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Abstract 24 

BACKGROUND : Several lines of evidence suggest that dopamine (DA)-influenced neuronal 25 

pathways may malfunction in Tourette Syndrome (TS). A dopamine-responsive abnormality of 26 

brain function in TS could be either presynaptic or postsynaptic. Some PET studies support the 27 

hypothesis of presynaptic abnormalities in levodopa uptake, dopamine synthesis, or dopamine 28 

release. Alternatively, presynaptic dopaminergic function could be normal in TS but dopamine-29 

sensitive abnormalities could exist in striatum, pallidum, thalamus, or cortex.  30 

METHODS: In this study we directly tested the presynaptic hypothesis using a new approach. 31 

We used positron emission tomography (PET) and [
11

C]raclopride (RAC*) to measure synaptic 32 

dopamine release in response to levodopa and placebo infusions (with carbidopa) in 33 

5 neuroleptic-naïve adults with TS and 5 matched control subjects. The primary analysis 34 

examined RAC* binding potential (BPND) in predefined volumes of interest (VOIs). A secondary 35 

analysis compared BPND voxel by voxel over the entire brain. 36 

RESULTS: (1) Overall, baseline RAC* BPND did not differ significantly between groups, 37 

though nucleus accumbens BPND was higher in TS (16%, p=0.051). (2) Across regions, DA 38 

release declined from before to during infusion (p=0.014), including with placebo. (3) This 39 

decline was smaller in TS (p=0.080). (4) Levodopa’s effect on BPND differed significantly in 40 
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right midbrain (p=0.002, corrected), where levodopa displaced RAC* by 59% in control subjects 1 

but increased BPND by 74% in TS subjects, and in parahippocampal gyrus (p=0.02, corrected). 2 

DISCUSSION: Our finding that a before/after RAC* design is confounded by time and/or 3 

expectation effects has implications for other RAC* PET studies. The smaller magnitude of the 4 

decrease with time in TS may be attributable to impaired habituation to the scan environment. 5 

Levodopa’s opposite effect on RAC* binding in TS dopaminergic midbrain was not predicted, 6 

but may signify an abnormal response to dopaminergic stimulation in TS. These findings invite 7 

confirmation in a larger sample. 8 

Introduction 9 

Tourette Syndrome is a chronic neuropsychiatric disorder defined by the presence of both vocal 10 

and motor tics that begin early in life, fluctuate in phenomenology over time, and are not caused 11 

by another illness (American Psychiatric Association 2000; Black 2010b). Tics are brief 12 

movements or noises, repeated many times a day in a highly stereotyped fashion, that may look 13 

intentional but that serve no useful purpose (Black 2010b). Several lines of evidence suggest that 14 

dopamine-influenced neuronal pathways malfunction in Tourette Syndrome (TS) (Albin 2006; 15 

Anderson et al. 1999; Black 2008; Hershey et al. 2004; Singer 2013). 16 

One of the earliest clues to the pathophysiology of tics was their clear response to dopamine D2-17 

like (D2, D3, or D4) receptor antagonists, now confirmed by over 35 randomized controlled 18 

trials (Black 2010a; Singer & Wendlandt 2001). Tics also improve with postsynaptic 19 

dopaminergic stimulation (Anca et al. 2004; Black & Mink 2000; Carpenter et al. 1999; Feinberg 20 

& Carroll 1979; Friedhoff 1982; Gilbert et al. 2003; Gilbert et al. 2000a; Gilbert et al. 2000b; 21 

Nomura & Segawa 1982; Nomura & Segawa 2003), but all these treatment studies confirm that 22 

in TS, abnormal activity in movement-related brain circuits is sensitive to dopamine. Nonmotor 23 

brain circuits also manifest a dopamine-sensitive abnormality of brain function in TS (Hershey et 24 

al. 2004). 25 

However, identifying why this occurs has not been easy (for a superb review, see Singer 2013). 26 

A dopamine-responsive abnormality of brain function in TS could be either presynaptic or 27 

postsynaptic. Studies of TS in vivo have examined dopamine D2-like receptors (D2Rs), 28 

dopamine precursor uptake and monoamine transporters (Albin et al. 2009; Anderson et al. 1999; 29 

Peterson 2001; Singer & Wendlandt 2001; Wong et al. 2008). Post-mortem data are limited by 30 

the small number of adequately studied subjects (Minzer et al. 2004; Swerdlow & Young 2001; 31 

Yoon et al. 2007). Most studies suggest that post-synaptic dopamine D2-like receptor binding is 32 

similar in TS and control subjects (Albin et al. 2009; Hwang et al. 2008; Singer et al. 2002; 33 

