups that could be sampled is quite intuitive, because there are likely many 

135 more groups (e.g. populations) of the study species in nature than the 5 the researcher 

136 measured. Conversely if one has designed an experiment to test the effect of three 

137 different temperature regimes on growth rate of plants, specifying temperature 

138 treatment as a fixed effect appears sensible because experimenter has deliberately set 

139 the variable at a given value of interest. That is, there are no unmeasured groups with 

140 respect to that particular experimental design. 

141 Estimating group means from a common distribution with known (estimated) 

142 variance has some useful properties, which we discuss below, and elaborate on the 

143 difference between fixed and random effects by using examples of the different ways 

144 random effects are used in the literature.

145  

146 Controlling for non-independence among data points

147 This is one of the most common uses of a random effect. Complex biological data sets 

148 often contain nested and/or hierarchical structures such as repeat measurements from 

149 individuals within and across units of time. Random effects allow you to control for this 

150 non-independence by constraining non-independent 8units9 to have the same intercept 

151 and/or slope (Zuur et al 2009; Zuur et al 2016). Whether you fit only random intercepts 

152 or both random intercepts and slopes will be decided by the goals of the analysis, and 

153 the dependency structure of the data (Zuur et al 2016). Fitting only a random intercept 
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154 means you allow group means to vary, but assume all groups have a common slope for 

155 a fitted covariate (fixed effect). Fitting random intercepts and slopes means you allow 

156 the slope of a predictor to vary based on a separate grouping variable. For example, 

157 one hypothesis might be that the probability of successful breeding for an animal is a 

158 function of its body mass. If we had measured animals from multiple sampling sites, we 

159 might wish to fit 8sampling site9 as a random intercept, and estimate a common slope 

160 (change in breeding success) for body mass across all sampling sites by fitting it as a 

161 fixed effect: 

162

163 M3 <- glmer(successful.breed ~ body.mass  + (1|sample.site)

164

165 Conversely, we might wish to test the hypothesis that the strength of the effect (slope) 

166 of body mass on breeding success varies depending on the sampling location i.e. the 

167 change in breeding success for a 1 unit change in body mass is not consistent across 

168 groups (Figure 1B). Here, 8body mass9 is specified as a random slope by moving it into 

169 the random effects structure:

170

171 M4 <- glmer(successful.breed ~ body.mass + 

172 (body.mass|sample.site)

173

174 Schielzeth & Forstmeier (2009) warn that constraining groups to share a common slope 

175 can inflate Type I and Type II errors. Consequently, Grueber et al (2011) recommend 

176 always fitting both random slopes and intercepts where possible. Whether this is 

177 feasible or not will depend on your data structure (see 8Costs to Fitting Random Effects9 

178 section below). Figure 1 describes the differences between random intercept models 

179 and those also containing random slopes.

180 Further reading: Zuur et al (2016) shows examples of the difficulties in identifying 

181 the dependency structure of data and how to use flow charts / graphics to help decide 

182 model structure. Kery (2010, Ch 12) has an excellent demonstration of how to fit 

183 random slopes, and how model assumptions change depending on whether you specify 

184 a correlation between random slopes and intercepts or not. Schielzeth & Forstmeier 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3113v1 | CC BY 4.0 Open Access | rec: 27 Jul 2017, publ: 27 Jul 2017



185 (2009) and van de Pol & Wright (2009) are useful references for understanding the 

186 utility of random slope models.  

187

188 To improve accuracy of parameter estimation 

189 Random effect models use data from all the groups to estimate the mean and variance 

190 of the global distribution of group means. Assuming all group means are drawn from a 

191 common distribution causes the estimates of their means to drift towards the global 

192 mean ¿group. This phenomenon, known as shrinkage (Gelman & Hill 2007; Kery 2010), 

193 can also lead to smaller and more precise standard errors around means. Shrinkage is 

194 strongest for groups with small sample sizes, as the paucity of within-group information 

195 to estimate the mean is counteracted by the model using data from other groups to 

196 improve the precision of the estimate. This 8partial pooling9 of the estimates is a principal 

197 benefit of fitting something as a random effect (Gelman & Hill 2007). However, it can 

198 feel strange that group means should be shrunk towards the global mean, especially for 

199 researchers more used to treating sample means as independent fixed effects. 

200 Accordingly, one issue is that variance estimates can be hugely imprecise when there 

201 are fewer than 5 levels of the random grouping variable (intercept or slope; see Harrison 

202 2015). However, thanks to the Central Limit Theorem, the assumption of Gaussian 

203 distribution of group means is usually a good one, and the benefits of hierarchical 

204 analysis will outweigh the apparent costs of shrinkage.

205

206 To estimate variance components

207 In some cases, the variation among groups will be of interest to ecologists. For 

208 example, imagine we had measured the clutch masses of 30 individual birds, each of 

209 which had produced 5 clutches (n=150). We might be interested in asking whether 

210 different females tend to produce consistently different clutch masses (high among-

211 female variance for clutch mass). To do so, we might fit the following model with Clutch 

212 Mass as the response variable, no fixed effects, and a Gaussian error structure:

213

214 Model <- lmer(ClutchMass ~ 1 + (1|FemaleID)

215
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216 By fitting individual 8FemaleID9 as a random intercept term in the LMM, we estimate the 

217 among-female variance in our trait of interest. This model will also estimate the residual 

218 variance term, which we can use in conjunction with the among-female variance term to 

219 calculate an 8intra-class correlation coefficient9 that measures individual repeatability in 

220 our trait (see Nakagawa & Schielzeth 2010). While differences among individuals can 

221 be obtained by fitting individual ID as a fixed effect, this uses a degree of freedom for 

222 each individual ID after the first, severely limiting model power, and does not benefit 

223 from increased estimation accuracy through shrinkage. More importantly, repeatability 

224 scores derived from variance components analysis can be compared across studies for 

225 the same trait, and even across traits in the same study. Variance component analysis 

226 is a powerful tool for partitioning variation in a focal trait among biologically interesting 

227 groups, and several more complex examples exist (see Nakagawa & Schielzeth 2010; 

228 Wilson et al 2010; Houslay & Wilson 2017). In particular, quantitative genetic studies 

229 rely on variance component analysis for estimating the heritability of traits such as body 

230 mass or size of secondary sexual characteristics (Wilson et al 2010). We recommend 

231 the tutorials in Wilson et al (2010) and Houslay & Wilson (2017) for a deeper 

232 understanding of the power and flexibility of variance component analysis. 

233

234 To make predictions for unmeasured groups

235 Fixed effect estimates prevent us from making predictions for new groups because the 

236 model estimates are only relevant to groups in our dataset (e.g. Zuur et al 2009 p. 327). 

237 Conversely, we can use the estimate of the global distribution of population means to 

238 predict for the average group using the mean of the distribution ¿group for a random 

239 effects model (see Fig. 1). We could also sample hypothetical groups from our random 

240 effect distribution, as we know its mean and SD (Zuur et al 2016). Therefore, whether 

241 something is fitted as a fixed or random effect can depend on the goal of the analysis: 

242 are we only interested in the mean values for each group in our dataset, or do we wish 

243 to use our results to extend our predictions to new groups? Even if we do not want to 

244 predict to new groups, we might wish to fit something as a random effect to take 

245 advantage of the shrinkage effect and improved parameter estimation accuracy.

