
PIsCO: A Performance indicators framework for collection of

bioinformatics resource metrics

Haydee Artaza Corresp., 1 , John M. Hancock 1 , Rafael C. Jimenez 2 , Manuel Corpas 3

1 Earlham Institute, Norwich, Norfolk, United Kingdom

2 ELIXIR-Hub, Wellcome Genome Campus, Cambridge, United Kingdom

3 Repositive, Cambridge, United Kingdom

Corresponding Author: Haydee Artaza

Email address: haydeeartaza@gmail.com

We present PIsCO, a server-side JavaScript framework for the collection, registration and

sharing of metrics that can be used to evaluate the impact of bioinformatics-related

resources such as software, repositories, training or databases. The metrics framework can

be used to capture standard definitions of metrics, facilitate the collection of data, monitor

resources and share data to be reused by other teams, laboratories or academic

institutions. In addition, PIsCO is able to collect those metrics and present them in a visual

way to allow their easy interpretation.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3112v1 | CC BY 4.0 Open Access | rec: 27 Jul 2017, publ: 27 Jul 2017

PIsCO: A Performance Indicators Framework for COllection of Bioinformatics Resource

Metrics

Haydee Artaza1,*, John M. Hancock1, Rafael C Jimenez2 and Manuel Corpas3

1Earlham Institute, Norwich NR4 7UZ, U.K.

2ELIXIR Hub, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK.

3Repositive, Cambridge, CB4 2HY, U.K.

* Corresponding author

Abstract

We present PIsCO, a server-side JavaScript framework for the collection, registration and sharing

of metrics that can be used to evaluate the impact of bioinformatics-related resources such as

software, repositories, training or databases. The metrics framework can be used to capture

standard definitions of metrics, facilitate the collection of data, monitor resources and share data

to be reused by other teams, laboratories or academic institutions. In addition, PIsCO is able to

collect those metrics and present them in a visual way to allow their easy interpretation.

Subjects

Software Engineering, Computer Architecture, Bioinformatics

Keywords

metrics, sharing, automatic collection, registries, key performance indicators.

Introduction

Biological communities work across a range of domains and use a variety of research resources

(Wilsdon, 2015). The selection of a particular resource can be aided by performance indicators to

allow investigators to make informed decisions about alternatives. Furthermore, scientists may

also need these indicators to justify the funding of a particular resource.

Using metrics, scientists can assess the quality of academic resources and their broader impact

(Ball and Duke, 2015). Moreover, impact metrics may be used to encourage best practice and

‘FAIR’ (Findable, Accessible, Interoperable, Reusable) principles (Wilkinson et al., 2016) in

biological resources (although well-founded metrics for the FAIR principles remain to be

established). The adoption of standardised metrics and methods of collection is needed to

facilitate evaluation and comparison of resources (Artaza et al., 2016) by scientists, funders and

academic institutions as performance indicators to assess resource impact and to support

decision-making. For example Durinx et al (2016) describe a suite of indicators to evaluate

potential core data resources as part of the ELIXIR project, following on from earlier efforts of

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3112v1 | CC BY 4.0 Open Access | rec: 27 Jul 2017, publ: 27 Jul 2017

this kind such as BioDBCore (Gaudet et al, 2011). The Human Variome Project has described a

suite of metrics to determine the quality of gene sequence variation databases (Vihinen et al,

2016). It is important to avoid ad hoc development of metrics software which may be easily lost

and not reproducible.

Here we describe PIsCO, a Node.js JavaScript framework for collection, registration,

dissemination and reuse of biological resource metrics. PIsCO can be used to: a) provide standard

definitions of metrics; b) facilitate software to collect metrics; and c) by automatically executing

each metric’s functionality, facilitate the monitoring and analysis of the stored metrics.

PIsCO Framework Design and Functionality

The PIsCO framework is implemented primarily with Node.js, which facilitates the reuse of

libraries in the client and the server sides (Tilkov and Vinoski, 2010), and the NoSQL MongoDB

document-oriented database (Chodorow, 2013).

This framework consists of three elements (Fig. 1), which work together to carry out the

complete registration and monitoring of metrics processes. The first element, Component, defines

the component schema and its functionality; the second element, Components Registry, allows

the registration of component metadata, making components available for use; the third element,

Data and Monitoring Repository, installs and executes components, and collects data from the

component’s execution. Metrics results generated from each component’s execution are stored in

a MongoDB database to allow them to be used and interpreted.