Wong et al. 1997), though there are exceptions (de Vries et al. 2010; de Vries et al. 2009; Gilbert 34 

et al. 2006; Minzer et al. 2004; Yoon et al. 2007). Even if dopamine D2-like receptors (D2Rs) are 35 

normal in TS, a postsynaptic abnormality in the response to dopamine stimulation could be 36 

located downstream in striatum, pallidum, thalamus, or cortex (Mink 2006). 37 

Alternatively, several PET or SPECT studies support the hypothesis of presynaptic 38 

abnormalities, i.e. dysfunction in levodopa uptake, dopamine synthesis, or dopamine release 39 

(Albin et al. 2003; Butler et al. 2006; Ernst et al. 1999; Heinz et al. 1998; Hwang et al. 2008; 40 

Malison et al. 1995; Serra-Mestres et al. 2004; Singer et al. 2002; Wong et al. 1994), though 41 

some studies do not (Meyer et al. 1999; Singer 2013; Stamenkovic et al. 2001). One widely 42 
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discussed theory is that basal, tonic dopamine release is normal, but that transient, phasic 1 

dopamine release is not (Singer 2013; Singer et al. 2002; Wong et al. 2008; Yeh et al. 2007a). 2 

Phasic dopamine release is crucial to dopamine’s role in changing behavior (Breitenstein et al. 3 

2006), including learning sequences of movements (Badgaiyan et al. 2007). Remarkably, 4 

however, little research has been done on phasic dopamine release in TS. Amphetamine-induced 5 

striatal dopamine release has been studied, with some support for differences in TS (Singer et al. 6 

2002; Steeves et al. 2010; Wong et al. 2008; Yeh et al. 2007b). However, amphetamine also has 7 

some disadvantages—primarily, that it does not really produce phasic dopamine release in the 8 

usual sense of the word. Rather, it causes prolonged, substantial dopamine release regardless of 9 

environmental demands. Amphetamine also induces euphoria (Drevets et al. 2001) and briefly 10 

increases tic severity (de Vries et al. 2010; de Vries et al. 2009), clouding interpretation of the 11 

results. 12 

Ideally, if a pharmacological challenge drug is used to test phasic dopamine release, it should not 13 

produce effects noticed by the subject. Levodopa, the body’s natural synthetic precursor to 14 

dopamine, is such a drug. Systemic levodopa administration, given with an adequate dose of 15 

carbidopa, which prevents conversion to dopamine but does not cross the blood-brain barrier, 16 

essentially delivers dopamine only to the brain. Confirming this, with adequate carbidopa 17 

levodopa does not alter quantitative whole-brain blood flow (Hershey et al. 2003; Hershey et al. 18 

2000; Hershey et al. 1998). Furthermore, volunteers usually cannot tell whether they are 19 

receiving levodopa or a placebo (Black et al. 2003; Gordon et al. 2007). 20 

The present study tests the presynaptic dopaminergic hypothesis in TS using a novel approach. 21 

Specifically, the hypothesis tested was that levodopa would stimulate striatal dopamine 22 

production differently in people with TS than in people without tics. The radioligand 23 

[
11

C]raclopride (hereinafter RAC*) binds to the dopamine D2 receptor loosely enough to be 24 

displaced by physiological increases of dopamine at the synapse. We used PET and RAC* to 25 

measure synaptic dopamine release in response to a standardized levodopa infusion (with 26 

carbidopa) in TS and matched control subjects.  27 

Materials & Methods 28 

Regulatory approvals 29 

This study was approved by the Human Studies Committee of Washington University School of 30 

Medicine (IRB, protocol # 03-0347, the WUSM Radioactive Drug Research Committee 31 

(protocol # 497F), and the U.S. Food and Drug Administration (Investigator IND #69,745 for i.v. 32 

levodopa). All subjects provided written confirmation of informed consent before study 33 

participation. 34 

Subjects 35 

Diagnostic assessment included psychiatric and neurological examination by a movement-36 

disorders-trained neuropsychiatrist (KJB) and a validated semistandardized psychiatric 37 

diagnostic interview (SCID-IV; First et al. 2002). Tic subjects met DSM-IV-TR criteria for 38 

Tourette’s disorder. Control subjects with no history of tics were matched one-to-one for age, sex 39 

and handedness (except one ambidextrous TS subject was matched with a right-handed control). 40 
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Exclusion criteria included any lifetime neurological or Axis I psychiatric disorder (except TS, 1 

ADHD and OCD were allowed in tic subjects, and migraine and specific phobia were allowed in 2 

either group), current serious general medical illness, medication history of dopamine 3 

antagonists or other drugs likely to affect the dopaminergic system, current use of any 4 

neuroactive medication, lactation, possibility of pregnancy, or contraindication to levodopa or 5 