246  

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3113v1 | CC BY 4.0 Open Access | rec: 27 Jul 2017, publ: 27 Jul 2017



247 Considerations When Fitting Random Effects

248 Random effect models have several desirable properties (see above), but their use 

249 comes with some caveats. First, they are quite 8data hungry9; as a rule, you need at 

250 least 5 8levels9 (groups) for a random intercept term to achieve robust estimates of 

251 variance (Gelman & Hill 2007; Harrison 2015). With <5 levels, the mixed model may not 

252 be able to estimate the among-population variance accurately. In this case, the variance 

253 estimate will either collapse to zero, making your model equivalent to an ordinary GLM 

254 (Gelman & Hill 2007 p. 275) or be non-zero but incorrect if the small number of groups 

255 you have sampled are not representative of true distribution of means (Harrison 2015). 

256 Second, models can be unstable if sample sizes across groups are highly unbalanced 

257 i.e. if some groups contain very few data. These issues are especially relevant to 

258 random slope models (Grueber et al 2011). Third, an important issue is the difficulty in 

259 deciding the <significance= or <importance= of variance among groups. The variance of a 

260 random effect is inevitably at least zero, but how big does it need to be to be considered 

261 of interest? Fitting a factor as a fixed effect provides a statement of the significance of 

262 differences (variation) among groups relatively easily. Testing differences among levels 

263 of a random effect is made much more difficult for frequentist analyses, though not so in 

264 a Bayesian framework (Kery 2010, see 8Testing Significance of Random Effects9 

265 section). Finally, an issue that is not often addressed is that of mis-specification of 

266 random effects. GLMMs are powerful tools, but incorrectly parameterising the random 

267 effects in your model could yield model estimates that are as unreliable as ignoring the 

268 need for random effects altogether. An example would be failure to recognise 

269 nonindependence caused by nested structures in the data e.g. multiple clutch measures 

270 from a single bird. A second example would be the incorrect use of residual variation 

271 among pseudoreplicates to test the significance of fixed-effect variation at a different 

272 level of a survey or experiment9s hierarchical design.

273 Further reading: Harrison (2015) shows how poor replication of the random 

274 intercept groups can give unstable model estimates. Zuur et al (2016) discuss the 

275 importance of identifying dependency structures in your data. 
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276 Deciding Model Structure for GLMMs

277 Choosing Error Structures and Link Functions

278 Linear models make various statistical assumptions, including additivity of the linear 

279 predictors, independence of errors, equal variance of errors (homoscedasticity) and 

280 Normality of errors (Gelman & Hill 2007 p. 46; Zuur et al 2009 p. 19). Ecologists often 

281 deal with response variables that violate these assumptions, and face several decisions 

282 about model specification to ensure models of such data are robust. The price for 

283 ignoring violation of these assumptions tends to be an inflated Type I error rate (Zuur et 

284 al 2010; Ives 2015).

285 For continuous response variables (e.g. mass, length), a Gaussian (also termed 

286 Normal) error structure is often appropriate. Linear regression using a Gaussian 

287 distribution will directly predict continuous data y from a linear predictor of covariates 

288 (Lindsay 1974). Thus, model coefficients are on the same scale as the units of the 

289 outcome variable e.g. mm of rainfall, or kg of mass. In some cases, however, 

290 transformation of the response variable may still be required to improve the fit of a 

291 Gaussian model. For example, the additivity assumption can be violated if there is a 

292 non-linear relationship between the outcome variable and the predictors, but log-

293 transforming the outcome can often remedy this (Gelman & Hill 2007). Conversely, the 

294 goal may be to quantify differences in mean mass between males and females, but if 

295 the variance in mass for one sex is greater than the other, the assumption of 

296 homogeneity of variance is violated.  Transformation of the data can remedy this (Zuur 

297 et al 2009), 8mean-variance stabilising transformations9 ensure the variance around the 

298 fitted mean of each group is similar, making the models more robust. Alternatively, 

299 modern statistical tools such as the 8varIdent9 function in the R package nlme can allow 

300 one to explicitly model differences in variance between groups to avoid the need for 

301 data transformation. 

302 Further reading: Zuur et al (2010) provide a comprehensive guide on using data 

303 exploration techniques to check model assumptions, and give advice on 

304 transformations. 

305
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306 For non-Gaussian data, our modelling choices become more complex. Non-

307 Gaussian data structures include Poisson-distributed counts (number of eggs laid, 

308 number of parasites); binomial-distributed constrained counts (number of eggs that 

309 hatched in a clutch; prevalence of parasitic infection in a group of hosts) and Bernoulli-

310 distributed binary traits (e.g. infected with a parasite or not). Gaussian models of these 

311 data would be inappropriate because they violate the assumptions of normality of errors 

312 and homogenous variance. For example, the expected variance of a Poisson-distributed 

313 variable is equal to its mean, so in a modelling context as the fitted mean increases so 

314 too will the error around it. Binomial data has maximal variance at intermediate 

315 probabilities, and zero variance when probabilities are zero or one. It is important to 

316 mention, however, that real world data will only ever approximate a given distribution 

317 and the correspondence of the data to the chosen distribution should be verified, 

318 regardless of its 8type9 (e.g count or proportion data). To model these data, we have two 

319 initial choices: i) we can apply a transformation to our non-Gaussian response to 8make 

320 it9 approximately Gaussian, and then use a Gaussian model; or ii) we can apply a 

321 GLMM and specify the appropriate error distribution and link function. The link function 

322 takes into account the (assumed) empirical distribution of our data by transformation of 

323 the linear predictor within the model, and so normalises the residuals of the model. It is 

324 critical to note that transformation of the raw response variable is not equivalent to using 

325 a link function to apply a transformation in the model. Data-transformation applies the 

326 transformation to the raw response, whilst using a link function transforms the fitted 

327 mean (the linear predictor). That is, the mean of a log-transformed response (using a 

328 data transformation) is not identical to the logarithm of a fitted mean (using a link 

329 function).

330 Crawley (2013 p. 560) gives the canonical link functions for the most common 

331 generalized models: log for Poisson, logit (log-odds) for Binomial, and reciprocal for 

332 Gamma errors. While it is beyond the scope of this paper to go through each possible 

333 combination of error structure and link function, it is important to remember that several 

334 combinations are possible depending on the structure of your data (see Zuur et al 

335 2009). Your choice of link function may improve the fit of your model, but it is important 

336 to know what assumptions your chosen link functions make about your data (Zuur et al 
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337 2009). The issue of transforming non-Gaussian data to fit Gaussian models to them is 

338 contentious. Zuur et al (2009) suggest you should always use the appropriate modelling 

339 tool e.g. Poisson GLMM for count data, or a generalized additive model (GAMM) for 

340 non-linear data, rather than apply transformations just to be able to stay within the linear 

341 modelling framework, as it can affect the influence of data points on the model (Keene 

342 1995). For example, arcsin square-root transformation of proportion data was once 

343 extremely common, but recent work has shown it to be unreliable at detecting real 

344 effects (Warton & Hui 2011). Both logit-transformation (for proportional data) and 

345 Binomial GLMMs (for binary response variables) have been shown to be more robust 

346 (Warton & Hui 2011). O9Hara & Kotze (2010) argued that log-transformation of count 

347 data performed well in only a small number of circumstances (low dispersion, high 

348 mean counts), which are unlikely to be applicable to ecological datasets. However, Ives 

349 (2015) recently countered these assumptions with evidence that transformed count data 

350 analysed using LMMs can often outperform Poisson GLMMs. We do not make a case 

351 for either here, but acknowledge the fact that there is unlikely to be a universally best 

352 approach; each method will have its own strengths and weakness depending on the 

353 properties of the data (O9Hara & Kotze 2010). Checking the assumptions of the LMM or 

354 GLMM is an essential step. 

355 An issue with transformations of non-Gaussian data is having to deal with zeroes 

356 as special cases (e.g. you can9t log transform a 0), so researchers often add a small 

357 amount of noise to the zeroes to make the transformation work, a practice that has been 

358 criticised (O9Hara & Kotze 2010). GLMMs remove the need for these 8adjustments9 of 

359 the data. The important point here is that transformations change the entire relationship 

360 between Y and X (Zuur et al 2009), but different transformations do this to different 

361 extents and it may be impossible to know which transformation is best without 

362 performing simulations to test the efficacy of each (Warton & Hui 2011; Ives 2015). 

