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ABSTRACT9

Analysis of DNA microarray data has been very useful for experimental molecular biology, as it pro-
vides unprecedented opportunities to study a wide variety of biological processes. As a part of this
analysis, biclustering has been consolidated as one of the first steps in the discovery of new knowledge.
Biclustering consists in identifying clusters of genes that present coherent behavior patterns for a subset
of experimental conditions. The measure to assess this consistency is a key factor in the quality of
discovered biclusters. In this paper, we propose a new function (VF ) to evaluate the coherence of
biclusters. This function recognizes shifting, and positive and negative scaling patterns, more efficiently
than well-known reported functions with a similar purpose. Also, the VF function identifies positive and
negative scaling subpatterns, which may be of biological interest and have not previously been discussed
in the literature. To assess the performance of the VF function, a biclustering genetic algorithm (BGA VF )
was also designed, and tested on both synthetic and real data. The results show that the BGA VF
algorithm obtains high percentages of significant biclusters and recognizes all the analyzed combinations
of coherence patterns.
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INTRODUCTION23

The analysis of DNA microarray data has been very useful for experimental molecular biology, as it24

provides unprecedented opportunities to study a wide variety of genes and their association with biological25

processes or metabolic functions (Fan and Ren, 2006; Hackl et al., 2004; Mischel et al., 2004). For26

instance, this kind of analysis has made possible to establish some correlations between genes expression27

and metabolic diseases, cancer, response to drug treatment, and response to different stress conditions in a28

specific organism (Macgregor, 2003).29

Due to the vast amount of gene expression data produced during the last decades, and to the inherent30

complexity of their analysis, some computational techniques have been developed to assess their process-31

ing and interpretation (Raza, 2010; Slonim and Yanai, 2009). Biclustering is a widely used technique to32

analyze gene expression data, and it is one of the first stages in the gene expression analysis. It consists of33

finding groups of genes which are closely related under a subset of biological conditions, these groups are34

named biclusters (Cheng and Church, 2000).35

To formally define a bicluster, let us consider an n×m matrix A, where each element ai j represents36

the expression level of gene i under condition j. In general, the matrix A is regarded as a set of rows X37

and a set of columns Y , where an element ai j corresponds to a real value that represents the relationship38

between row i and column j. A bicluster AIJ = (I,J) is a subset of rows I ⊆ X and a subset of columns39

J ⊆ Y . Thus, the biclustering is defined as: given a matrix data A identify a set of biclusters Bk = (Ik,Jk)40

such that each bicluster Bk fulfills some homogeneity constraints (Madeira and Oliveira, 2004).41

Specific homogeneity characteristics of biclusters may vary from one problem statement to another.42

A good measure of homogeneity should be able to identify shifting and scaling patterns between the43

expressions levels of the genes that form part of a bicluster (Aguilar, 2005; Chen et al., 2015). A bicluster44

B = (I,J) exhibits a shifting pattern if its element bi j satisfies the condition:45

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3110v2 | CC BY 4.0 Open Access | rec: 1 Aug 2017, publ: 1 Aug 2017



bi j = π j +βi

where π j is the jth base column value and βi is the shifting factor to the ith row. A bicluster B = (I,J)46

displays a scaling pattern if the elements of the bicluster satisfy the condition:47

bi j = αiπ j

where π j is the base value of the jth column, and αi is the scaling factor for the ith row. If the concepts of48

shifting and scaling patterns are integrated, a bicluster B = (I,J) shows a lineal pattern if every element49

bi j satisfies the condition:50

bi j = αiπ j +βi

where π j is the base value of jth column, while αi and βi are the scaling and shifting factors, respectively51

for the ith row.52

From year 2000, algorithms to generate significant biclusters have been developed. Cheng and53

Church (2000) were the pioneers in biclustering algorithms applied to gene expression data. Additionally,54

they proposed a measure known as MSR to evaluate biclusters coherence, measure that is widely used55

and analyzed in the literature (Pontes et al., 2015a). Prelic et al. (2006) introduced an evaluation and56

comparison for five outstanding methods: CC (Cheng and Church, 2000), Samba (Tanay et al., 2002),57

OPSM (Ben-Dor et al., 2004), ISA (Ihmels et al., 2002, 2004), and xMotif (Murali and Kasif, 2003),58

both real and simulated datasets were used to assess them. Regarding real data, biological information59

from GO annotations (Ashburner et al., 2000; Gasch et al., 2000), metabolic pathway maps (Gasch et al.,60