Component

A Component is the basic unit defined in the PIsCO Framework (Fig. 2). It consists of two

descriptors:

● Standard definition, following a common schema described in a XML metadata file (Fig.

3) that defines a set of parameters used in deploying a component (name, dependencies,

frequency, resource, output, repository, etc) (see Specification 3.1.1 in Supplementary

Material).

● Implementation/functionality, which follows a basic structure: code (written in JavaScript

for NodeJS applications), documentation, guidelines, examples, and other element of

interest for this component which can be added on an ad hoc basis. This directory

structure should be stored in some source code management system: a software tool used

by teams of programmers to manage source code (e.g. GitHub, GitLab, SourceForge, etc).

When the component is installed this structure will be fetched, transferred and installed

into this component.

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3112v1 | CC BY 4.0 Open Access | rec: 27 Jul 2017, publ: 27 Jul 2017

Components Registry

This element allows the registration of component metadata (XML metadata file with a set of

parameters, see Fig. 3), making components discoverable and available for use. The component’s

metadata are used to install components into the common repository.

Data and Monitoring Repository

This element installs and executes components using the component metadata registered by the

Components Registry element. Moreover, data collected from each component’s execution (the

“metrics”) are stored in a MongoDB database to allow them to be used and interpreted.

The metrics database organizes the collected data, grouping them in a three-dimensional format:

resource-metric-frequencies. Each resource is associated with one or more metrics and the

resource-metric pair is monitored at a specified frequency (see Specification 3.1.3 in

Supplementary Material). This data can be exported as a csv file or it can be accessed using a

GUI (Graphical User Interface) where different metrics graphs are accessible.

Operation

The PIsCO framework has been designed to make installation as simple as possible. The software

requirements are:

1. Operating system: Linux or Mac OS

2. Nodejs (last version tested: v6.0.0)

3. Npm: a package manager for the JavaScript programming language (last version tested:

v3.8.6)

4. MongoDB (last version tested: shell v3.0.4)

The GUI has been developed to be run in Google Chrome (version 56.0.2924.87/64-bits) and

Mozilla Firefox (version 51.0.1/64-bits). Both of them were tested. The documentation, user

manual and specification, is available in GitHub repository.

Example of an Application / Use Case

Using a bioinformatics resource as part of a scientific project could depend on having

performance indicators that allow investigators to make informed decisions on different

alternatives (Ball and Duke, 2015). In this very simple use case, we consider a metric to assess

the frequency with which selected bioinformatics tools or packages, with an emphasis on

alignment software, are looked up in Wikipedia. It should be noted that this scenario aims to

provide a simple example to show the applicability of the PIsCO framework; we would expect

real-life examples to be more complex.

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3112v1 | CC BY 4.0 Open Access | rec: 27 Jul 2017, publ: 27 Jul 2017

This scenario uses the Pageviews metric. This metric gets the articles’ pageviews trends on

specific articles or projects in Wikipedia using the Wikipedia Analytics/Pageview API. The

Pageviews metric was implemented as follows:

● A selection of bioinformatics resources was extracted from the list of sequence alignment

software provided by Wikipedia (List of sequence alignment software, Wikipedia, 2016).

●Metadata for the Pageviews metric were described in a XML file (available in GitHub, see

Software Availability).

● The metric was registered through the Registry GUI (see User Manual in Supplementary

Material). Its metadata were collected and stored in the framework Registry.

● Once registered, the Pageviews metric was ready to be installed, bringing the code from the

source code management system and setting up external dependencies, executed, and

monitored automatically.

● Data collected from these metrics were stored in the framework Repository (metrics

database) and were available to use.

Metric data, the number of visits in the previous 24 hours, were collected daily through July

2016. Pages for ten selected bioinformatics tools or packages were assessed: BFAST,

Bioconductor, BioPerl, BLAST, Clustal, FASTA, HMMER, SAMtools, T-Coffee and UGENE.

Each has an entry in a Wikipedia article. The trends of Wikipedia views for these ten resources,

in the 31 days of July, are shown in Figure 4. The total number of views for each resource are

provided in Table 1. Using these results, in addition to the graphical results, it may be seen that,

of those considered, BLAST was the most accessed bioinformatics tool or package in Wikipedia

over this period (15396 views), and BFAST the least accessed (108 views). On average, BLAST

had more than ten times as many accesses as other tools (see Table 1).