363 Further reading: Crawley (2013 Ch 13) gives a broad introduction to the various 

364 error structures and link functions available in the R statistical framework. O9Hara & 

365 Kotze (2010) and Ives (2015) argue the relative merits of GLMMs vs log-transformation 

366 of count data; Warton & Hui (2011) address the utility of logit-transformation of 

367 proportion data compared to arcsin square-root transformation.
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368

369 Choosing Predictors and Interactions

370 One of the most important decisions during the modelling process is deciding which 

371 predictors and interactions to include in models. Best practice demands that each model 

372 should represent a specific a priori hypothesis concerning the drivers of patterns in data 

373 (Burnham & Anderson 2002; Forstmeier & Schielzeth 2011), allowing you to assess the 

374 relative support for these hypotheses in your data irrespective of model selection 

375 philosophy. The definition of <hypothesis= must be broadened from the strict pairing of 

376 null and alternative that is classically drilled into young pupils of statistics and 

377 experimental design. Frequentist approaches to statistical modelling still work with 

378 nested pairs of hypotheses. Information theorists work with whole sets of competing 

379 hypotheses. Bayesian modellers are comfortable with the idea that every possible 

380 parameter estimate is a hypothesis in its own right. But these epistemological 

381 differences do not really help to solve the problem of <which= predictors should be 

382 considered valid members of the full set to be used in a statistical modelling exercise. It 

383 is therefore often unclear how best to design your most complex model, often referred 

384 to as the maximal model (which contains all factors, interactions and covariates that 

385 might be of any interest, Crawley 2013) or as the global model (a highly parameterized 

386 model containing the variables and associated parameters thought to be important of 

387 the problem at hand, Burnham & Anderson 2002; Grueber et al 2011). We shall use the 

388 latter term here for consistency with terminology used in information-theory (Grueber et 

389 al 2011). 

390 Deciding which terms to include in the model requires careful and rigorous a 

391 priori consideration of the system under study. This may appear obvious; however 

392 diverse authors have noticed a lack of careful thinking when selecting variables for 

393 inclusion in a model (Peters 1991, Chatfield 1995, Burnham & Anderson 2002). Lack of 

394 a priori consideration, of what models represent, distinguishes rigorous hypothesis 

395 testing from 8fishing expeditions9 that seek significant predictors among a large group of 

396 contenders. Ideally, the global model should be carefully constructed using the 

397 researchers9 knowledge and understanding of the system such that only predictors likely 
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398 to be pertinent to the problem at hand are included, rather than including all the data the 

399 researcher has collected and/or has available. This is a pertinent issue in the age of 8big 

400 data9, where researchers are often overwhelmed with predictors and risk skipping the 

401 important step of a priori hypothesis design. In practice, for peer reviewers it is easy to 

402 distinguish fishing expeditions from a priori hypothesis sets based on the evidence base 

403 presented in introductory sections of research outputs.

404

405 How Complex Should My Global Model Be?

406 The complexity of the global model will likely be a trade-off between the number 

407 of observations you have measured (the n of the study) and your proposed hypotheses 

408 about how the measured variables affect the outcome (response) variable. Lack of 

409 careful consideration of the parameters to be estimated can result in a model containing 

410 more parameters than observations, called overparameterisation (Southwood & 

411 Henderson 2000, Quinn & Keough 2002, Crawley 2013). In simple GLMs, 

412 overparameterisation results in a rapid decline in (or absence of) degrees of freedom 

413 with which to estimate residual error. Detection of overparameterisation in LMMs can be 

414 more difficult because each random effect uses only a single degree of freedom, 

415 however the estimation of variance among small numbers of groups can be numerically 

416 unstable.  Unfortunately, it is common practice to fit a global model that is simply as 

417 complex as possible, irrespective of what that model actually represents; that is a 

418 dataset containing k predictors yields a model containing a k-way interaction among all 

419 predictors and simplify from there (Crawley 2013). This approach is flawed for two 

420 reasons. First, this practice encourages fitting biologically-unfeasible models containing 

421 nonsensical interactions. A good rule of thumb is that it should be possible to draw a 

422 graph of what the fitted model 8looks like9 for various combinations of predictors 3 failing 

423 to draw the fitted lines of the 3-way interaction means refraining from fitting model 

424 containing one.  Second, using this approach makes it very easy to fit a model too 

425 complex for the data. At best, the model will fail to converge, thus preventing inference. 

426 At worst, the model will <work=, risking false inference. Guidelines for the ideal ratio of 

427 data points (n) to estimated parameters (k) vary widely (see Forstmeier & Schielzeth 

428 2011). Crawley (2013) suggests a minimum n/k of 3, though we argue this is very low 
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429 and that an n/k of 10 is more conservative. A 8simple9 model containing a 3-way 

430 interaction between continuous predictors and a single random intercept needs to 

431 estimate 8 parameters, so requires a dataset of a minimum n of 80, and ideally >100. 

432 Interactions can be especially demanding, as fitting interactions between a multi-level 

433 factor and a continuous predictor can result in poor sample sizes for specific treatment 

434 combinations even if the total n is quite large (Zuur et al 2010), which will lead to 

435 unreliable model estimates.

436 Further reading: Zuur et al (2010) discuss data exploration techniques for 

437 determining whether certain interactions should be included. Grueber et al (2011) show 

438 an excellent worked example of a case where the most complex model is biologically 

439 feasible and well-reasoned, containing only one 2-way interaction. Nakagawa and 

440 Foster (2004) discuss the use of power analyses, which will be useful in determining the 

441 appropriate n/k ratio for a given system.