MRI. 6 

Clinical features were characterized by the Diagnostic Confidence Index (0=no features of TS; 7 

100=all enumerated features of classic TS; scores in the clinical validation sample ranged from 5 8 

to 100 with mean ± S.D. = 61 ± 20) (Robertson et al. 1999); the YGTSS, an expert-rated measure 9 

of tic severity over the previous week (motor tic scale 0-25, vocal tic scale 0-25, impairment 10 

scale 0-50, higher scores indicating a higher symptom burden) (Leckman et al. 1989; Walkup et 11 

al. 1992); the revised Tic Symptom Self-Report (TSSR) scale, a self-report scale including 12 

scores of 0-3 for each of 18 motor tics and 16 vocal tics, with 3 indicating tics were “very 13 

frequent and very forceful” over the preceding two weeks (Cohen et al. 1984; Scahill et al. 14 

1999); the ADHD Rating Scale, an expert-rated measure of current severity of Attention-Deficit/15 

Hyperactivity Disorder (ADHD), based on DSM-IV criteria (range 0-54, higher scores indicating 16 

a higher symptom burden) (DuPaul et al. 1998); and the Y-BOCS, an expert-rated measure of 17 

current obsessive-compulsive disorder (OCD) severity (range 0-40, higher scores indicating a 18 

higher symptom burden) (Goodman et al. 1989a; Goodman et al. 1989b). 19 

Overview of subject participation 20 

Each subject had 4 RAC* PET scans: two 21 

scans on each of two days at least a week 22 

apart (Figure 1). After oral carbidopa and 23 

the baseline PET scan, an infusion of 24 

levodopa or saline placebo was begun by 25 

vein at an individualized dose intended to 26 

produce a steady-state levodopa plasma 27 

concentration of 600ng/mL. After allowing 28 

30 minutes to approach steady-state 29 

levodopa concentration, a second scan was 30 

done while the infusion continued. The 31 

order (levodopa on day 1 and placebo on 32 

day 2, or the reverse) was assigned 33 

randomly to each subject, and subjects and 34 

PET staff were blind to drug assignment 35 

during all scans.  36 

The room was darkened and subjects were instructed to lie quietly in the scanner with eyes 37 

closed throughought each scan. Study staff asked subjects every 5 or 10 minutes if they were 38 

comfortable and made sure they were awake.  39 

Levodopa infusion 40 

Subjects took 200mg carbidopa by mouth at least 1 hour before levodopa infusion began. A dose 41 

Figure 1. Study overview. 
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of levodopa estimated to fill each subject’s volume of distribution at a target concentration of 1 

600ng/mL was infused over 10 minutes, followed until the second PET scan of the day was 2 

completed by a maintenance infusion at a rate estimated to compensate for elimination. In prior 3 

work, these infusion rates produced a mean blood level across subjects of ~625ng/mL after 25 4 

minutes of infusion (Black et al. 2003). On average, that concentration produces substantial 5 

motor benefit in early Parkinson disease (Contin et al. 2001; Harder & Baas 1998). However, 6 

this infusion method is well enough tolerated that subjects cannot reliably distinguish the 7 

levodopa and saline infusions (Black et al. 2003; Gordon et al. 2007).  8 

Levodopa plasma concentration 9 

Levodopa plasma concentration was 10 

measured by a validated method (Karimi 11 

et al. 2006). 12 

Image acquisition 13 

RAC* was given i.v. over an interval of 14 

30 seconds. PET images were acquired 15 

on a Siemens ECAT 961 camera 16 

beginning with arrival of radiotracer in 17 

the head and continuing for 60 minutes 18 

using image frames of increasing 19 

duration.  20 

An MP-RAGE sequence was used to 21 

acquire a 3-dimensional T1-weighted 22 

image of the brain with acquisition time 23 

~400 sec and voxel dimensions 24 

1.25x1x1mm
3
.  25 

Image alignment 26 

The PET images were realigned within 27 

each subject and then to the subject’s 28 

MRI using a rigid-body alignment 29 

method with low measured error, 30 

optimized for dynamic PET images (Black et al. 2001; Black et al. [submitted]; Eisenstein et al. 31 

2012; Perlmutter et al. 1998).  32 

VOI analysis 33 

Nine subcortical volumes of interest (VOIs) were defined for each subject from that subject’s 34 

MRI by a high-dimensional semi-automated method of known high test-retest reliability (Wang 35 

et al. 2007) (Figure 2). These VOIs corresponded to thalamus (Th) and to left and right putamen 36 

(Pu), caudate (Cd), nucleus accumbens (NA), and globus pallidus (GP). A tenth VOI was created 37 

from the average (weighted by region volume) of 22 FreeSurfer-labeled gray matter regions 38 

comprising frontal cortex (11 left- and 11 right-hemisphere VOIs). This large frontal VOI 39 