According to Neumann et al. (2013) BLAST is widely used because of its high speed and

efficient algorithm. Moreover, biologists employ BLAST as a first choice for sequence database

searching because of the widely available public interfaces, in particular NCBI BLAST

(http://blast.ncbi.nlm.nih.gov). This is likely to explain why BLAST has many more views in

Wikipedia than the other tools. This simple example only uses a single metric. Gathering more

metrics using the PIsCO framework would enable a more rounded view of the relative popularity

of BLAST and other tools and these can be used by the user to do new interpretations.

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3112v1 | CC BY 4.0 Open Access | rec: 27 Jul 2017, publ: 27 Jul 2017

http://blast.ncbi.nlm.nih.gov/

Conclusion

We describe the PIsCO framework for collection, dissemination and reuse of biological resource

metrics. Data collected from metrics can be used by scientists, funders and academic institutions

as performance indicators to assess the impact of a variety of biological resources and as

performance indicators useful to complement decision-making.

Unlike other similar projects like ImpactStory, ReaderMeter, or Altmetrics, the PIsCO

framework is totally open source software (available via a web based interface and a command

line interface), easy to install and use. Moreover, metrics executed in our framework can be used

for different purposes (not just citation-based metrics), according to user's needs. In this way,

users can define metrics to be applied for databases, training material, software, repositories, etc.,

including outside the bioinformatics domain. All these metrics can be shared, reused and

disseminated because these will be located in a common repository. Defining, developing and

interpreting the metrics themselves are the domain of experts and developers.

Software Availability

Latest source code for the pipeline is publicly available on GitHub:

https://github.com/BioPisCO/pisco-metrics-framework.

https://github.com/BioPisCO/metrics-module-pageviews.

Licence: MIT

Author contributions

All of the authors participated in designing the study, carrying out the research, and preparing the

manuscript. All authors were involved in the revision of the draft manuscript and have agreed to

the final content.

Competing interests

No competing interests were disclosed.

Grant Information

H.A. was supported by the ELIXIR Implementation Study “Metrics discovery and

implementation in life sciences”.

Supplementary Material

Supplementary material for this article can be found online at …..

References

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3112v1 | CC BY 4.0 Open Access | rec: 27 Jul 2017, publ: 27 Jul 2017

https://github.com/BioPisCO/metrics-module-pageviews
https://github.com/BioPisCO/pisco-metrics-framework

Artaza H, Chue Hong N, Corpas M, Corpuz A, Hooft R, Jimenez RC, Leskosek B, Olivier BG,

Stourac J, Svobodova Varekova R, Van Parys T, and Vaughan D. 2016. Top 10 metrics for life

science software good practices. F1000Res 5. 10.12688/f1000research.9206.1

Ball A, and Duke M. 2015. How to track the impact of research data with metrics. DCC How-to

Guides.

Chodorow K. 2013. MongoDB: The Definitive Guide: Powerful and Scalable Data Storage: "

O'Reilly Media, Inc.".

Durinx C, McEntyre J, Appel R, Apweiler R, Barlow M, Blomberg N, Cook C, Gasteiger E, Kim

JH, Lopez R, Redaschi N, Stockinger H, Teixeira D, and Valencia A. 2016. Identifying ELIXIR

Core Data Resources. F1000Res 5. 10.12688/f1000research.9656.2

Gaudet P, Bairoch A, Field D, Sansone SA, Taylor C, Attwood TK, Bateman A, Blake JA, Bult

CJ, Cherry JM, Chisholm RL, Cochrane G, Cook CE, Eppig JT, Galperin MY, Gentleman R,

Goble CA, Gojobori T, Hancock JM, Howe DG, Imanishi T, Kelso J, Landsman D, Lewis SE,

Karsch Mizrachi I, Orchard S, Ouellette BF, Ranganathan S, Richardson L, Rocca-Serra P,

Schofield PN, Smedley D, Southan C, Tan TW, Tatusova T, Whetzel PL, White O, Yamasaki C,

and Bio DWG. 2011. Towards BioDBcore: a community-defined information specification for

biological databases. Database (Oxford) 2011:baq027. 10.1093/database/baq027

Neumann RS, Kumar S, and Shalchian-Tabrizi K. 2014. BLAST output visualization in the new

sequencing era. Brief Bioinform 15:484-503. 10.1093/bib/bbt009

Parmenter D. 2007. Key performance indicators, Hoboken. John Wiley & Sons, Inc.