2000), and information about protein-protein interaction (Wille et al., 2004; Gasch et al., 2000) were used.61

Regarding the results presented in these studies, the approaches that obtained the best results were ISA,62

Samba, and OPSM.63

Dharan and Nair (2009) developed Reactive GRASP, based on the generation of high-quality bicluster64

seeds by using the k-means algorithm (Hartigan and Wong, 1979), which evolved through restricted65

iterations. Pandey et al. (2009) introduced a method named RAnge support Pattern (RAP) based on a66

model of association pattern identification. This method uses a parameter referred to as range support67

measure to evaluate coherence among rows in a bicluster. Das and Idicula (2010) developed an algorithm68

based on greedy search mixed with the particle swarm optimization approach (GS Binary PSO). Further,69

Caldas and Kaski (2011) proposed a method based on a hierarchical model (TreeBic). The model70

assumes that microarray samples, or conditions, are grouped in a tree structure in which nodes correspond71

to hierarchical subsets. Nepomuceno et al. (2011) presented an approach based on an evolutionary72

computation technique (SScorr), and introduced a new fitness function based on the linear correlation73

among genes in a bicluster. Ayadi et al. (2012) proposed a pattern-driven neighborhood search algorithm74

(PDNS) that uses a bicluster pattern, both in its search space and in its neighborhood definition.75

Evo-Bexpa is a proposed evolutionary algorithm (Pontes et al., 2013), which is able to discover shifting76

and positive scaling patterns in the behavior of genes in a bicluster. Based on the NSGA-II method (Deb77

et al., 2002) some algorithms (MODPSFLB (Liu et al., 2012), PR-MOBI (Seridi et al., 2013), and eMOGB78

(Brizuela et al., 2013)) model the biclustering as a multi-objective optimization problem (MOO). Although79

these algorithms are based on the same general strategy, they apply different heuristic techniques, such as80

evolutionary algorithms (EA), particle swarm optimization (PSO), and the shuffled frog-leaping algorithm81

(SFL).82

The biclustering algorithms showed in literature used different search strategies which are guided by83

some functions to measure or evaluate the behavioral coherence of genes within biclusters. The kind of84

evaluation function used by the algorithms is a key factor in the quality of discovered biclusters. Some85

functions have been proposed more than a decade ago, and most of them are based on the identification of86

shifting and/or scaling patterns of the biclusters. A sumary of the ability to identify different patterns for87

some recognized functions are showed in Table 1 (Pontes et al., 2015b; Chen et al., 2015).88

Only the ACV (Teng and Chan, 2008) and MMSE (Chen et al., 2015) functions are able to recognize89

perfect shifting and scaling patterns. However, a disadvantage for both functions is their computational90

complexity, which requires O(|I|2|J|) and O(min(|I|, |J|)|I||J|) for ACV and MMSE, respectively. For the91

analysis of many biclusters or large sized biclusters, a large computation time is a clear disadvantage.92
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Function A B C D E F Reference
MSR

√ √
X X X X (Cheng and Church, 2000)

ACV
√ √ √ √ √ √

(Teng and Chan, 2008)
ASR

√ √ √ √
X X (Ayadi et al., 2009)

VE
√ √ √ √

X X (Divina et al., 2012)
SMSR

√
X

√
X

√
X (Mukhopadhyay et al., 2009)

MMSE
√ √ √ √ √ √

(Chen et al., 2015)

A. Perfect constant pattern, B. Perfect shifting pattern, C. Perfect scaling positive pattern, D. Perfect shifting and scaling positive
pattern, E. Perfect scaling negative pattern, F. Perfect shifting and scaling negative pattern.

Table 1. Patterns identified by different bilcusters evaluation functions.