442  

443 Assessing Predictor Collinearity

444 With the desired set of predictors identified, it is wise to check for collinearity among 

445 predictor variables. Collinearity between predictors can cause several problems in 

446 model interpretation because those predictors explain some of the same variance in 

447 your response variable, and their effects cannot be estimated independently (Quinn and 

448 Keough. 2002; Graham 2003): First, it can cause model convergence issues as models 

449 struggle to partition variance between predictor variables. Second, positively correlated 

450 variables can have negatively correlated regression coefficients, as the marginal effect 

451 of one is estimated, given the effect of the other, leading to incorrect interpretations of 

452 the direction of effects (Figure 2). Third, collinearity can inflate standard errors of 

453 coefficient estimates and make 8true9 effects harder to detect (Zuur et al 2010). Finally, 

454 collinearity can affect the accuracy of model averaged parameter estimates during 

455 multi-model inference (Freckleton 2011; Cade 2015). Examples of collinear variables 

456 include climatic data such as temperature and rainfall, and morphometric data such as 

457 body length and mass. Collinearity can be detected in several ways, including creating 

458 correlation matrices between raw explanatory variables, with values >0.7 suggesting 

459 both should not be used in the analysis (Dormann et al. 2013); or calculating the 
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460 variance inflation factor (VIF) of each predictor that is a candidate for inclusion in a 

461 model (details in Zuur et al 2010) and dropping variables with a VIF higher than a 

462 certain value (e.g. 3; Zuur et al 2010). One problem with these methods though is that 

463 they rely on a user-selected, potentially arbitrary choice of threshold of either the 

464 correlation coefficient or the VIF. Two solutions to this problem are to either select one 

465 variable as representative of multiple collinear variables (Austin 2002), ideally using 

466 biological knowledge/ reasoning to select the most meaningful variable (Zuur et al 

467 2010); or conduct a dimension-reduction analysis (e.g. Principal Components Analysis; 

468 James & McCullugh 1990), leaving a single variable that accounts for most of the 

469 shared variance among the correlated variables. Both approaches will only be 

470 applicable if it is possible to group explanatory variables by common features, thereby 

471 effectively creating broader, but still meaningful explanatory categories. For instance, by 

472 using mass and body length metrics to create a 8scaled mass index9 representative of 

473 body size (Peig & Green 2009). In practice, any attempt to <tease apart= the relative 

474 influence of two collinear predictors will fail. A common outcome is that the two 

475 predictors of interest will share contribution to a principal component of the set of 

476 predictors. This should be taken as strong indication that the predictors9 signal cannot 

477 be teased apart through inference, and experiments are required to manipulate them 

478 independently.

479

480 Standardising and Centering Predictors

481 Transformations of predictor variables are common, and can improve model 

482 performance and interpretability (Gelman & Hill 2007). Two common transformations 

483 are i) predictor centering, where you subtract the mean of predictor x from every value 

484 in x, giving a variable with mean 0 and SD on the original scale of x; and ii) predictor 

485 standardising, where you centre x but also divide by the SD of x, giving a variable with 

486 mean 0 and SD 1. Rescaling the mean of predictors containing large values (e.g. rainfall 

487 measured in thousands of mm) through centering/standardising will often solve 

488 convergence problems, in part because the estimation of intercepts is brought into the 

489 main body of the data themselves. Both approaches also remove the correlation 

490 between main effects and their interactions, making main effects interpretable when 
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491 models also contain interactions (Schielzeth 2010). Note that this collinearity among 

492 coefficients is distinct from collinearity between two separate predictors (see above). 

493 Centering and standardising by the mean of a variable changes the interpretation of the 

494 model intercept to the value of the outcome expected when x is at its mean value. 

495 Standardising further adjusts the interpretation of the coefficient (slope) for x in the 

496 model to the change in the outcome variable for a 1 SD change in the value of x. 

497 Scaling is therefore a useful, indeed recommended, tool to improve the robustness of 

498 regression models, but care must be taken in the interpretation and graphical 

499 representation of outcomes. 

500 Further reading: Schielzeth (2010) provides an excellent reference to the 

501 advantages of centering and standardising predictors. Gelman (2008) provides strong 

502 arguments for standardising continuous variables by 2 SDs when you have binary 

503 predictors in the model. Gelman & Hill (2007 p. 56, 434) discuss the utility of centering 

504 by values other than the mean.  

505

506 Quantifying GLMM Fit and Performance

507 Once you have specified a global model, it is vital that you quantify model fit and report 

508 these metrics in your manuscript to provide evidence that your model is robust. The 

509 global model is considered the best candidate for assessing fit statistics such as 

510 overdispersion (Burnham & Anderson 2002). Often, researchers will use information 

511 criteria scores as a proxy for model fit, and claim that the large difference in AIC 

512 between the top and null models is evidence of a good fit.  This is incorrect: AIC tells us 

513 nothing about whether the basic distributional and structural assumptions of the model 

514 have been violated. Similarly a high R2 value is in itself only a test of the magnitude of 

515 model fit and not an adequate surrogate for proper model checks. Just because you 

516 have a high R2 value does not mean your model will pass checks for assumptions such 

517 as homogeneity of variance. We strongly encourage researchers to view model fit and 

518 model adequacy as two separate but equally important traits that must be assessed and 

519 reported. Model fit can be poor for several reasons, including the presence of 

520 overdispersion, failing to include interactions among predictors, failing to account for 
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521 non-linear relationships between variables, or specifying a sub-optimal error structure 

522 and/or link function. Here we discuss some key metrics of fit and adequacy that should 

523 be considered. 

524  

525 Inspection of Residuals and Linear Model Assumptions 

526 Best practice is to examine plots of fitted values vs residuals for the entire model, as 

527 well as model residuals versus all explanatory variables to look for patterns (Zuur et al 

528 2010; 2016). In addition, there are further model checks specific to mixed models. 

529 Firstly, you should inspect fitted values versus residuals for each grouping level of a 

530 random intercept factor (Zuur et al 2009). This will often prove dissatisfying if there are 

531 few data/residuals per group, however this in itself is a warning flag that the 

532 assumptions of the model might be based on weak foundation. Another feature of fit 

533 that is very rarely tested for in (G)LMMs is the assumption of normality of deviations of 

534 the conditional modes of the random effects from the global intercept. Just as a 

535 quantile-quantile (QQ) plot of linear model residuals should show points falling along a 

536 straight line (e.g. Crawley 2007), so should a QQ plot of the random effect residuals. 

537 Further reading: Zuur et al (2010) given an excellent overview of the assumptions of 

538 linear models and how to test for their violation. See also Gelman & Hill (2007 p. 45). 

539 The R package 8sjPlot9 (Lüdecke 2017) has built in functions for several LMM 

540 diagnostics, including random effect QQ plots. Zuur et al (2009) provides a vast 

541 selection of model diagnostic techniques for a host of model types, including GLS, 

542 GLMMs and GAMMS. 

543  

544 Overdispersion

545 If your model has a Gaussian (Normal) error structure, you should not be concerned 

546 about overdispersion, as Gaussian models do not assume a specific mean-variance 

547 relationship. For generalized mixed models (GLMMs) however (e.g. Poisson, Binomial), 

548 the variance of the data can be greater than predicted by the error structure of your 

549 model (e.g. Hilbe 2011). Overdispersion can be caused by several processes 

550 influencing your data, including zero-inflation, aggregation (non-independence) among 

551 counts, or both (Zuur et al 2009). The presence of overdispersion in your model 
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552 suggests it is a bad fit, and your parameter estimates and their standard errors will likely 

553 be biased unless you account for the overdispersion (e.g. Harrison 2014). The use of 

554 canonical binomial and Poisson error structures, when residuals are overdispersed, 

555 tends to result in Type I errors because standard errors are underestimated. Adding an 

556 observation-level random effect (OLRE) to overdispersed Poisson or Binomial models 

557 can 8fix9 the overdispersion and give more accurate estimates standard errors (Harrison 

558 2014; 2015). However, OLRE models may yield inferior fit compared to models using 

559 compound probability distributions such as the Negative-Binomial for count data (Hilbe 

560 2011; Harrison 2014) or Beta-Binomial for proportion data (Harrison 2015), and so it is 

561 good practice to assess the relative fit of both types of model using AIC before 

562 proceeding (e.g. Zuur et al 2009). Researchers very rarely report the overdispersion 

563 statistic (but see Elston et al 2001), but it should be made a matter of routine. See 

564 8Assessing Model Fit Through Simulation9 Section for advice on how to quantify and 

565 model overdispersion.

