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Background. As next generation sequence technology has advanced, there have been

parallel advances in genome-scale analysis programs for determining evolutionary

relationships as proxies for epidemiological relationship in public health. Most new

programs skip traditional steps of ortholog-determination and multi-gene alignment,

instead identifying variants across a set of genomes, then summarizing results in a matrix

of single nucleotide polymorphisms or alleles for standard phylogenetic analysis. However,

public health authorities need to document the performance of these methods with

appropriate and comprehensive datasets so they can be validated for specific purposes,

e.g., outbreak surveillance. Here we propose a set of benchmark datasets to be used for

comparison and validation of phylogenomic pipelines.

Methods. We identified four well-documented foodborne pathogen events in which the epidemiology

was concordant with standard WGS phylogenetic analysis. These are ideal benchmark datasets, as the

trees, WGS data, and epidemiological data for each are all in agreement. We have placed these

sequence data, sample metadata, and <known= phylogenetic trees in publicly-accessible databases and

developed a standard descriptive spreadsheet format describing each dataset. To facilitate easy

downloading of these benchmarks, we developed an automated script that uses the standard descriptive

spreadsheet format.

Results. Our <outbreak= benchmark datasets represent the four major foodborne bacterial pathogens

(Listeria monocytogenes, Salmonella enterica,  Escherichia coli, and Campylobacter jejuni) and one

simulated dataset where the <known tree= can be accurately called the <true tree=. The downloading

script and associated table files are available on GitHub: https://github.com/WGS-standards-and-

analysis/datasets.
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Discussion. These five benchmark datasets will help standardize comparison of current and future

phylogenomic pipelines, and facilitate important cross-institutional collaborations. Our work is part of a

global effort to provide collaborative infrastructure for sequence data and analytic tools 3 we welcome

additional benchmark datasets in our recommended format, and will publish these on our GitHub site.

Together, these datasets, dataset format, and the underlying GitHub infrastructure present a

recommended path for worldwide standardization of phylogenomic pipelines.
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23 Abstract

24 Background. As next generation sequence technology has advanced, there have been parallel 

25 advances in genome-scale analysis programs for determining evolutionary relationships as 

26 proxies for epidemiological relationship in public health. Most new programs skip traditional 

27 steps of ortholog-determination and multi-gene alignment, instead identifying variants across a 

28 set of genomes, then summarizing results in a matrix of single nucleotide polymorphisms or 

29 alleles for standard phylogenetic analysis. However, public health authorities need to document 

30 the performance of these methods with appropriate and comprehensive datasets so they can be 

31 validated for specific purposes, e.g., outbreak surveillance. Here we propose a set of benchmark 

32 datasets to be used for comparison and validation of phylogenomic pipelines.

33 Methods. We identified four well-documented foodborne pathogen events in which the 

34 epidemiology was concordant with standard WGS phylogenetic analysis. These are ideal 

35 benchmark datasets, as the trees, WGS data, and epidemiological data for each are all in 

36 agreement. We have placed these sequence data, sample metadata, and <known= phylogenetic 

37 trees in publicly-accessible databases and developed a standard descriptive spreadsheet format 

38 describing each dataset. To facilitate easy downloading of these benchmarks, we developed an 

39 automated script that uses the standard descriptive spreadsheet format.

40 Results. Our <outbreak= benchmark datasets represent the four major foodborne bacterial 

41 pathogens (Listeria monocytogenes, Salmonella enterica, Escherichia coli, and Campylobacter 

42 jejuni) and one simulated dataset where the <known tree= can be accurately called the <true tree=.  

43 The downloading script and associated table files are available on GitHub: 

44 https://github.com/WGS-standards-and-analysis/datasets

45 Discussion. These five benchmark datasets will help standardize comparison of current and 

46 future phylogenomic pipelines, and facilitate important cross-institutional collaborations. Our 

47 work is part of a global effort to provide collaborative infrastructure for sequence data and 

48 analytic tools 3 we welcome additional benchmark datasets in our recommended format, and will 

49 publish these on our GitHub site. Together, these datasets, dataset format, and the underlying 

50 GitHub infrastructure present a recommended path for worldwide standardization of 

51 phylogenomic pipelines.
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52 Introduction

53 Foodborne pathogen surveillance in the United States is currently undergoing an important 

54 paradigm shift: pulsed-field gel electrophoresis (PFGE) is being replaced by the much higher 