Figure 2. Automated striatal VOIs. 
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produced adequate counting statistics for modest noise in the time-activity curve (Figure 3, lower 1 

panel). A cerebellum VOI was traced on each subject’s MR image. All VOIs were transferred to 2 

each subject’s realigned PET images using the optimized MRI-to-PET transformation matrix 3 

computed in the alignment step. The cerebellar VOI was trimmed if needed so that no voxel in 4 

the VOI corresponded to any of the inferior-most 4 slices in any frame of that subject’s original 5 

PET images. Thus in each subject the VOI corresponding to a given region was identical for all 4 6 

PET scans.  7 

The binding potential BPND (Innis et al. 2007; Mintun et al. 1984), an estimate of the quotient 8 

Bmax/KD, was computed as one less than the distribution volume ratio (DVR), which was derived 9 
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Figure 3. Decay-corrected time-activity curves (filled circles) for the putamen VOI 

(upper panel) and the frontal lobe VOI (lower panel) from one subject's pre-levodopa 

PET scan. Hollow circles mark the TAC in the cerebellar reference region. 
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for each of the nine subcortical VOIs and the frontal lobe VOI using the cerebellar reference 1 

region (Logan et al. 1996). As we had no a priori hypothesis about laterality of results in any of 2 

the paired basal ganglia nuclei, we averaged corresponding left and right BPNDs (weighted by 3 

VOI volume) to produce for each PET scan 6 final BPND values, one each for frontal lobe cortex 4 

(FL), thalamus (Th), putamen (Pu), caudate (Cd), nucleus accumbens (NA), and globus pallidus 5 

(Pl).  6 

The primary statistical analysis used a repeated-measures analysis of variance (rmANOVA) with 7 

BPND  as dependent variable, diagnosis (tic or control) as a between-group variable, time (before 8 

or during the infusion) and day (placebo or levodopa) as within-subject variables, and region (the 9 

6 VOIs) as a repeated measure. Exploratory analyses used a rmANOVA for each of the 6 VOIs. 10 

Whole-brain analysis 11 

For each subject, a DVR image was computed using at each voxel in the brain the Logan 12 

graphical method with the cerebellar VOI described in the preceding section as reference region 13 

(Logan et al. 1996). As a methods check, the mean across striatal VOIs of the voxelwise DVR 14 

value was essentially identical to the regional DVR computed using the standard methods 15 

described above. Analysis was limited to voxels in atlas space at which every subject contributed 16 

data from all frames of the dynamic PET acquisition. 17 

Whole-brain comparisons used voxelwise t tests corrected by FDR for multiple comparisons in 18 

SPM 8, as follows. A t test compared DVR images between the TS and the control group, and 19 

clusters of contiguous voxels with t exceeding the threshold corresponding to p<0.001 were 20 

accepted as significantly different between groups if cluster volume exceeded the threshold 21 

required to control False Discovery Rate for the entire dataset at p<0.05.  22 

Two comparisons were made, one based on mean baseline DVR images and the other based on 23 

levodopa effect ΔDVR images. Each subject’s two pre-infusion RAC* PET scans, one from each 24 

scan day, were averaged to create that subject’s mean baseline DVR image. The difference of the 25 

during-levodopa DVR image and the during-placebo DVR image in a subject was used to create 26 

that subject’s levodopa effect ΔDVR image. 27 

Results 28 

Subjects 29 

Subject characteristics and adequacy of matching are reported in Table 1, and clinical 30 

characteristics of the Tourette syndrome group are reported in Table 2. 31 

 32 

Table 1. 

Measure Tic Subjects (N=5) Controls (N=5) 

Age (years; mean ± S.D.) 33.8 ± 12.9 32.8 ± 11.1 

Sex, male (N) 4 4 

Race, Caucasian (N) 4 4 
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Table 1. 

Measure Tic Subjects (N=5) Controls (N=5) 

Handedness, right (N) 4 3 

OCD dx (N) 1 0 

ADHD dx (N) 2 0 

 1 

Table 2. 

Scale Scores (mean ± S.D.) 