566 Further reading: Crawley (2013 page 580-581) gives an elegant demonstration of 

567 how failing to account for overdispersion leads to artificially small standard errors and 

568 spurious significance of variables. Harrison (2014) quantifies the ability of OLRE to cope 

569 with overdispersion in Poisson models. Harrison (2015) compares Beta-Binomial and 

570 OLRE models for overdispersed proportion data.  

571

572 R2

573 In a linear modelling context, R2 gives a measure of the proportion of explained variance 

574 in the model, and is an intuitive metric for assessing model fit. Unfortunately, the issue 

575 of calculating R2 for (G)LMMs is particularly contentious; whereas for a simple linear 

576 model with no random effects and a Normal error structure you can easily estimate the 

577 residual variance, this is not the case for (G)LMMS. In fact, two issues exist with 

578 generalising R2 measures to (G)LMMs: i) for generalised models containing non-Normal 

579 error structures, it is not clear how to calculate the residual variance term on which the 

580 R2 term is dependent; and ii) for mixed effects models, which are hierarchical in nature 

581 and contain error (unexplained variance) at each of these levels, it is uncertain which 

582 level to use to calculate a residual error term (Nakagawa & Schielzeth 2013). Diverse 
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583 methods have been proposed to account for this coefficient in GLMMs, including so-

584 called 8pseudo-r29 measures of explained variance (e.g. Nagelkerke 1991, Cox & Snell 

585 1989), but their performance is often unstable for mixed models and can return negative 

586 values (Nakagawa & Schielzeth 2013). Gelman & Pardoe (2006) derived a measure of 

587 R2 that accounts for the hierarchical nature of LMMs and gives a measure for both 

588 group and unit level regressions (see also Gelman & Hill 2007 p. 474), but it was 

589 developed for a Bayesian framework and a frequentist analogue does not appear to be 

590 widely implemented. The method that has gained the most support over recent years is 

591 that of Nakagawa & Schielzeth (2013). 

592

593 The strength of the Nakagawa & Schielzeth (2013) method for GLMMs is that it returns 

594 two complimentary R2 values: the marginal R2 encompassing variance explained by 

595 only the fixed effects, and the conditional R2 comprising variance explained by both 

596 fixed and random effects i.e. the variance explained by the whole model (Nakagawa & 

597 Schielzeth 2013). Ideally, both should be reported in publications as they provide 

598 different information; which one is more 8useful9 may depend on your rationale for 

599 specifying random effects in the first instance. Note that when observation-level random 

600 effects are included (see 8Overdispersion9 section above), the conditional R2 becomes 

601 less useful as a measure of explained variance because it includes the extra-parametric 

602 dispersion being modelled, but has no predictive power (Harrison 2014). 

603 Further reading: Nakagawa & Schielzeth (2013) provide an excellent and 

604 accessible description of the problems with, and solutions to, generalising R2 metrics to 

605 GLMMs. The Nakagawa & Schielzeth (2013) R2 functions have been incorporated into 

606 several packages, including 8MuMIn9 (Barton 2009) and 8piecewiseSEM9 (Lefcheck 

607 2015), and Johnson (2014) has developed an extension of the functions for random 

608 slope models. See Harrison (2014) for a cautionary tale of how the GLMM R2 functions 

609 are artificially inflated for overdispersed models. 

610  

611

612 Stability of Variance Components and Testing Significance of Random Effects
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613 When models are too complex relative to the amount of data available, GLMM variance 

614 components can collapse to zero (they cannot be negative). This is not a problem per 

615 se, but it9s important to acknowledge that in this case the model is equivalent to a 

616 standard GLM. Reducing model complexity by removing interactions will often allow 

617 random effects variance component estimates to become >0, but this is problematic if 

618 quantifying the interaction is the primary goal of the study. REML (restricted maximum 

619 likelihood) should be used for estimating variance components of random effects in 

620 Gaussian GLMMs as it produces less biased estimates compared to ML (maximum 

621 likelihood) (Bolker et al 2009). However, when comparing two models with the same 

622 random structure but different fixed effects, ML estimation cannot easily be avoided. 

623 The RLRsim package (Scheipl, 2016) can be used to calculate restricted likelihood ratio 

624 tests for variance components in mixed and additive models. Crucially, when testing the 

625 significance of a variance component we are 8testing on the boundary9 (Bolker et al 

626 2009). That is the null hypothesis for random effects (Ã=0) is at the boundary of its 

627 possible range (it has to be g0), meaning p-values from a likelihood ratio test are 

628 inaccurate. Dividing p values by 2 for tests of single variance components provides an 

629 approximation to remedy this problem (Verbenke & Molenberghs, 2000).  

630 Finally, estimating degrees of freedom for tests of random effects using Wald, t 

631 or F tests or AICc is difficult, as a random effect can theoretically use anywhere 

632 between 1 and N 3 1 df (where N is the number of random-effect levels) (Bolker et al. 

633 2009). Adequate F and P values can be calculated using Satterthwaite (1946) 

634 approximations to determine denominator degrees of freedom implemented in the 

635 package 8lmerTest9 (Kuznetzova et al. 2014, see further details in section 8Model 

636 Selection and Multi-Model Inference9 below). 

637

638 Assessing Model Fit through Simulation

639 Simulation is a powerful tool for assessing model fit (Gelman & Hill 2007; Kery 2010; 

640 Zuur et al 2016), but is rarely used. The premise here is simple: for a given set of 

641 parameter estimates (a model), if you were to simulate a dataset using those parameter 

642 estimates, the fit of the model to those simulated 8ideal9 data should be comparable to 

643 the model9s fit to the real data (Kery 2010). For each iteration, which yields a simulated 
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644 dataset, you can compute a statistic of interest such as the sum of squared residuals 

645 (Kery 2010), the overdispersion statistic (Harrison 2014) or the percentage of zeroes for 

646 a Poisson model (Zuur et al 2016). If the model is a good fit, after a sufficiently large 

647 number of iterations (e.g. 10,000) the distribution of this test statistic should encompass 

648 your observed statistic in the real data. Significant deviations outside of that distribution 

649 indicate your model is a poor fit (Kery 2010). Figure 3 shows an example of using 

650 simulation to assess the fit of a Poisson GLMM. After fitting a GLMM to count data, we 

651 may wish to check for overdispersion and/or zero-inflation, the presence of which might 

652 suggest we need to adjust our modelling strategy. Simulating 10,000 datasets from our 

653 model reveals that the proportion of zeroes in our real data is comparable to simulated 

654 expectation (Figure 3A). Conversely, simulating 1000 datasets and refitting our model to 

655 each dataset, we see that the sum of the squared Pearson residuals for the real data is 

656 far larger than simulated expectation (Figure 3B), giving evidence of overdispersion 

657 (Harrison 2014). We can use the simulated frequency distribution of this test statistic to 

658 derive a mean and 95% confidence interval for the overdispersion by calculating the 

659 ratio of our test statistic to the simulated values (Harrison 2014). The dispersion statistic 

660 for our model is 3.16 [95% CI 2.77 3 3.59]. Thus, simulations have allowed us to 

661 conclude that our model is overdispersed, but that this overdispersion is not due to 

662 zero-inflation. All R code for reproducing these simulations is provided in Online 

663 Supplementary Material. 

664 Further reading: Rykiel (1996) discusses the need for validation of models in 

665 ecology.