55 resolution whole genome sequencing (WGS) technology (Swaminathan et al., 2001). The 

56 generated WGS data are also more accessible, since raw genome data are now made public 

57 almost immediately after collection. These advances began with an initial pilot project to build a 

58 public genomic reference database, <GenomeTrakr= (Allard et al., 2016) for pathogens from the 

59 food supply and has matured through a second pilot project to collect WGS data and share it 

60 publically in real time for every Listeria monocytogenes isolate appearing in the US food supply 

61 (both clinical and food/environmental isolates) (Jackson et al., 2016). The Real-Time Listeria 

62 Project was initiated by PulseNet, the national subtyping network for foodborne disease 

63 surveillance, and is coordinated by Centers for Disease Control and Prevention (CDC), the Food 

64 and Drug Administration (FDA), The National Center for Biotechnology Information (NCBI), 

65 and The Food Safety and Inspection Service (FSIS) of The United States Department of 

66 Agriculture. The success of the project confirmed that such a national laboratory surveillance 

67 program using WGS is possible and highly efficient.  Now, genome data are collected in real-

68 time for the five major bacterial foodborne pathogens (Salmonella enterica, Listeria 

69 monocytogenes, Escherichia coli, Vibrio parahaemolyticus and Campylobacter spp.); WGS data 

70 are being deposited in either the Sequence Read Archive (SRA) or GenBank, and are being 

71 clustered into phylogenetic trees using SNP analysis; results are publically available at NCBI9s 

72 pathogen detection site (NCBI). The list of pathogens under active genomic surveillance is 

73 growing. As of Oct. 1, 2016, approximately 85k genomes have been sequenced and contributed 

74 towards this pathogen surveillance effort and are publicly available. 

75 The collaboration among the FDA, NCBI, FSIS, and CDC has been formalized as the Genomics 

76 and Food Safety group (Gen-FS) (CDC, 2015). One of the first directives for Gen-FS is ensuring 

77 consistency across the different tools for phylogenomic analysis used by group participants.  The 

78 best way to accomplish this is to have standard benchmark datasets, enabling researchers to 

79 assess the consistency of results across different tools and between version updates of any single 

80 tool.  Each agency has been using compatible bioinformatics workflows for their WGS analysis: 

81 PulseNet-participating laboratories use whole genome multilocus sequence typing (wgMLST), 
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82 NCBI uses the Pathogen Detection Pipeline, the FDA, Center for Food Safety and Applied 

83 Nutrition (CFSAN) uses SNP-Pipeline, and the CDC uses Lyve-SET (Davis et al., 2009; Katz et 

84 al., 2013; Allen et al., 2015; Quick et al., 2015; Davis et al., 2015; Jackson et al., 2016; Moura et 

85 al., 2016).  These methods have been designed to match the specific needs of the different 

86 agencies performing bacterial foodborne pathogen surveillance.  Other workflows that can be 

87 used for outbreak investigation could also benefit from standardized benchmark datasets, e.g., 

88 NASP, Harvest, kSNPv3, REALPHY, SNVPhyl, cgMLST (Gardner & Hall, 2013; Treangen et 

89 al., 2014; Bertels et al., 2014; Bekal et al., 2016; Roe et al., 2016).  Therefore it is incumbent 

90 upon the community of users to provide standard benchmarks for validation and consistency 

91 across the diversity of analysis packages. Such validation is essential for the use of genomic data 

92 as the basis for regulatory action

93 A few bacterial pathogen outbreak datasets with raw reads have been made public, for example, 

94 genomes from several Yersinia pestis isolates from North America (Roe et al., 2016), a 

95 Peptoclostridium difficile outbreak dataset from the UK (Treangen et al., 2014), a Clostridium 

96 difficile outbreak in the UK (Eyre et al., 2013), the S. enterica subsp. enterica serovar Bareilly 

97 (S. enterica ser Bareilly) 2012 outbreak in the US (Hoffmann et al., 2015), and an S. enterica 

98 subsp. enterica serovar Enteritidis outbreak in the UK (Quick et al., 2015).  However, these 

99 datasets are not in a standardized format, making them difficult to acquire or use in automated 

100 analyses. As of November 2016, no bacterial outbreak datasets have been specifically published 

101 for use as benchmark datasets. 