DCI score 

 

36.8 ± 22.0 

YGTSS  Motor tic score 10.6 ± 3.4 

Vocal tic score 7.8 ± 4.0 

Impairment score 9.4 ± 9.8 

TSSR score Motor  9.3 ± 5.9 

Vocal  3.2 ± 2.3 

Total 12.5 ± 7.9 

ADHD Rating Scale  

 

11.6 ± 10.7 

*Abbreviations: DCI=Tourette Syndrome Diagnostic Confidence Index, YGTSS=Yale Global Tic Severity Scale, Y-BOCS=Yale-Brown 2 
Obsessive Compulsive Scale, ADHD=Attention Deficit Hyperactivity Disorder, TSSR=Tic Symptom Self Report 3 
**The Y-BOCS was completed for only 1 tic subject; the score was 9 on day 1 and 14 on day 2. 4 

Levodopa levels 5 

Levodopa plasma concentrations were ~800-1000ng/ml before the RAC* scan and ~500-6 

700ng/ml after the RAC* scan. in ng/mL, and did not differ significantly between groups 7 

(Table 3 or Figure 4).  8 

Table 3. Levodopa plasma concentrations, ng/ml, mean ± SD 

Time Controls  Tic subjects p (t test) 

Peak (10’ into infusion) 1591.5 ± 232.5  1938.8 ± 726.3 0.36 

Just before RAC* scan 788.0 ± 152.4  992.4 ± 322.9  0.26 

Just after RAC* scan 529.5 ± 149.2 662.8 ± 136.1  0.21 
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Figure 4. Levodopa plasma concentrations. 
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Stability of RAC* binding between days and with time  1 

This study includes a before- and after-infusion scan on each of two days. On one day the 2 

infusion contains levodopa, and on the other day the solution is a saline placebo. Thus each 3 

subject has three non-levodopa scans (the first scan of each day plus the scan during the placebo 4 

infusion). As expected, BPND was similar in the two pre-levodopa scans (correlated at r = 0.99 5 

across VOI and subject).  6 

BPND changed between the 1
st
 and 2

nd
 scan of the day (main effect of time, F=10.605, df=1,8, 7 

p=0.012), but to our surprise this change did not differ significantly between the levodopa and 8 

placebo days (time x 9 

day interaction, 10 

F=0.014, df=5,4, 11 

p=0.909). In other 12 

words, the two scans 13 

on the placebo day 14 

were not identical. 15 

Mean BPND was 2.7% 16 

to 24.0% higher during 17 

the placebo infusion, 18 

indicating decreased 19 

dopamine release 20 

compared to earlier on 21 

the same day. The 22 

change from the first to 23 

the second scan of 24 

each day was 25 

significant in most 26 

individual region analyses: main effect of time, thalamus p=0.002, frontal lobe p=0.032, caudate 27 

p=0.039, pallidum p=0.048, and nucleus accumbens p=0.052 (Figure 5; multivariate time x 28 

region interaction F=4.173, df=5,4, p=0.096).  29 

There was a trend for the change in BPND during the infusion to be smaller in tic subjects (time x 30 

diagnosis interaction F=4.211, df=1,8, p=0.074; in individual regions, 0.05 < p < 0.10 for NA, 31 

Pu, and Cd VOIs). The 32 

change in BPND on the 33 

placebo day is shown in 34 

Figure 6). 35 

Baseline RAC* binding 36 

Across VOIs, RAC* 37 

binding did not differ 38 

significantly between tic 39 

and control subjects 40 

(multivariate main effect 41 

Figure 5. Change in BPND with placebo infusion. 

Figure 6. Change in BPND with placebo infusion: tic vs. control 

(p values for difference between groups, from t tests for each region). 
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10 

of diagnosis, F=0.744, df=1,8, p=0.413; tic vs control). Nevertheless, baseline RAC* binding 1 

was numerically higher in TS by 13-17% in the three striatal VOIs and by 5-7% in the FL and Th 2 

VOIs. The whole-brain analysis identified no significant differences in baseline RAC* binding 3 

between TS and control subjects.  4 

Effect of levodopa on RAC* binding 5 

Since the pre- and on-placebo scans differed, the only appropriate comparison for the on-6 

levodopa *RAC scan is the on-placebo scan. Therefore we assessed the effect of levodopa by 7 

comparing the BPND  in the post-LD and post-placebo scans. 8 

 In the VOI analysis, there was not a 9 

significant effect of LD (day x time 10 

interaction, F=0.014, df=1,8, 11 

p=0.909, the effect of LD did not 12 

differ overall in tic subjects (day x 13 

time x diagnosis interaction, F=1.308, 14 

df=1,8, p=0.286), and the 4-way 15 

interaction (diagnosis x day x time x 16 

region) was not significant (F=1.577, 17 

df=5,4, p=0.340). However, the 18 

diagnosis x day x time interaction 19 

was significant for pallidum 20 

(p=0.050) with a trend in thalamus 21 

(p=0.098; Error! Reference source 22 

not found.). In these regions BPND 23 

decreased in control subjects, 24 

consistent with an increase in dopamine release during the levodopa infusion, whereas the mean 25 