Based on the previous analysis of functions, we propose a new one to evaluate coherence within a93

bicluster. The function we propose (VF), is able not only to recognize shifting, and positive and negative94

scaling patterns, but also any combination of them. Furthermore, VF function identifies positive and95

negative scaling subpatterns. This means that VF identifies genes in a bicluster displaying a positive96

scaling pattern for a subset of experimental conditions and the same genes show a negative scaling pattern97

for a different subset of conditions. This behavioral pattern might have a biological meaning, and as far98

as we know it has not been considered in other functions. Another important characteristic of VF is the99

simplicity of its calculation, which only requires O(|I||J|).100

Besides, we designed a biclustering genetic algorithm (BGA VF) to evaluate the biological significance101

of the identified biclusters when using VF. BGA VF looks for the best bicluster according to the VF102

measure, given a range of desired gene number and conditions. The algorithm was tested with three real103

datasets: 1) Gasch’s Yeast dataset (Gasch et al., 2000), 2) Leukemia dataset (Golub et al., 1999) and 3)104

Steminal dataset (Boyer et al., 2006). For all tests, the algorithm obtained high percentages of biclusters105

with statistical significance.106

METHODS107

In this work a new function to evaluate coherence within a bicluster is proposed. This function calculates108

a variation score of expression levels of genes in a bicluster. The function returns low scores for genes109

with similar expression pattern or higher values for non-similar ones. To test the performance of the110

proposed VF function, we also designed a biclustering genetic algorithm. This algorithm searches for111

biclusters with a minimum value of the variation function for any given pre-established range of numbers112

of genes and conditions.113

The Proposed Variation Function114

The proposed variation function (VF) takes into account the shifting patterns (additive model) as well as115

positives and negatives scaled patterns (multiplicative model). In other words, it considers that a set of116

genes has a similar behavior when despite the lack of identical expression values in the same subset of117

conditions, they show similar trends of under- and overexpression through such set of conditions. The VF118

function returns small values when the genes have similar expression levels.119

Equation 1 shows the proposed variation function VF for a bicluster formed by a subset I of genes120

and a subset J of conditions. This formula is based on the ratio of change ri j that is calculated by using121

Equation 2. The value ri j represents the ratio of the change of expression level between conditions j and122

j−1 of gene i regarding the accumulated change of expression levels of all conditions of gene i. Where123

bi j is the expression level of gene i under condition j. Equation 3 calculates rI j which is the mean of the124

ratios of change of all genes from condition j.125

V F(I,J) = (|J|−1)∑
i∈I

∑
j∈J/{1}

∣∣ri j− rI j
∣∣ (1)

ri j =

∣∣bi j−bi( j−1)
∣∣

∑ j′∈J/{1}
∣∣bi j′ −bi( j′−1)

∣∣ (2)
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rI j =
1
|I|∑i∈I

ri j (3)

The minimum possible value returned by the VF function is zero, which results for biclusters with126

perfect shifting and scaling patterns (see Appendix A). An example of a bicluster with a score VF equal127

to zero is shown in Fig. 1A. This bicluster has three genes that exhibit perfect shifting and scaling patterns128

with respect to each other. A small variation in the behavior pattern of some of the genes in the bicluster129

leads to a VF score greater than zero (Fig. 1B).130

The maximum possible score calculated by the VF function for a bicluster is bounded by:131

V F(I,J)≤ (2 |I|−2)(|J|−1), (4)

where |I| is the number of genes and |J| is the number of conditions in the bicluster (see Appendix B).132

Algorithm and complexity133

Algorithm 1 shows the calculation of the VF function for a bicluster. In the first block (lines 2-11), the134

calculation of ratio of change of expression (ri j) is performed. In the second block (lines 13-19) the mean135

of the ratio of change for each condition (rI j) is obtained. In the last block, the final score is obtained136

from the double sum (lines 21-27). The computational cost for each of the three blocks is O(|I||J|), and137

since they are independent, the computational time for the complete algorithm is also O(|I||J|).138

139

Algorithm 1. VF function calculation for a Bicluster.140

Input: a matrix B of gene expression values of size |I|× |J|.141

Output: the VF score of the matrix B.142

1. //Calculation of ratio of change (Equation 2)143

2. for i← 1 to |I| do144

3. sum← 0145

4. for j← 2 to |J| do146

5. di j←
∣∣bi j−bi( j−1)