102 To address these problems, we present a set of outbreak benchmark datasets, the first step 

103 towards having a <gold standard=: this set consists of one empirical dataset for each of four 

104 major foodborne bacterial pathogens (L. monocytogenes, S. enterica ser. Bareilly, E. coli, and C. 

105 jejuni) and one simulated dataset generated from the S. Bareilly tree using the pipeline 

106 TreeToReads (McTavish et al., 2016), for which both the true tree and SNP positions are known.  

107 In addition, we propose a standard spreadsheet format for describing these and future benchmark 

108 datasets.  That format can be readily applied to any other bacterial organism, and supports 

109 automated data analyses.  Finally, we present Gen-FS Gopher, a script for easily downloading 

110 these benchmark datasets.  All of these materials are freely available for download at our GitHub 

111 site:

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3107v1 | CC BY 4.0 Open Access | rec: 25 Jul 2017, publ: 25 Jul 2017



112 URL: https://github.com/WGS-standards-and-analysis/datasets

113 Materials & Methods

114 Each of the four empirical datasets is either representative of a food recall event in which food 

115 was determined to be contaminated with a specific bacterial pathogen, or of an outbreak in which 

116 at least three people were infected with the same pathogen. In either scenario, all outbreak 

117 members were epidemiologically linked.  All isolates listed in these benchmark datasets were 

118 sequenced at our federal or state-partner facilities, using either an Illumina MiSeq (San Diego, 

119 CA) or a Pacific Biosciences (Pacbio) instrument (Menlo Park, CA). Importantly, these 

120 collective datasets represent four different major taxa of bacterial foodborne pathogens.  

121 Results

122 The L. monocytogenes dataset (Supplemental Table S1) comprises genomes spanning the genetic 

123 diversity of the 2014 stone fruit recall (Jackson et al., 2016; Chen et al., 2016).  In this event, a 

124 company voluntarily recalled certain lots of stone fruits, including peaches, nectarines, plums, 

125 and pluots, based on the company9s internal tests, which were positive for the presence of L. 

126 monocytogenes.  The advantage of this dataset is that it describes a polyclonal phylogeny having 

127 three major subclades, two of which include clinical cases.  The genome for one isolate was 

128 closed, yielding a complete reference genome.  This dataset also includes three outgroups which 

129 were not associated with the outbreak.

130 The C. jejuni dataset (Supplemental Table S2) represents a 2008 outbreak in Pennsylvania 

131 associated with raw milk (Marler, 2008).  This dataset reflects a clonal outbreak lineage with 

132 several outgroups not related to the outbreak strain.

133 The E. coli dataset (Supplemental Table S3) is from a 2014 outbreak in which raw clover sprouts 

134 were identified as the vehicle (CDC, 2014).  Nineteen clinical cases appeared to have the same 

135 clone of Shiga-toxin-producing E. coli O121. The genome for one isolate that was 

136 epidemiologically unrelated to the outbreak but phylogenetically related was closed, yielding a 

137 complete reference genome. Only three of the available 19 clinical isolates were included in this 

138 dataset; these isolates were so highly clonal that adding more genomes from the outbreak would 

139 not provide additional insights.  This dataset also includes seven closely related outgroup isolates 

140 that were not part of the outbreak.  
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141 A S. enterica ser. Bareilly dataset (Supplemental Table S4) was derived from a 2012 outbreak in 

142 mid-Atlantic US states associated with spicy tuna sushi rolls (CDC, 2012).  Both 

143 epidemiological data and WGS data indicate that patients in the United States became infected 

144 with S. enterica ser. Bareilly by consuming tuna scrape that had been imported for making spicy 

145 tuna sushi from a fishery in India (Hoffmann et al., 2015). This benchmark dataset includes 18 

146 clonal outbreak taxa, comprising both clinical and food isolates. Five outgroups are also included 

147 in this dataset, one of which was closed, serving as the reference genome. 