effect in the tic subjects was  in the 26 

opposite direction.  27 

The whole-brain analysis identified a 28 

similar effect (decreased RAC* 29 

binding with levodopa in controls, 30 

increased in TS) in a cluster of 38 31 

midbrain voxels (1.0 ml) with peak t at 32 

atlas coordinate (1.5, −21, −15) and 33 

extending laterally, in the right 34 

substantia nigra (peak t(_df) = 9.0, 35 

FDR corrected p=0.002; Figure 9, 36 

upper panel). A second significant 37 

cluster of 19 voxels (0.5 ml) was seen 38 

in parahippocampal gyrus (peak 39 

t=7.92 at (22.5,−39,−6), corrected 40 

p=0.023; Figure 9, lower panel). The 41 

mean regional change in BPND with 42 

levodopa is shown in Figure 8. In both 43 

Figure 8. Levodopa-induced change in BPND, TS vs. control, 

in the clusters identified in the whole-brain analysis. Same 

conventions as in the previous figure. 
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Figure 7. Levodopa-induced change in BPND, tic vs. control. 

Mean difference in BPND during levodopa vs. placebo 

infusion is shown for each group. 
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these clusters, the BPND on 1 

placebo was positive in all subjects 2 

(p < 0.001, binomial distribution), 3 

consistent with nontrivial RAC* 4 

binding. The highest t value in the 5 

whole-brain comparison, 11.62, 6 

occurred at (−31.5, 6, −15) in 7 

Brodmann’s area 13 (uncorrected 8 

p = 1.37 × 10
−6

; Bonferroni 9 

threshold 1.17 × 10
−6

), but the 10 

cluster volume was only 0.1 ml, 11 

not significant by FDR correction 12 

(Figure 10). A third statistically 13 

significant cluster was centered at 14 

the posterior edge of the occipital 15 

lobe and in this cluster the BPND 16 

on placebo was negative in half the 17 

subjects; this cluster likely does 18 

not reflect D2R binding. 19 

Discussion 20 

Baseline striatal RAC* binding 21 

We found no difference in RAC* 22 

binding between subjects with or 23 

without TS. Previous RAC* PET 24 

studies (Singer et al. 2002; 25 

Turjanski et al. 1994) or IBZM 26 

SPECT studies in TS (George et al. 27 

1994; Muller-Vahl et al. 2000) 28 

similarly found no difference. 29 

However, an unpublished study by 30 

De Vries and colleagues reported decreased RAC* 31 

binding at baseline in the putamen and right caudate 32 

nucleus (de Vries et al. 2010; de Vries et al. 2009). 33 

Outside the striatum, two PET studies using higher 34 

affinity D2R radioligands indicated decreased 35 

binding in thalamus and frontal cortex (Gilbert et al. 36 

2006; Steeves et al. 2010). In vivo studies with 37 

these radioligands are sensitive to synaptic 38 

dopamine concentration as well as to receptor 39 

number and affinity. A postmortem study found 40 

increased cortical dopamine receptor binding in TS 41 

(Yoon et al. 2007), though such studies are 42 

Figure 9. Significant clusters in which the RAC* binding 

response to levodopa differed between TS and control 

subjects. Upper 3 sections, substantia nigra. Lower 2 sections, 

parahippocampal gyrus. Color bar indicates t statistic. 

Figure 10. Peak voxel for difference in RAC* 

binding response to levodopa between TS and 

control subjects. Color bar indicates t statistic. 
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necessarily limited in sample size. 1 

Change in striatal BPND with placebo 2 

Implications for other RAC* challenge studies 3 

BPND increased during the placebo infusion in the striatum, thalamus and frontal lobe VOIs, 4 

especially in control subjects. Most published information on the stability of RAC* binding over 5 

time reflects time intervals of days to months (Hietala et al. 1999; Volkow et al. 1993; Volkow et 6 

al. 1994; Yoder et al. 2011). Mawlawi et al. (2001) scanned 10 subjects twice each on the same 7 

day using a bolus-plus-constant-infusion method, and found no significant mean change from the 8 

first to the second scan. However, Alakurtti and colleagues (2011) found that mean BPND 9 

increased from the first to the second scan of the day in striatal and thalamic regions, with the 10 

change (about +5%) reaching statistical significance in medial and lateral thalamus.  11 

With this background, the observation in the present study of increased BPND from the first to 12 

second scan of the day has implications for RAC* challenge PET studies in general, essentially 13 

all of which use a before- vs. after-intervention design. If the results in our sample are typical, the 14 

before-after design is flawed in that BPND increases from the first to the second scan even 15 

without active intervention. This does not invalidate the results of methylphenidate challenge 16 