∣∣147

6. sum← sum+di j148

7. end149

8. for j← 2 to |J| do150

9. ri j←
di j
sum151

10. end152

11. end153

12. //Mean ratio of change (Equation 3)154

13. for j← 2 to |J| do155

14. sum← 0156

15. for i← 1 to |I| do157

16. sum← sum+ ri j158

17. end159

18. rI j← sum
|I|160

19. end161

20. // VF final calculation (Equation 1)162

21. sum← 0163

22. for i← 1 to |I| do164

23. for j← 2 to |J| do165

24. sum = sum+
∣∣ri j− rI j

∣∣166

25. end167

26. end168

27. V F ← (|J|−1) · sum169
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Biclustering Genetic Algorithm170

To test the performance of the VF function, we also propose a biclustering genetic algorithm. Following171

the idea of other evolutionary approaches (Mitra and Banka, 2006; Divina and Aguilar-Ruiz, 2006), a172

bicluster is represented as a two-section binary string where the first section corresponds to genes and the173

second section to conditions. If a given locus has an allele one, it indicates that its corresponding gene or174

condition is selected to be part of the bicluster.175

The algorithm receives as input a gene expression matrix, a range of the expected number of genes176

and conditions, and a percentage of minimum quality accepted for the returned biclusters. These required177

values for the accepted biclusters are considered as hard constraints into the algorithm.178

To generate the initial population each bicluster is constructed by performing a random selection179

of genes and conditions from the gene expression matrix. The parent selection process was made by180

applying binary tournament. In the binary tournament, a bicluster i is preferred to a bicluster j, if i fulfills181

the established restrictions and j does not, or if both fulfills the restrictions, but i has a lower VF score182

than j. The single-point crossover operator was used, applying it independently to the section of genes183

and to the section of conditions. For the mutation, a random position of the binary string is chosen, and its184

value is changed. Generational replacement with elitism was applied to generate the new population. The185

algorithm returns the discovered bicluster with the lowest VF score that also complies with the established186

constraints.187

RESULTS AND DISCUSSIONS188

Evaluation of the VF function with synthetic data189

To evaluate the effectiveness of the VF function to recognize scaling and shifting patterns, six synthetic190

data sets proposed elsewhere (Chen et al., 2015; Teng and Chan, 2008; Ayadi et al., 2009) were used. Each191

of these data sets presents a different perfect pattern (A-F) (Table 2). Additionally, the results obtained192

using other functions evaluated in the work of Chen et al. (2015) are shown.193

Perfect Patterns Optimal
Function A B C D E F Values Reference
MSR 0.000 0.000 0.625 0.625 3.125 3.325 0 (Cheng and Church, 2000)
ACV 1.000 1.000 1.000 1.000 1.000 1.000 1 (Teng and Chan, 2008)
ASR 1.000 1.000 1.000 1.000 -0.200 -0.200 1, -1 (Ayadi et al., 2009)
VE 0.000 0.000 0.000 0.000 1.033 0.930 0 (Divina et al., 2012)
SMSR 0.000 0.089 0.000 0.021 0.000 3.458 0 (Mukhopadhyay et al., 2009)
MMSE 0.000 0,000 0.000 0.000 0.000 0.000 0 (Chen et al., 2015)
VF 0.000 0,000 0.000 0.000 0.000 0.000 0 This work

A. Constant, B. Shifting, C. Scaling positive, D. Shifting and scaling positive, E. Scaling negative, F. Shifting and scaling negative.

Table 2. Comparison of different evaluation functions of biclusters on synthetic test data.

These results show that the VF function is able to recognize different patterns of displacement, positive194

and negative scaling, as well as any combination of these. Of all the functions evaluated, only the VF, ACV,195

and MMSE functions recognized the six perfect pattern types. However, the ACV and MMSE functions196

have the disadvantage of having a higher computation cost, O(|I|2|J|) for ACV, and O(min(|I|, |J|)|I||J|)197

for MMSE. The VF function has a simpler calculation, which requires an execution time of O(|I||J|), that198

represents an important advantage when working with large volumes of biological data.199

Test with real data200

To evaluate and compare the effectiveness of the BGA VF algorithm to recover significant or enriched201

biclusters for any GO category (Ashburner et al., 2000) three real gene expression datasets were analyzed.202

The Gasch’s Yeast dataset (Gasch et al., 2000) which corresponds to expression levels of 2993 genes203

of Saccharomyces cerevisiae under 173 different stress conditions. The Leukemia dataset (Golub et al.,204

1999) containing the expression of 7129 genes from 25 patients suffering from acute myeloid leukemia205

(AML) and 47 suffering from acute lymphoblastic leukemia (ALL). Finally, we used the Steminal (Boyer206

et al., 2006) dataset that corresponds to the expression of 26127 genes for 30 time points of murine207

embryonic stem cells differentiation.208

5/17

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3110v2 | CC BY 4.0 Open Access | rec: 1 Aug 2017, publ: 1 Aug 2017