148 The simulated dataset (Supplemental Table S5) was created using the TreeToReads v 0.0.5 

149 (McTavish et al., 2017), which takes as input a tree file (true phylogeny), an anchor genome, and 

150 a set of user-defined parameter values. We used the S. enterica ser. Bareilly tree as our <true= 

151 phylogeny and the closed reference genome (CFSAN000189) as our anchor. The parameter 

152 values were set as follows: number_of_variable_sites = 150, base_genome_name = 

153 CFSAN000189, rate_matrix = 0.38,3.83,0.51,0.01,4.45,1, freq_matrix = 0.19,0.30,0.29,0.22, 

154 coverage = 40, mutation_clustering = ON, percent_clustered = 0.25, exponential_mean = 125, 

155 read_length = 250, fragment_size = 500, stdev_frag_size = 120.  The output is a pair of raw 

156 MiSeq fastq files for each tip (simulated isolate) in the input tree and a VCF file of known SNP 

157 locations. This simulated dataset is useful for validating the number and location of SNPs 

158 identified from a given bioinformatics pipeline, and can help measure how close an inferred 

159 phylogeny is to the true phylogeny.  This dataset comprises 18 simulated outbreak isolates and 

160 five outgroups.

161 The dataset format:

162 Tables 1 and 2 list the standardized descriptions used in each dataset, beginning with the required 

163 key/value pairs, followed by the available field names. Table 3 illustrates the use of this 

164 standardized reporting structure: columns in this format provide accession numbers for the 

165 sequence and phylogenetic tree data.  Columns also contain epidemiological data characterizing 

166 the isolate as inside or outside of that specific outbreak.  These data are housed at NCBI, a 

167 partner of the International Nucleotide Sequence Database Collaboration (INSDC) (Karsch-

168 Mizrachi et al., 2012), and at OpenTree (Hinchliff et al., 2015). The tree topologies provided for 

169 each dataset are all maximum likelihood trees (Zwickl, 2006), inferred from a SNP Pipeline 
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170 (Davis et al., 2015) data matrix and these topologies did not change significantly even when the 

171 analyses were run using wgMLST or Lyve-Set.  To the best of our knowledge, the tree 

172 accompanying each dataset closely represents the true phylogeny, given the genomes collected 

173 and known epidemiology.  For each benchmark dataset we include the following data:

174 1. NCBI Sequence Read Archive (SRA) accessions for each isolate.

175 2. An NCBI BioSample accession for each isolate.

176 3. A link to a maximum likelihood phylogenetic tree stored at the OpenTreeOfLife 

177 (Hinchliff et al., 2015). 

178 4. NCBI assembly accessions for annotated draft and complete assemblies (where 

179 available). Information is provided about which one is appropriate for use as a reference.

180

181 The benchmark table format is a spreadsheet divided into two sections: a header and the body.  

182 The header contains generalized information of the dataset in a key/value format where column 

183 A is the key and the value is in column B.  The available keys with example values are given in 

184 Table 1.  Any property in the header applies to all genomes; for example, all isolates described in 

185 the spreadsheet should be of the same organism as listed in the header.  The body of the dataset 

186 provides information for each taxon, or tip in the tree. Accessions, strain IDs, key to isolates in 

187 clonal event, and sha256sums are included here (Table 2).  An example is given in Table 3.

188 To ensure that every dataset is easily and reliably downloadable for anyone to use, we have 

189 created a script called Gen-FS Gopher (GG) that automates the download process.  GG 

190 downloads the assemblies, raw reads, and tree(s) listed in a given dataset spreadsheet.  

191 Additionally, GG uses the sha256sum program to verify each download.  Because some files 

192 depend on others (e.g., downloading the reverse read depends on the forward read; the 

193 sha256sha256 checksums depend on all reads being downloaded), GG creates a Makefile, which 

194 is then executed.  That Makefile creates a dependency tree such that all files will be downloaded 

195 in the order they are needed.  Each of our five benchmark datasets, described in Table 4, can be 

196 downloaded using this GG script.  
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197 Discussion

198 The analysis and interpretation of datasets at the genomic scale is challenging, due to the volume 

199 of data as well as the complexity and number of software programs often involved in the process. 

200 To have confidence in such analyses, it is important to be able to verify the performance of 

201 methods against datasets where the answers are already known. Ideally, such datasets provide a 

202 basis for not just testing methods, but also helping to provide a basis for ensuring the 

203 reproducibility of new methods and establishing comparability between bioinformatics pipelines. 

204 Having an established table format and tools to ensure easy and accurate downloads of 

205 benchmark datasets will help codify how data can be shared and evaluated. Here we have 

206 described five such datasets relevant for bacterial foodborne investigations based on WGS data.  