Tilkov S, and Vinoski S. 2010. Node. js: Using JavaScript to build high-performance network

programs. IEEE Internet Computing 14:80-83.

Vihinen M, Hancock JM, Maglott DR, Landrum MJ, Schaafsma GC, and Taschner P. 2016.

Human Variome Project Quality Assessment Criteria for Variation Databases. Hum Mutat

37:549-558. 10.1002/humu.22976.

Wilkinson MD, Dumontier M, Aalbersberg IJ, Appleton G, Axton M, Baak A, Blomberg N,

Boiten JW, da Silva Santos LB, Bourne PE, Bouwman J, Brookes AJ, Clark T, Crosas M, Dillo

I, Dumon O, Edmunds S, Evelo CT, Finkers R, Gonzalez-Beltran A, Gray AJ, Groth P, Goble

C, Grethe JS, Heringa J, t Hoen PA, Hooft R, Kuhn T, Kok R, Kok J, Lusher SJ, Martone ME,

Mons A, Packer AL, Persson B, Rocca-Serra P, Roos M, van Schaik R, Sansone SA, Schultes

E, Sengstag T, Slater T, Strawn G, Swertz MA, Thompson M, van der Lei J, van Mulligen E,

Velterop J, Waagmeester A, Wittenburg P, Wolstencroft K, Zhao J, and Mons B. 2016. The

FAIR Guiding Principles for scientific data management and stewardship. Sci Data 3:160018.

10.1038/sdata.2016.18

Wilsdon J, Allen L, Belfiore E, Campbell P, Curry S, Hill S, Jones R, Kain R, Kerridge S, and

Thelwall M. 2015. The Metric Tide: Report of the Independent Review of the Role of Metrics

in Research Assessment and Management. Bristol: Higher Education Funding Council for

England.

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3112v1 | CC BY 4.0 Open Access | rec: 27 Jul 2017, publ: 27 Jul 2017

Figure 1

PIsCO framework.

PIsCO consists of three elements for carrying out the complete registration and monitoring

processes. The first element, Component, defines the metric schema and functionality; the

second element, Components Registry, registers the component metadata into a registry

to make it available for use; the third element, Data and Monitoring Repository, installs

and executes metric components and collects data from the component execution. Data

generated from each component can be visualised for their further analysis and

interpretation.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3112v1 | CC BY 4.0 Open Access | rec: 27 Jul 2017, publ: 27 Jul 2017

Figure 2

Basic component structure.

This figure shows the two differentiated parts in a component: standard definition (metadata)

and functionality (Code, documentation, guidelines, and examples).

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3112v1 | CC BY 4.0 Open Access | rec: 27 Jul 2017, publ: 27 Jul 2017

Figure 3

Graphical component metadata schema.

This graphic shows the component schema hierarchy. This metadata defines a set of

parameters used in deploying a component: name, dependencies, frequency, resource,

output, repository, etc.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3112v1 | CC BY 4.0 Open Access | rec: 27 Jul 2017, publ: 27 Jul 2017

Figure 4

Daily Pageviews data from Wikipedia.

Visualizations associated with each bioinformatics resource, monitored daily on July. The blue

line shows the BLAST resource trend, this resource is the Wikipedia article more visited.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3112v1 | CC BY 4.0 Open Access | rec: 27 Jul 2017, publ: 27 Jul 2017

Table 1(on next page)

Metric Pageviews results.

Total number of views of the Wikipedia article for each resource during July 2016.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3112v1 | CC BY 4.0 Open Access | rec: 27 Jul 2017, publ: 27 Jul 2017

Metric Wikipedia division Resource Total

Pageviews

Database search

BLAST 15396

FASTA 3256

SAMtools 1996

HMMER 768

Pairwise alignment
Bioconductor 1211

BioPerl 1081

Multiple sequence alignment

Clustal 1682

UGENE 643

T-Coffee 292

Short-read sequence alignment BFAST 108

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3112v1 | CC BY 4.0 Open Access | rec: 27 Jul 2017, publ: 27 Jul 2017