For each dataset, one hundred runs of the algorithm BGA VF were made, selecting from each run the209

best bicluster, evaluated according to the VF function. The algorithm parameters were set as follows: a210

population size of 100 individuals, 1000 for the number of generations without an improvement on the211

best VF value found so far as stopping criterion, 90% rate for selecting the winner within the tournament,212

a 100% for the crossover rate, and 50% for the mutation rate. In each run of the algorithm, the biclusters213

were obtained within a range of 30 to 100 genes, a range of 5 to 20 experimental conditions, and 80%214

minimum for the quality of biclusters (a value for VF not greater than 20% of its upper bound). The215

details of the discovered biclusters are provided in the Supplemental Files S1-S7.216

217

Evaluation of statistical significance of obtained biclusters with Yeast dataset218

The obtained results for the algorithm BGA VF from the yeast dataset were compared with the ones219

produced by other well-known biclustering algorithms: OPSM (Ben-Dor et al., 2004), ISA (Ihmels et al.,220

2002, 2004), CC (Cheng and Church, 2000), and SScorr (Nepomuceno et al., 2011). The results of221

algorithms OPSM, ISA, and CC were generated by using the Biclustering Analysis Toolbar (BicAT)222

software (Barkow et al., 2006). To evaluate the algorithms according to the percentage of significant223

biclusters recovered, the AGO tool (Akwaa and Kadah, 2009) was used. For this evaluation, BGA VF224

accomplished between 89% and 100% of significant biclusters discovered for p-values in the range of225

1e− 5 to 5e− 2 (Fig. 2). These percentages were higher than the percentages obtained by the other226

evaluated algorithms.227

A comparison of the percentage of significant biclusters after filtering biclusters that did not overlap228

more than 25% was performed too. This filter is important due to the possibility to determine whether229

an algorithm can find diversity in the sets of discovered genes. On this comparison SScorr was not230

included since data about overlapping constraints are not available for this algorithm. For this evaluation231

BGA VF obtained between 70% - 100% of significant biclusters for different p-values (Fig. 3). These232

percentages were higher than those obtained by ISA and CC algorithms. In this test, OPSM acquired 100%233

of significant biclusters; however, this percentage corresponds to just two biclusters generated without234

overlapping (Table 3).235

Algorithm Total Biclusters Percentage Reference
Number of Filtered Biclusters
Biclusters Filtered

OPSM 19 2 10.5% (Ben-Dor et al., 2004)
ISA 63 20 37.7% (Ihmels et al., 2004)
CC 100 56 56% (Cheng and Church, 2000)

BGA VF 100 27 27% This work

Table 3. Comparison of the quantity and percentage of biclusters without overlap found out by OPSM,
ISA, CC, and BGA VF algorithms.

Identified patterns for biclusters obtained on the Yeast dataset236

Next, we wanted to identify the different types of patterns discovered by the BGA VF algorithm in the237

yeast dataset. From the 100 generated biclusters by the BGA VF we found biclusters with shifting and238

positive scaling patterns (Fig. 4A), shifting, and positive and negative scaling patterns (Fig. 4B), and239

interestingly, biclusters with positive and negative scaling subpatterns (i.e., patterns within a bicluster)240

where also identified (Figs. 4C and 4D). In the latter case, a bicluster showed one gene with a negative241

scaling pattern only in the stress condition 126; while the same gen showed a positive scaling pattern242

for the other conditions (Fig. 4C). In another case, a bicluster showed one gene with a negative scaling243

pattern regarding other genes for the 43, 62, and 64 stress conditions, and a positive scaling pattern for the244

other conditions (Fig. 4D).245

Although finding subpatterns was not the goal of the designed function, our results suggest that the246

VF function can be useful to identifying related genes, in a same biological function or molecular process,247

that show different scaling (positives and negatives) subpatterns according to the evaluated experimental248

conditions. This behavioral might have a important biological meaning, and as far as we know it has not249

been considered in other functions.250
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Evaluation of statistical significance of biclusters obtained from Leukemia and Steminal datasets251

To evaluate the statistical significance of the biclusters found by the BGA VF on the Leukemia and252

Steminal datasets, the software g:Profiler (Reimand et al., 2016) with the Bonferroni correction was used.253

The results found by the BGA VF were compared to results reported for the SMOB method (Fig. 5). The254