207 We have also established a standard file format suitable for these and future benchmark datasets, 

208 along with a script that is able to read and properly download them. It is to be emphasized that 

209 these benchmark datasets are useful for comparisons of phylogenomic pipelines and do not 

210 replace a more extensive validation of new pipelines. Such a new pipeline must be validated for 

211 typability, reproducibility, repeatability, discriminatory power, and epidemiological concordance 

212 using extensive isolate collections that are representative for the correct epidemiological context 

213 (van Belkum et al., 2007).

214 The Gen-FS Gopher script along with five new benchmark datasets encourages reproducibility in 

215 the rapidly growing field of phylogenomics for pathogen surveillance. Currently, when new 

216 datasets are published the accessions to each data piece are embedded in a table within the body 

217 of the manuscript. Extracting these accessions from a PDF file can be arduous for large datasets. 

218 Without the GG script one would have to write their own program for downloading data from 

219 multiple databases (BioSample, SRA, GenBank, Assembly database at NCBI, and 

220 OpenTreeOfLife) or manually browse each database using cut/paste operations for each 

221 accession, downloading one by one. Using either route, the end result is often a directory of 

222 unorganized files and inconsistent file names, requiring tedious hand manipulation to get the 

223 correct file names and structure set up for local analysis. Because any given table of data is not in 

224 a standardized format, this process becomes a one-off, and the process has to be onerously 

225 reinvented for each table. Each step of this manual process increases the risk for error and 

226 degrades reproducibility.  Our datasets and download script democratize this process: a single 
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227 command can be cut/pasted into a unix/linux terminal, resulting in the automated download of 

228 the entire dataset (tree, raw fastq files, and assembly files) organized correctly for downstream 

229 analysis. 

230 Further experimental validation of these and future empirical datasets will strengthen this 

231 resource.  We will continue to work on these datasets using Sanger-sequence validation and will 

232 encourage future submitters to validate their datasets, too.  Additionally, we encourage future 

233 submitters to make their entire datasets available through INSDC and OpenTree in our 

234 recommended format.  The participants in Gen-FS are also starting a collaboration with the 

235 Global Microbial Identifier Program (<Global Microbial Identifier,= 2011) that goes beyond the 

236 annual GMI Proficiency Test. Researchers from around the world will be encouraged to 

237 contribute validated empirical and simulated datasets, providing a more diverse set of benchmark 

238 datasets. To aid in quality assurance, we suggest a minimum of 20x coverage for each genome in 

239 a dataset.  Submissions following our described spreadsheet format will ensure compatibility 

240 with our download script, and should include isolates with as much BioSample metadata as 

241 possible including values such as the outbreak code and isolate source (e.g., clinical or 

242 food/environmental). Our work will allow other researchers to contribute benchmark datasets for 

243 testing and comparing bioinformatics pipelines, which will contribute to more robust and reliable 

244 analyses of genomic diversity.  The GitHub page for that effort can be accessed here: 

245 https://github.com/globalmicrobialidentifier-WG3/datasets.
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Table 1(on next page)

Header for standardized table.

Key/value pair information that applies to the entire dataset. Organism and source are

required but other key/value pairs are optional
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1 Table 1.  Available key/value pairs in the head of a dataset.  Organism and source are required but other key/value pairs are 

2 optional.

3

Key Description Example value(s)

Organism The genus, species, or other taxonomic description Listeria monocytogenes

Outbreak
Usually the PulseNet outbreak code, but any other 

descriptive word with no spaces
1408MLGX6-3WGS

PMID The Pubmed identifier of a related publication 25789745

Tree The URL to a newick-formatted tree http://api.opentreeoflife.org/v2/study/ot_301/tree/tree2.tre

Source A person who can be contacted about this dataset Cheryl Tarr

DataType Either empirical or simulated Empirical

IntendedUse
Why this dataset might be useful for someone in 

bioinformatics testing
Epidemiologically and laboratory confirmed outbreak with outgroups

4
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Table 2(on next page)

Body of standardized table

- Reviews and evaluates data submissions in food and color additive petitions and premarket

notifications (GRAS and Food Contact Surfaces notifications) to determine the safety of the

use of a product in foods within the context of applicab Key/value pair information applies to

each taxon, or tip in the tree. The required fields are biosample_acc, strain, and sra_acc. Any

optional field can be blank or contain a dash (-) if no value is given. Field names are case

insensitive.
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1 Table 2. Available field names for the body of a dataset.  The required fields are biosample_acc, strain, and sra_acc.  Any optional 

2 field can be blank or contain a dash (-) if no value is given.  Field names are case insensitive.