RAC* studies, since that challenge decreases striatal RAC* BPND by a large fraction, but it may 17 

mean that before-after RAC* studies are less sensitive to manipulations that would decrease 18 

dopamine release. 19 

Possible pathophysiological interpretation 20 

The increase in BPND during the placebo infusion is most likely associated with passage of time 21 

rather than a placebo effect per se, especially as placebo administration is more likely to increase 22 

dopamine release (de la Fuente-Fernandez et al. 2001b; de la Fuente-Fernandez & Stoessl 2002). 23 

The presumed decrease in dopamine release during the placebo infusion could indicate that 24 

control subjects accommodate to the scanner environment after a while.  25 

The fact that TS subjects do this less may correspond to more persistent alertness/arousal. 26 

Greater arousal would correspond to the observation of Chappell and colleagues that TS subjects 27 

release more ACTH and norepinephrine with lumbar puncture, which the authors interpreted to 28 

indicate a higher level of arousal/anxiety in TS (Anderson et al. 1999; Chappell et al. 1994). 29 

Additionally, many people with TS report hypersensitivity to mild unchanging sensations, which 30 

can be seen as a failure of habituation to an unchanging sensory environment (Belluscio et al. 31 

2011; Panagopoulos et al. [submitted]). 32 

Alternatively, a smaller change in dopamine release may indicate a more steady level of 33 

boredom in TS subjects. Decreased dopamine release with boredom would fit with the 34 

observation that at baseline the TS group had (nonsignificantly) higher RAC* than controls in 35 

the striatal and thalamic VOIs. Boredom, or its complement novelty seeking, have been related 36 

to dopamine; in Cloninger’s model of temperament, the Novelty Seeking trait was designed with 37 

the intent to reflect central dopaminergic status, and some experimental data have supported that 38 

connection (Cloninger 1987; Keltikangas-Järvinen & Jokela 2012). Boredom is also a typical 39 

clinical manifestation of ADHD, which can be diagnosed in about half of TS subjects, and is 40 
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influenced by dopamine. Adults and children with TS showed improvement in ADHD rating 1 

scale scores when treated with levodopa (Gordon et al. 2007 and unpublished data). 2 

Effect of levodopa infusion on RAC* binding  3 

Levodopa effect on RAC* binding in striatum 4 

Striatal RAC* binding was not substantially changed by levodopa. Initially this result came as a 5 

surprise to the authors, because levodopa was given expressly with the expectation that it would 6 

increase synaptic dopamine levels. Briefly, support for this expectation includes the following. 7 

First, in Parkinson disease there is overwhelming evidence both by clinical observations and by 8 

RAC* PET imaging that exogenous levodopa substantially increases striatal dopamine release 9 

(Antonini et al. 1997; de la Fuente-Fernandez et al. 2001a; Pavese et al. 2006). In subjects 10 

without dopamine deficiency, the evidence is somewhat less direct, but still supportive: 11 

intravenous levodopa is rapidly taken up from the bloodstream into the brain and converted into 12 

dopamine, and several studies provide evidence that in healthy subjects it then boosts synaptic 13 

dopamine release (reviewed in Gordon et al. 2007). For instance, exogenous levodopa produces 14 

has clear sedative and cognitive effects in healthy people (Andreu et al. 1999; Kelly et al. 2009; 15 

Weis et al. 2012). 16 

Thus the authors originally expected that exogenous levodopa would decrease striatal RAC* 17 

binding. However, further reflection and reading have motivated a different view whereby the 18 

results support the original goal of choosing a pharmacological challenge agent that would 19 

stimulate phasic dopamine release, but under endogenous control. Recall that the concern with 20 

stimulants as challenge agents was that they cause a substantial release of dopamine at the 21 

striatal synapse regardless of current environmental demands; it may produce a ceiling effect for 22 

dopamine release that does not reflect typical endogenous control. A sensible hypothesis to 23 

explain the results of the present study would be that a research subject lying awake in a quiet, 24 

darkened room without specific cognitive demands has no need for a substantial release of 25 

dopamine, and thus even if exogenous levodopa has added dopamine to presynaptic vesicles, 26 

they are not released at a substantial rate at the synapse. A levodopa-raclopride study of a motor 27 

task in healthy individuals provides direct experimental support of this hypothesis (Floel et al. 28 

2008). The study was properly designed with two sessions, placebo on one day and levodopa on 29 

another, with randomized order. Levodopa increased striatal dopamine release during 30 

performance of a motor task, but not at rest! Since in the present study all subjects were at rest 31 

during all scans, the results are consistent with those of Floel and colleagues (2008). 32 

Levodopa effect on RAC* binding in midbrain, cortex, and thalamus 33 

Levodopa stimulated dopamine release in controls but reduced it in TS subjects in midbrain 34 

(approximately VTA/substantia nigra) and in parahippocampal gyrus. Similar effects, though not 35 

statistically significant, were observed in orbital cortex (Brodmann’s area 13) and in thalamus.  36 