SMOB method achieves the coherence evaluation of the biclusters through the VE and MSR functions255

(Divina et al., 2012). With both datasets, the percentage of biclusters found by BGA VF were higher than256

the one obtained by the SMOB algorithm by using VE and MSR functions independently.257

The results obtained with the Yeast, Leukemia, and Steminal datasets showed that the algorithm258

BGA VF is effective in the identification of biclusters with statistical significance. In all evaluated cases,259

the BGA VF algorithm identified a higher percentage of significant biclusters than the other compared260

methods. These favorable results were maintained by considering only biclusters that do not overlap261

in more than 25% of the genes they contain. On the other hand, although the design of the BGA VF262

algorithm did not focus on avoiding the overlap of biclusters, on the Leukemia and Steminal datasets,263

high percentages of biclusters without overlap (98% and 100%, respectively) were acquired.264

CONCLUSIONS265

In this work, a new function named VF to evaluate the coherence of biclusters, was proposed. The VF266

function identifies any combination of shifting and scaling patterns, both positive and negative, faster267

than functions reported in the literature for the same objective. Also, VF recognizes a new pattern not268

discussed in the literature, which may correspond to groups of related genes under the same biological269

function or molecular process. On the other hand, supported by the algorithm BGA VF, the VF function270

is able to discover high percentages of biclusters with statistical significance, as well as high percentages271

of biclusters without overlap, especially for large databases.272

We conclude that the VF function is effective because it obtains high percentages of significant273

biclusters and recognizes all combinations of discussed coherent patterns. Also, the VF function is274

efficient since it requires a small computation effort, which is a very important feature when it is required275

to process large volumes of expression data.276
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APPENDICES279

Appendix A. Optimal value of VF function280

Proposition 1.281

A bicluster that shows a shifting and/or scaling perfect pattern has a zero value of the VF function.282

Proof:283

284

We start by proving that for every bicluster of interest (with at least two experimental conditions) whose285

value VF=0, it follows that:286

ri j = ri′ j,∀(i 6= i′), i′ ∈ I,∀ j ∈ J/{1}.

Given the formula for calculating VF:

V F(I,J) = (|J|−1)∑
i∈I

∑
j∈J/{1}

∣∣ri j− rI j
∣∣ ,

the only way that VF equals zero is that the double sum is equal to zero, since (|J| − 1) > 0 for any287

bicluster with at least two experimental conditions. And considering that only non-negative values are288

added, the only way that the double sum is zero is that all the summed values are zero, that is:289 ∣∣ri j− rI j
∣∣= 0,∀i ∈ I,∀ j ∈ J/{1},

which implies that:290
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ri j = rI j,∀i ∈ I,∀ j ∈ J/{1},

and by transitivity we have to:291

ri j = ri′ j,∀(i 6= i′), i′ ∈ I,∀ j ∈ J/{1}.

On the other hand, we prove that by applying a scaling factor (either positive or negative) and/or an292

additive value to all levels of expression of a gene does not change the ratio ri j of that gene.293

294

Given the calculation of ri j:295

ri j =

∣∣bi j−bi( j−1)
∣∣

∑ j′∈J/{1}
∣∣bi j′ −bi( j′−1)

∣∣ ,
if we apply an arbitrary scaling factor c, and an additive value d also arbitrary, to each expression value of296

gene i, we have:297

ri j =

∣∣(c ·bi j +d)− (c ·bi( j−1)+d)
∣∣

∑ j′∈J/{1}
∣∣(c ·bi j′ +d)− (c ·bi( j′−1)+d)

∣∣ ,
where the additive values cancel each other:298

ri j =

∣∣(c ·bi j + �d)− (c ·bi( j−1)+ �d)
∣∣

∑ j′∈J/{1}
∣∣(c ·bi j′ + �d)− (c ·bi( j′−1)+ �d)

∣∣ ,
taking c as a common factor we have:299

ri j =

∣∣c · (bi j−bi( j−1))
∣∣

∑ j′∈J/{1}
∣∣c · (bi j′ −bi( j′−1))

∣∣ ,
we extract c as positive value of the absolute operator, and being a constant value we can extract it from300

the summation:301

ri j =
�c ·

∣∣(bi j−bi( j−1))
∣∣

�c ·∑ j′∈J/{1}
∣∣(bi j′ −bi( j′−1))