666 Model Selection and Multi-Model Inference

667 Several methods of model selection are available once you have a robust global model 

668 that satisfies standard assumptions of error structure and hierarchical independence 

669 (Johnson & Omland 2004). We discuss the relative merits of each approach briefly 

670 here, before expanding on the use of information-theory and multi-model inference in 

671 ecology. We note that these discussions are not meant to be exhaustive comparisons, 

672 and we encourage the reader to delve into the references provided for a comprehensive 

673 picture of the arguments for and against each approach. 
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674

675 Stepwise Selection, Likelihood Ratio Tests and P values

676 A common approach to model selection is the comparison of a candidate model 

677 containing a term of interest to the corresponding 8null9 model lacking that term, using a 

678 p value from a likelihood ratio test (LRT), referred to as null-hypothesis significance 

679 testing (NHST; Nickerson 2000). Stepwise deletion involves using the NHST framework 

680 to drop terms sequentially from the global model, and arrive at a 8minimal adequate 

681 model9 (MAM) containing only significant predictors (see Crawley 2013). NHST and 

682 stepwise deletion have come under heavy criticism; they can overestimate the effect 

683 size of 8significant9 predictors (Whittingham et al 2006; Forstmeier & Schielzeth 2011) 

684 and force the researcher to focus on a single best model as if it were the only 

685 combination of predictors with support in the data. Although we strive for simplicity and 

686 parsimony, this assumption is not reasonable in complex ecological systems (e.g. 

687 Burnham, Anderson & Huyvaert 2011).  It is common to present the MAM as if it arose 

688 from a single a priori hypothesis, when in fact arriving at the MAM required multiple 

689 significance tests (Whittingham et al 2006; Forstmeier & Schielzeth 2011). This cryptic 

690 multiple testing can lead to hugely inflated Type I errors (Forstmeier & Schielzeth 2011). 

691 Perhaps most importantly, LRT can be unreliable for fixed effects in GLMMs unless both 

692 total sample size and replication of the random effect terms is high (see Bolker et al 

693 2009 and references therein), conditions which are often not satisfied for most 

694 ecological datasets. However, there are still cases where NHST may be the most 

695 appropriate tool for inference. For example, in controlled experimental studies you may 

696 wish to test the effect of a limited number of treatments and support estimates of effect 

697 sizes with statements of statistical significance using model simplification (Mundry 

698 2011). Importantly, Murtaugh (2009) found that the predictive ability of models assessed 

699 using NHST was comparable to those selected using information-theoretic approaches 

700 (see below), suggesting that NHST remains a valid tool for inference despite strong 

701 criticism. Our advice is that NHST remains an important tool for analyses of 

702 experiments and for inferential surveys with small numbers of well-justified a priori 

703 hypotheses and with uncorrelated (or weakly correlated) predictors.
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704 Further reading: Stephens et al (2005) & Mundry (2011) argue the case for 

705 NHST under certain circumstances such as well-designed experiments. Halsey et al 

706 (2015) discuss the wider issues of the reliability of p values relative to sample size. 

707

708 Information-Theory and Multi-Model Inference

709 Unlike NHST, which leads you to focus on a single best model, model selection using 

710 information theoretic (IT) approaches allows you to simultaneously rank the degree of 

711 support in the data for several competing models using metrics such as Akaike9s 

712 Information Criterion (AIC). Information criteria attempt to quantify the Kullback-Leibler 

713 distance (KLD), a measure of the relative amount of information lost when a given 

714 model approximates the true data-generating process. Thus, relative difference among 

715 models in AIC should be representative in relative differences in KLD, and the model 

716 with the lowest AIC should lose the least information and be the best model in that it 

717 optimises the trade-off between fit and complexity (e.g. Richards 2008). A key strength 

718 of the IT approach is that it allows you to account for 8model selection uncertainty9, the 

719 idea that several competing models may all fit the data equally well (Burnham & 

720 Anderson 2002; Burnham, Anderson & Huyvaert 2011). This is particularly useful when 

721 competing models share equal <complexity= (i.e. number of predictors, or number of 

722 residual degrees of freedom): in such situations, NHST is impossible because there is 

723 no <null=. Where several models have similar support in the data, inference can be 

724 made from all models using model-averaging (Burnham & Anderson 2002; Johnson & 

725 Omand 2004; Grueber et al 2011). Model averaging incorporates uncertainty by 

726 weighting the parameter estimate of a model by that model9s Akaike weight (often 

727 referred to as the probability of that model being the best Kullback-Leibler model given 

728 the data, but see Richards 2005). Multi-model inference places a strong emphasis on a 

729 priori formulation of hypotheses (Burnham & Anderson 2002; Dochterman & Jenkins 

730 2011; Lindberg et al 2015), and model-averaged parameter estimates arising from 

731 multi-model inference are thought to lead to more robust conclusions about the 

732 biological systems compared to NHST (Johnson & Omland 2004, but see Richards et al 

733 2011). These strengths over NHST have meant that the use of IT approaches in 

734 ecology and evolution has grown rapidly in recent years (Lindberg et al 2015; Barker & 
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735 Link 2015; Cade 2015). We do not expand on the specific details of the difference 

736 between NHST and IT here, but point the reader to some excellent reference on the 

737 topic. Instead, we use this section to highlight recent empirical developments in the best 

738 practice methods for the application of IT in ecology and evolution. 

739 Further reading: Grueber et al (2011) and Symonds & Moussalli (2011) give a 

740 broad overview of multi-model inference in ecology, and provide a worked model 

741 selection exercise. Heygi & Garamszegi (2011) provide a detailed comparison of IT and 

742 NHST approaches. Burnham, Anderson & Huyvaert (2011) demonstrate how AIC 

743 approximates Kullback-Leibler information and provide some excellent guides for the 

744 best practice of applying IT methods to biological datasets

745

746 Global Model Reporting

747 Because stepwise deletion can cause biased effect sizes, presenting means and SEs of 

748 parameters from the global model should be more robust, especially when the n/k ratio 

749 is low (Forstmeier & Schielzeth 2011). A conservative approach relative to NHST is to 

750 perform 8full model tests9 (comparing the global model to an intercept only model) before 

751 investigating single-predictor effects, as this controls the Type I error rate (Forstmeier & 

752 Schielzeth 2011). Reporting the full model also helps reduce publication bias towards 

753 strong effects, providing future meta-analyses with estimates of both significant and 

754 non-significant effects (Forstmeier & Schielzeth 2011). Global model reporting should 

755 not replace other model selection methods, but provides a robust measure of how likely 

756 significant effects in minimal / best-AIC models are to arise by sampling variation alone. 

757

758 Practical Issues with Applying Information Theory to Biological Data 

759

760 1. Using All-Subsets Selection or 8Data Dredging9

761 Dredging is the act of fitting a global model, often containing every possible interaction, 

762 and then performing 8all subsets9 selection on that model to fit every possible nested 

763 model. On the surface, dredging might appear to be a convenient and fast way of 

764 8uncovering9 the significant drivers of the patterns in your data. Dredging of enormous 
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765 global models containing large numbers of predictors and their interactions makes 

766 analyses extremely prone to Type I errors and 8overfitted9 models. Burnham & Anderson 

767 (2002) caution strongly against dredging, and instead advocate 8hard thinking9 about the 

768 hypotheses underlying your data. If adopting an all subsets approach, it is worth noting 

769 the number of models to consider increases exponentially with the number of predictors, 

770 where 5 predictors require you to fit 25 (32) models, whilst 10 predictors requires 1024 

771 models, both without including any interactions.