One expects exogenous levodopa to increase dopamine release in the substantia nigra, and this 37 

occurred in the control subjects. D2 and D3 dopamine receptors are present in the substantia nigra 38 

and their activation inhibits spike firing, dopamine synthesis and dopamine release by nigral 39 

dopaminergic cells (Grace 2002). We hypothesize that levodopa increased dopamine stimulation 40 
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of these inhibitory D2-like receptors in control subjects, and this may have prevented levodopa 1 

from stimulating nigrostriatal dopamine release into the striatum.  2 

Subjects with TS, however, showed an increase in substantia nigra RAC* binding with levodopa, 3 

consistent with a decrease in nigral dopamine release. Nigral dopamine release has been related 4 

to reward and novelty in humans. Healthy adults with higher novelty seeking scores had lower 5 

D2-like binding ([
18

F]fallypride) in SN, consistent with greater dopamine release (Zald et al. 6 

2008). Functional MRI studies have also demonstrated substantia nigra signal related to stimulus 7 

novelty or to the Novelty Seeking trait (Bunzeck & Duzel 2006; Krebs et al. 2011; Krebs et al. 8 

2009). Healthy adults receiving a sweet vs salty taste had BOLD activation in this region 9 

(O'Doherty et al. 2002). Despite this information, it is not clear how to relate a decrease in 10 

levodopa-stimulated dopamine release in substantia nigra to the pathophysiology of TS. 11 

Explaining the similar difference in nigral levodopa response in TS in parahippocampal gyrus 12 

and orbital cortex is no easier. Nevertheless, these results document an abnormality of 13 

presynaptic dopaminergic pharmacology in TS. 14 

There was a trend for a similar effect in thalamus; dopamine release increased with levodopa 15 

infusion in control thalamus but decreased in TS subjects. A [
11

C]FLB-457 PET study found a 16 

similar result, in that amphetamine provoked thalamic dopamine release in control subjects but 17 

not in TS (Steeves et al. 2010). 18 

Limitations 19 

Higher affinity radioligands, such as [
18

F]fallypride or [
11

C]FLB457, have advantages for 20 

measuring cortical D2Rs, e.g. in the frontal lobe where D2Rs appear at much lower 21 

concentrations than in the striatum. There are two primary concerns with RAC* outside the 22 

striatum (reviewed thoroughly in Egerton et al. 2009). The first is a reliability issue: since the 23 

concentration of D2-like receptors is low in cortex compared to striatum, the counting statistics 24 

are poor for cortical VOIs of similar volume, and this renders the computed BPNDs suspect. For 25 

instance, some regional RAC* BPNDs are negative or close enough to zero that displacement 26 

studies produce results that are hard to interpret. In the present study, FreeSurfer-defined cortical 27 

regions allowed the creation of a large, reliably defined frontal lobe VOI, in which PET time-28 

activity curves were low in noise (Figure 3, lower panel), allowing a statistically reliable estimate 29 

of BPND that was uniformly positive. 30 

The second concern with RAC* in extrastriatal regions is one of validity or interpretation. 31 

RAC* binding in cortex occurs at low levels, only some of which is attributable to specific 32 

binding (Farde et al. 1988). The concern is whether specific binding in cortex represents 33 

dopamine D2-like receptors. D2 and D4 receptors are expressed in human prefrontal cortex, 34 

though at relatively low concentrations compared to striatum (Meador-Woodruff et al. 1996). 35 

Raclopride may even have superior sensitivity to fallypride for measuring dopamine release in 36 

some cortical regions (Slifstein et al. 2010). Human thalamus contains predominantly D3 rather 37 

than D2 receptors (Sun et al. 2012). The validity concern is less worrisome in substantia nigra, 38 

where D2 and D3 receptors are well characterized. There are precedents for interpreting 39 

substantia nigra RAC* displacement in terms of synaptic dopamine release (Egerton et al. 2009).  40 

Finally, the limited sample size likely prevented identifying some significant findings (type II 41 
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error). Nevertheless, the sample size was adequate to find the significant group differences 1 

described above. 2 

Future directions 3 

These results suggest a natural next step for research in TS: testing whether dopamine release in 4 

TS differs during a dopamine-releasing cognitive (or other) task. Levodopa may augment the 5 

task-evoked release or interact with it differently in people with versus without tics. Along these 6 

lines, a cognitive-pharmacological interaction fMRI study found that LD changed the BOLD 7 

responses to a working memory task (Hershey et al. 2004). A newer levodopa infusion produces 8 

roughly twice as high a levodopa plasma concentration as the infusion used in this study (Gordon 9 

et al. 2007), and may produce greater dopamine release. 10 
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