∣∣ ,
resulting in the original formula for ri j:302

ri j =

∣∣bi j−bi( j−1)
∣∣

∑ j′∈J/{1}
∣∣bi j′ −bi( j′−1)

∣∣ .
The latter indicates that two i and i′ genes with perfect scaling patterns and/or additives terms will have303

the same ratios of change for each experimental condition:304

ri j = ri′ j,∀(i 6= i′), i′ ∈ I,∀ j ∈ J/{1},

which, as previously proved, is the case when the V F function returns a zero. Therefore, a zero value305

returned by the V F function corresponds to perfect scaling patterns and/or additives of the behavior of the306

genes of a bicluster.307

Appendix B. Upper bound for the VF function308

Proposition 2.309

V F(I,J) is bounded as follows:310

V F(I,J)≤ (|J|−1)(2 |I|−2).
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Proof:311

312

We start by proving that for any gene i the sum of its ratios of changes is equal to 1:313

∑
j∈J/{1}

ri j = 1,∀i ∈ I.

Given the formula of ratio of change for gene i in the condition j:314

ri j =

∣∣bi j−bi( j−1)
∣∣

∑ j′∈J/{1}
∣∣bi j′ −bi( j′−1)

∣∣ ,
we have to:315

∑
j∈J/{1}

ri j = ∑
j∈J/{1}

∣∣bi j−bi( j−1)
∣∣

∑ j′∈J/{1}
∣∣bi j′ −bi( j′−1)

∣∣ ,
∑

j∈J/{1}
ri j =

∑ j∈J/{1}
∣∣bi j−bi( j−1)

∣∣
∑ j′∈J/{1}

∣∣bi j′ −bi( j′−1)
∣∣ = 1,

since j and j′ take the same set of values.316

317

On the other hand, by developing the internal summation of the VF formula, we have for gene i:318

∑
j∈J/{1}

∣∣ri j− rI j
∣∣= ∑

j∈J/{1}

∣∣∣∣ri j−
∑i′∈I ri′ j

|I|

∣∣∣∣
= ∑

j∈J/{1}

∣∣∣∣ri j−
(r1 j + r2 j + ...+ ri j + ...+ r|I| j)

|I|

∣∣∣∣
= ∑

j∈J/{1}

∣∣∣∣ri j−
r1 j

|I|
−

r2 j

|I|
− ...−

ri j

|I|
− ...−

r|I| j
|I|

∣∣∣∣
= ∑

j∈J/{1}

∣∣∣∣(ri j−
ri j

|I|
)−

r1 j

|I|
−

r2 j

|I|
− ...−

r|I| j
|I|

∣∣∣∣
= ∑

j∈J/{1}

∣∣∣∣ (|I|−1)ri j

|I|
−

r1 j

|I|
−

r2 j

|I|
− ...−

r|I| j
|I|

∣∣∣∣
= ∑

j∈J/{1}

∣∣∣∣ (|I|−1)ri j− r1 j− r2 j− ...− r|I| j
|I|

∣∣∣∣
=

1
|I| ∑

j∈J/{1}

∣∣(|I|−1)ri j− r1 j− r2 j− ...− r|I| j
∣∣

=
1
|I| ∑

j∈J/{1}

∣∣(ri j− r1 j)+(ri j− r2 j)+ ...+(ri j− r|I| j)
∣∣

=
1
|I| ∑

j∈J/{1}

∣∣∣∣∣ ∑
i′∈I/{i}

(ri j− ri′ j)

∣∣∣∣∣ ,
we take an upper bound:319

1
|I| ∑

j∈J/{1}

∣∣∣∣∣ ∑
i′∈I/{i}

(ri j− ri′ j)

∣∣∣∣∣≤ 1
|I| ∑

j∈J/{1}

∣∣∣∣∣ ∑
i′∈I/{i}

(
∣∣ri j

∣∣+ ∣∣ri′ j
∣∣)∣∣∣∣∣ ,

then:320
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∑
j∈J/{1}

∣∣ri j− rI j
∣∣≤ 1
|I| ∑

j∈J/{1}

∣∣∣∣∣ ∑
i′∈I/{i}

(
∣∣ri j

∣∣+ ∣∣ri′ j
∣∣)∣∣∣∣∣ ,

and, based on its formula (Equation 2), we know that every value ri j is always positive, so:321

ri j =
∣∣ri j

∣∣ ,∀i ∈ I,∀ j ∈ J/{1},

therefore:322

∑
j∈J/{1}

∣∣ri j− rI j
∣∣≤ 1
|I| ∑

j∈J/{1}
∑

i′∈I/{i}
(ri j + ri′ j)