772 The inflation of Type I error rate through dredging is simple to demonstrate. 

773 Figure 4 shows the results of a simulation exercise where we created datasets 

774 containing various numbers of continuous and categorical variables, fitted a global 

775 model containing all predictors as main effects and no interactions; and then dredged 

776 that model. All simulated predictors were samples drawn from populations representing 

777 the null hypothesis, i.e. having zero influence on the response variable. We considered 

778 all models with an AIC score of within 6 of the best-supported AIC model to be equally 

779 well supported (also referred to as the �6 AIC top model set, Richards 2008) (detailed 

780 methods available in Online Supplementary Material). We assumed a Type I error had 

781 occurred when the 95% confidence intervals for model averaged parameter estimates 

782 from the �6AIC set did not cross zero. The higher the number of terms in the model, the 

783 higher the Type I error rate, reaching a maximum of over 60% probability of falsely 

784 including a predictor in the top model set that was unrelated to the response variable. 

785 Importantly, we found that the rate of increase (slope) in Type I error with added 

786 continuous predictors was modified by the number of categorical variables (Fig. 4), 

787 meaning the change in Type 1 error rate per continuous predictor was highest with 

788 smaller numbers of categorical variables. 

789 These results help to illustrate why dredging should not be common practice, and 

790 you should not build global models containing huge numbers of variables and 

791 interactions without prior thought about what the models represent for your study 

792 system. In cases where you do perform all-subsets selection from a global model, it is 

793 important to view these model selection exercises as exploratory (Symonds & Moussali 

794 2011), and hold some data back from these exploratory analyses to be used for cross-

795 validation with your top model(s) (see Dochterman and Jenkins 2011 and references 
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796 therein). Here, you might use 90% of the data to fit the models and use the remaining 

797 10% for confirmatory analysis to quantify how well the model(s) perform for prediction 

798 (Zuur et al 2016). Such an approach requires a huge amount of data (Dochterman and 

799 Jenkins 2011), but cross-validation to validate a model9s predictive ability is rare and 

800 should result in more robust inference (see also Fieberg & Johnson 2015). 

801 Therefore, best practice is to consider only a handful of hypotheses and then build a 

802 single statistical model to reflect each of them. This makes inference easier because the 

803 resulting top model set will likely contain fewer parameters, and certainly fewer 

804 spuriously 8significant9 parameters (Burnham & Anderson 2002; Arnold 2010). However, 

805 we argue 8dredging9 may be sensible in a limited number of circumstances. For 

806 example, if your most complex model contains two main effects and their interaction, 

807 dredging that model will be indistinguishable from independently building the four 

808 competing models nested in the global model, all of which may be considered likely to 

809 be supported by the data. Similarly, when the global model is well-though out, contains 

810 few predictors, and only interactions likely to have empirical support, all-subsets 

811 selection may be a valid variable selection tool. It is worth remembering that the Type I 

812 error rate can quickly exceed the nominal 5% threshold if these conditions are not met 

813 (Fig. 4). Moreover, a small number of models built to reflect well-reasoned hypotheses 

814 are only valid if the predictors therein are not collinear (see 8Collinearity9 section below). 

815 All-subsets selection using the R package MuMIn (Barton 2016) will not automatically 

816 check for collinearity, and so the onus falls on the researcher to be thorough in checking 

817 for such problems. 

818

819 2. Deciding Which Information Criterion To Use

820 Several information criteria are available to rank competing models, but their 

821 calculations differ subtly. Commonly applied criteria include Akaike9s Information 

822 Criterion (AIC), the small sample size correction of AIC for when n/k <40 (AICc), and the 

823 Bayesian Information Criterion (BIC). QAIC is an adjustment to AIC that accounts for 

824 overdispersion and should be used when you have identified overdispersion in your 

825 model (see 8Overdispersion section9 above). Note you do not have to use QAIC if you 

826 have modelled the overdispersion in your dataset using zero-inflated models, 
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827 observation-level random effects, or compound probability distributions. Bolker et al 

828 (2009) and Grueber et al (2011) provide details of how to calculate these criteria. 

829 AIC maximises the fit/complexity trade-off of a model by balancing the model fit 

830 with the number of estimated parameters. AICc and BIC both penalise the IC score 

831 based on total sample size n, but the degree of penalty for AICc is less severe than BIC 

832 for moderate sample sizes, and more severe for very low sample size (Brewer et al 

833 2016). Whilst AIC tend to select overly complex models, Burnham and Anderson (2002) 

834 criticised BIC for selecting overly simplistic models (underfitting). BIC is also criticised 

835 because it operates on the assumption that the true model is in the model set under 

836 consideration, whereas in ecological studies this is unlikely to be true (Burnham & 

837 Anderson 2002; 2004). Issues exist with both AIC and BIC in a GLMM context for 

838 estimating the number of parameters for a random effect (Bolker et al 2009; Grueber et 

839 al 2011), and although df corrections to remedy this problem exist it is not always clear 

840 what method is being employed by software packages (see Bolker et al 2009 Box 3). 

841 Brewer et al (2016) show how the optimality of AIC, AICc and BIC for prediction 

842 changes with both sample size and effect size of predictors (see also Burnham and 

843 Anderson 2004). Therefore, the choice between the two metrics is not straightforward, 

844 and may depend on the goal of the study i.e. model selection vs prediction, see Grueber 

845 et al 2011 Box 1. 

846

847 3. Choice of �AIC Threshold 

848 Model averaging requires the identification of a <top model set= containing all models 

849 with comparable support in the data, normally based on the change in AIC values 

850 relative to the best AIC model (�AIC). Historically, Burnham & Anderson (2002) 

851 recommended that only models with �AIC between 0-2 should be used for inference, 

852 but subsequent work has shown that at least �6 AIC is required to guarantee a 95% 

853 probability that the best (expected) Kullback-Leibler Distance model is in the top model 

854 set (Richards 2008; see also Burnham et al 2011). Alternatively, models can be ranked 

855 by their Akaike weights and all those with an Akaike weight g0.95 retained in the <95% 

856 confidence set= (Burnham & Anderson 2002), but doing so can lead to cumbersome top 

857 model sets (Symonds & Moussali 2011). Using high cut-offs are not encouraged, to 
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858 avoid overly complex models followed by invalid results (Richards 2008; Grueber et al. 

859 2011) but deciding on how many is too many remains a contentious issue (Grueber et 

860 al. 2011). We suggest �6 as a minimum following Richards (2005; 2008). 