3

Field Description required Example value(s)

biosample_acc
The identifier found in the NCBI BioSample database.  

This usually starts with SAMN or SAME. 
Yes SAMN01939119

Strain The name of the isolate Yes CFSAN002349

genBankAssembly The GenBank assembly identifier No GCA_001257675.1

SRArun_acc The Sequence Read Archive identifier Yes SRR1206159

outbreak

If the isolate is associated with the outbreak or 

recall, list the PulseNet outbreak code, or other 

event identifier here. 

No
1408MLGX6-3WGS

outgroup

datasetname To which dataset this isolate belongs Yes 1408MLGX6-3WGS

suggestedReference
For reference-based pipelines, a dataset can suggest 

which reference assembly to use
Yes

TRUE

FALSE

sha256sumAssembly
The sha256 checksum of the genome assembly.  This 

will help assure that the download is successful.
Yes

9b926bc0adbea331a0a71f7bf18f6c7a62ebde7d

d7a52fabe602ad8b00722c56

sha256sumRead1 The sha256 checksum of the forward read Yes
c43c41991ad8ed40ffcebbde36dc9011f471dea6

43fc8f715621a2e336095bf5

sha256sumRead2 The sha256 checksum of the reverse read Yes
4d12ed7e34b2456b8444dd71287cbb83b9c45bd

18dc23627af0fbb6014ac0fca

4
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Table 3(on next page)

Example Dataset

- Reviews and evaluates data submissions in food and color additive petitions and premarket

notifications (GRAS and Food Contact Surfaces notifications) to determine the safety of the

use of a product in foods within the context of applicab This dataset compiles information

from Table 1 and Table 2 and serves as an example for a hypothetical single-isolate dataset
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1 Table 3.  Example dataset.  This dataset compiles information from Table 1 and Table 2 and serves as an example for a hypothetical 

2 single-isolate dataset.

3

4

5

6

Organism Listeria monocytogenes        

Outbreak 1408MLGX6-3WGS        

PMID 25789745

Tree http://api.opentreeoflife.org/v2/study/ot_301/tree/tree2.tre      

Source Cheryl Tarr

DataType Empirical         

IntendedUse Epi-validated outbreak

          

biosample_acc Strain genBankAssembly SRArun_acc outbreak datasetname
suggested

Reference

sha256sum

Assembly

sha256sum

Read1

sha256sum

Read2

SAMN01939119 CFSAN002349 GCA_001257675.1 SRR1206159
1408MLGX6-

3WGS

1408MLGX6-

3WGS
TRUE

9b926bc0a

dbea331a0

a71f7bf18f

6c7a62ebd

e7dd7a52f

abe602ad8

b00722c56

c43c41991

ad8ed40ffc

ebbde36dc

9011f471d

ea643fc8f7

15621a2e3

36095bf5

 4d12ed7e3

4b2456b84

44dd71287c

bb83b9c45b

d18dc23627

af0fbb6014

ac0fca
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Table 4(on next page)

Benchmark dataset characteristics

The key features of each dataset are given in this table.
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1 Table 4.  Key dataset characteristics. The key features of each dataset are given in this table.

2

Dataset Organism
Number of 

Isolates a
Epidemiologically 

linked Isolates b
reference 

genome c
Type of 

dataset
Reference/Comment

Stone Fruit Food 

recall
L. monocytogenes 31 28 CFSAN023463 Empirical PMID: 27694232

Spicy Tuna 

outbreak
S. enterica 23 18 CFSAN000189 Empirical PMID: 25995194

Raw Milk 

Outbreak
C. jejuni 22 14 D7331 Empirical

http://www.outbreakdatabase.com/

details/hendricks-farm-and-dairy-

raw-milk-2008/

Sprouts 

Outbreak
E. coli 10 3 2011C-3609 Empirical

http://www.cdc.gov/ecoli/2014/o12

1-05-14/index.html

Simulated 

outbreak
S. enterica 23 18 CFSAN000189 Synthetic

Simulated dataset based off the S. 

enterica spicy tuna outbreak tree 

and reference genome.

3

4 A Number of Isolates: Total number of isolates in the dataset

5 B Epidemiologically linked isolates: Number of isolates implicated in the recall or outbreak

6 C Reference genome: suggested reference genome for SNP analysis
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