=
1
|I| ∑

i′∈I/{i}
∑

j∈J/{1}
(ri j + ri′ j)

=
1
|I| ∑

i′∈I/{i}
( ∑

j∈J/{1}
ri j + ∑

j∈J/{1}
ri′ j),

previously it was demonstrated that:323

∑
j∈J/{1}

ri j = 1,∀i ∈ I,

then, we have that:324

∑
j∈J/{1}

∣∣ri j− rI j
∣∣≤ 1
|I|

( ∑
i′∈I/{i}

2) =
1
|I|

(|I|−1)(2) = 2− 2
|I|

.

taking this value as the upper bound for all bicluster genes, we have:325

∑
i∈I

∑
j∈J/{1}

∣∣ri j− rI j
∣∣≤ |I|(2− 2

|I|
) = 2 |I|−2.

therefore, this proves that an upper bound for the VF function is:326

V F(I,J) = (|J|−1)∑
i∈I

∑
j∈J/{1}

∣∣ri j− rI j
∣∣≤ (|J|−1)(2 |I|−2).

327

In addition, it was proved experimentally that this bound is tight, since it was reached for certain biclusters328

(Fig. 6).329
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Figure 1. Examples of V F values for different expression patterns. A) Three genes with identical
behavior, that show perfect scaling and shifting patterns with each other, whose calculation of score
variation is equal to zero. B) Three genes with a similar behavior with a variation score slightly greater
than zero. For this bicluster, the expression of gene 2 showed in A was modified from 2 to 1 in condition
j = 3. Thus the perfect scaling and shifting pattern of this gene with respect to genes 1 and 3 is lost.
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Figure 2. Comparison of percentage of significant biclusters found on the yeast dataset for different
p-values. From the Yeast dataset one hundred biclusters were identified with the algorithm BGA VF. The
parameters used in BicAT were l = 100 for OPSM; tg = 2.0, tc = 2.0, seeds = 500 for ISA; and δ = 0.5,
α = 1.2, and M = 100 for CC (Akwaa and Kadah, 2009). The results of algorithm SScorr were taken
from (Nepomuceno et al., 2011) .

Figure 3. Comparison of the percentage of significant biclusters without overlap on the Yeast dataset for
different p-values. From Yeast data base one hundred biclusters were identified through the algorithm
BGA VF. Following the parameters taken from (Akwaa and Kadah, 2009) the algorithms OPSM, ISA, and
CC were executed. Subsequently, a filter was applied to all methods; only biclusters without an overlap
higher than 25% of containing genes were kept.
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Figure 4. Identified patterns by the BGA VF algorithms on the yeast dataset. One hundred biclusters
were identified on the yeast dataset by the BGA VF algorithm. Biclusters with shifting and positive
scaling patterns (A), shifting, and positive and negative scaling patterns (B), as well as positive and
negative subpatterns (C and D) were found. The figures correspond to four real biclusters discovered by
the BGA VF algorithm, for each one, the genes belonging to the same category are shown: GO:0005198
structural molecule activity (A), TF:M07442 0 Factor Rap1p (B), GO:0030684 preribosome (C) and
GO:0071428 rRNA-containing ribonucleoprotein complex export from nucleus (D).

15/17

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3110v2 | CC BY 4.0 Open Access | rec: 1 Aug 2017, publ: 1 Aug 2017



Figure 5. Comparison of acquired percentage of significant biclusters on Leukemia (A) and Steminal
(B) datasets. On Leukemia and Steminal datasets one hundred biclusters were generated with the
BGA VF algorithm. For statistical analysis, 98 and 100 biclusters were considered from Leukemia and
Steminal dataset, respectively. The analyzed biclusters did not show an overlap higher than 25%. The
SMOB-VE and SMOB-MSR results for p-values 5e-3 and 1e-3 were not reported in the original work
(Divina et al., 2012).
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Figure 6. An example of a bicluster for which the value of VF function is equal to the upper bound.
Each of the 3 genes presents a change in their level of expression for a different condition. This is an
example of a bicluster for which the maximum value of the VF function is obtained, which is equal to the
upper bound set for that number of genes and conditions.
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