861

862 4. Using the Nesting Rule to Improve Inference from the Top Model Set

863 It is well known that AIC tends towards overly complex models (8overfitting9, Burnham & 

864 Anderson 2002). As AIC only adds a 2 point penalty to a model for inclusion of a new 

865 term, Arnold (2010) demonstrated that adding a nuisance predictor to a well-fitting 

866 model leads to a �AIC value of the new model of ~ 2, therefore appearing to warrant 

867 inclusion in the top model set (see section above). Therefore, inference can be greatly 

868 improved by eliminating models from the top model set that are more complex versions 

869 of nested models with better AIC support, known as the nesting rule (Richards 2005; 

870 2008; Richards, Whittingham & Stephens 2011). Doing so greatly reduces the number 

871 of models to be used for prediction, and improves parameter accuracy (Arnold 2010; 

872 Richards et al 2008). Symonds & Moussali (2011) caution that its applicability has not 

873 yet been widely assessed over a range of circumstances, but the theory behind its 

874 application is sound and intuitive (Arnold 2010). One potential problem is that once you 

875 have removed models from the top model set, interpretation of the Akaike weights for 

876 the remaining models becomes difficult, and thus model-averaged estimates using 

877 these weights may not be sensible. 

878

879 5. Using Akaike Weights to Quantify Variable Importance 

880 Once you have arrived at a top model set, it is common practice to use the summed 

881 Akaike weights of every model in that set in which a predictor of interest occurs as a 

882 measure of 8variable importance9 (e.g. Grueber et al 2011). Recent work has 

883 demonstrated that this approach is flawed because Akaike weights are interpreted as 

884 relative model probabilities, and give no information about the importance of individual 

885 predictors in a model (Cade 2015). The sum of AIC weights as a measure of variable 

886 importance may at best be a measure of how likely a variable would be included after 

887 repeated sampling of the data (Burnham & Anderson 2002; Cade 2015). A better 
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888 measure of variable importance would be to compare standardised effect sizes 

889 (Schielzeth 2010; Cade 2015).

890

891 6. Model Averaging when Predictors Are Collinear

892 The aim of model averaging is to incorporate the uncertainty of the size and presence of 

893 effects among a set of candidate models with equal support in the data. Model 

894 averaging using Akaike weights proceeds on the assumption that predictors are on 

895 common scales across models and are therefore comparable. Unfortunately, the nature 

896 of multiple regression means that the scale and sign of coefficients will change across 

897 models depending on the presence or absence of other variables in a focal model 

898 (Cade 2015). The issue of predictor scaling changing across models is particularly 

899 exacerbated when predictors are collinear, even when VIF values are low (Burnham 

900 and Anderson 2002; Lukacs, Burnham & Anderson 2010; Cade 2015). Cade (2015) 

901 recommends standardising model parameters based on partial standard deviations to 

902 ensure predictors are on common scales across models prior to model averaging 

903 (details in Cade 2015). We stress again the need to assess multicollinearity among 

904 predictors in multiple regression modelling before fitting models (Zuur et al 2016) and 

905 before model-averaging coefficients from those models (Lukacs, Burnham & Anderson 

906 2010; Cade 2015) 

907  

908

909 Conclusion 

910 We hope this article will act as both a guide, and as a gateway to further reading, for 

911 both new researchers and those wishing to update their portfolio of analytic techniques. 

912 Here we distill our message into a bulleted list.

913 1. Modern mixed effect models offer an unprecedented opportunity to explore complex 

914 biological problems by explicitly modelling non-Normal data structures and/or non-

915 independence among observational unit. However, the LMM and GLMM toolset should 

916 be used with caution. 
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917 2. Rigorous testing of both model fit (R2) and model adequacy (violation of assumptions 

918 like homogeneity of variance) must be carried out. We must recognise that satisfactory 

919 fit does not guarantee we have not violated the assumptions of LMM, and vice versa. 

920 Interpret measures of R2 for (G)LMMs with hierarchical errors cautiously, especially 

921 when OLRE are used. 

922 3. Collinearity among predictors is difficult to deal with and can severely impair model 

923 accuracy. Be especially vigilant if data are from field surveys rather than controlled 

924 experiments, as collinearity is likely to be present. 

925 4. Data dredging or 8fishing expeditions9 can be very risky and inflate the number of 

926 false positives enormously. If you are going to include all combinations of predictors you 

927 must have strong a priori justification. 

928 5. If you still wish to include a large number of predictors, backwards selection and 

929 NHST should be avoided, and ranking via AIC of all competing models is preferred. A 

930 critical question that remains to be addressed is whether model selection based on 

931 information theory is superior to NHST even in cases of balanced experimental designs 

932 with few predictors.

933 6. Data simulation is a powerful but underused tool. If the analyst harbours any 

934 uncertainty regarding the fit or adequacy of the model structure, then the analysis of 

935 data simulated to recreate the perceived structure of the favoured model can provide 

936 reassurance, or justify doubt. 

937 7. Wherever possible, provide diagnostic assessment of model adequacy, and metrics 

938 of model fit, even if in Supplementary Material. 

939 8. Other modelling approaches such as Bayesian inference are available, and allow 

940 much greater flexibility in choice of model structure, error structure and link function. 

941 However, the ability to compare among competing models is underdeveloped, and 

942 where these tools do exist (e.g. reversible-jump MCMC), they are not yet accessible 

943 enough to non-experts to be useful.  

944

945

946  
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Figure 1(on next page)

Differences between Random Intercept vs Random Slope Models

(A) A random-intercepts model where the outcome variable y is a function of predictor x, with

a random intercept for group ID (coloured lines). Because all groups have been constrained

to have a common slope, their regression lines are parallel. Solid lines are the regression

lines fitted to the data. Dashed lines trace the regression lines back to the y intercept (0 in

this case). Point colour corresponds to group ID of the data point. The black line represents
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Figure 2(on next page)

The effect of collinearity on model parameter estimates.

We simulated 10,000 iterations of a model y ~ x1 + x2, where x1 had a positive effect on y

(³x1 = 1, vertical dashed line). x2 is collinear with x1 with either a moderate (r = 0.5, left) or

strong correlation (r = 0.9, right). With moderate collinearity, bias in estimation of ³x1 is

minimal, but variance in estimation of ³x2 is large. When collinearity is strong, bias in

estimation of ³x1 is large, with 14% of simulations estimating a negative coefficient for the

effect of x1. For more elaborate versions of these simulations, see Freckleton (2011)
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Figure 3(on next page)

Using Simulation to Assess Model Fit for GLMMs

(A) Histogram of the proportion of zeroes in 10,000 datasets simulated from a Poisson GLMM.

Vertical red line shows the proportion of zeroes in our real dataset. There is no strong

evidence of zero-inflation for these data. (B) Histogram of the sum of squared Pearson

residuals for 1000 parametric bootstraps where the Poisson GLMM has been re-fitted to the

data at each step. Vertical red line shows the test statistic for the original model, which lies

well outside the simulated frequency distribution. The ratio of the real statistic to the

simulated data can be used to calculate a mean dispersion statistic and 95% confidence

intervals, which for these data is mean 3.16, 95% CI 2.77 3 3.59. Simulating from models

provides a simple yet powerful set of tools for assessing model fit and robustness.
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Figure 4(on next page)

The effect of data dredging on Type 1 Error Rate as a function of the number of

continuous and categorical variables included in the global model

Adding both categorical and continuous predictors to the models (increasing complexity)

increases the Type I error rate (95% confidence intervals of model averaged parameter

estimates do not cross zero). The slope of the increase in Type I error rate with increase in

the number of continuous predictors is modified by how many categorical predictors there

are in the model, with steeper increases in Type 1 error rate for lower numbers of categorical

predictors. However, the Type I error rate was highest overall for global models containing

the largest numbers of parameters. For full details of the simulation methodology, see

supplementary file S1).
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