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Plant resistance against insect herbivory has greatly focused on antibiosis, whereby the

plant has a deleterious effect on the herbivore, and antixenosis, whereby the plant is able

to direct the herbivore away from it. Although these two types of resistance may reduce

injury and yield loss, they can produce selection pressures on insect herbivores that lead

to resistance. Tolerance, on the other hand, is a more sustainable pest management

strategy because it involves only a plant response and therefore does not cause evolution

of resistance in target pest populations. Despite its attractive attributes, tolerance has

been poorly studied and understood. In this critical, interpretive review, we discuss

tolerance to insect herbivory and the biological and socioeconomic factors that have

limited its use in plant resistance and integrated pest management. First, tolerance is

difficult to identify, and the mechanisms conferring it are poorly understood. Second, the

genetics of tolerance are mostly unknown. Third, several obstacles hinder the

establishment of high-throughput phenotyping methods for large-scale screening of

tolerance. Fourth, tolerance has received little attention from entomologists because, for

most, their primary interest, research training, and funding opportunities are in

mechanisms which affect pest biology, not plant biology. Fifth, the efforts of plant

resistance are directed at controlling pest populations rather than managing plant stress.

We conclude this paper by discussing future research and development activities.
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12 Abstract

13 Plant resistance against insect herbivory has greatly focused on antibiosis, whereby the plant has 

14 a deleterious effect on the herbivore, and antixenosis, whereby the plant is able to direct the 

15 herbivore away from it. Although these two types of resistance may reduce injury and yield loss, 

16 they can produce selection pressures on insect herbivores that lead to resistance. Tolerance, on 

17 the other hand, is a more sustainable pest management strategy because it involves only a plant 

18 response and therefore does not cause evolution of resistance in target pest populations. Despite 

19 its attractive attributes, tolerance has been poorly studied and understood. In this critical, 

20 interpretive review, we discuss tolerance to insect herbivory and the biological and 

21 socioeconomic factors that have limited its use in plant resistance and integrated pest 

22 management. First, tolerance is difficult to identify, and the mechanisms conferring it are poorly 

23 understood. Second, the genetics of tolerance are mostly unknown. Third, several obstacles 

24 hinder the establishment of high-throughput phenotyping methods for large-scale screening of 

25 tolerance. Fourth, tolerance has received little attention from entomologists because, for most, 

26 their primary interest, research training, and funding opportunities are in mechanisms which 

27 affect pest biology, not plant biology. Fifth, the efforts of plant resistance are directed at 

28 controlling pest populations rather than managing plant stress. We conclude this paper by 

29 discussing future research and development activities.

30
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32 INTRODUCTION

33 Is tolerance the forgotten child of plant resistance? Its attributes are so appealing, yet it 

34 has received the least attention of the three types of plant resistance. As an insect pest 

35 management tactic, tolerance may be the consummate strategy (Pedigo & Higley 1992). This is 

36 because a central tenet of integrated pest management (IPM) is that we tolerate some amount of 

37 pest injury. By making plants more tolerant of injury, we are achieving this important goal. 

38 Another goal is to use tactics that impose little selection pressure that will lead to pest resistance 

39 to those tactics. Contrary to antixenosis and antibiosis, tolerance does not affect insect biology or 

40 behavior (Smith 2005); therefore, pests cannot become resistant to tolerant plants. Clearly, the 

41 conceptual advantages of tolerance in plant resistance cannot be discounted.

42 We believe there are several reasons why tolerance has not been developed as 

43 successfully as antibiosis and antixenosis. First, tolerance is difficult to identify, and the 

44 mechanisms conferring it are poorly understood. Second, the genetics of tolerance are mostly 

45 unknown. Third, several obstacles still hinder the establishment of high-throughput phenotyping 

46 methods for large-scale screening of tolerance. Fourth, tolerance has received little attention 

47 from entomologists because, for most, their primary interest, research training, and funding 

48 opportunities are in mechanisms which affect pest biology, not plant biology. Fifth, the efforts of 

49 plant resistance are still directed at controlling pest populations rather than managing plant stress. 

50 In this paper, we discuss tolerance and the factors that have limited its use in plant resistance and 

51 IPM.

52 SURVEY METHODOLOGY

53 Primary and secondary literature relevant to the topic of this paper was assessed using 

54 Web of Science (Clarivate Analytics) and Google Scholar. Key words such as <plant tolerance,= 
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55 <host plant resistance,= <plant resistance,= <insect resistance,= <plant breeding,= <pest 

56 resistance,= <antibiosis,= and <antixenosis= were searched between 1 January and 31 May, 2017.

57 DEFINITIONS AND CONCEPTS

58 Before discussing the five factors above in detail, we first need to define tolerance. In this 

59 instance, precisely defining terms is important because there continues to be considerable 

60 overlap in plant resistance definitions. At the outset, we recognize tolerance as distinctly 

61 different from the two other resistance types: antibiosis and antixenosis. 

62 Antibiosis is a type of resistance that contains at least one plant characteristic that affects 

63 pest biology in a deleterious manner. Antixenosis is a type of resistance that contains at least one 

64 plant characteristic that directs a pest away from it. Tolerance is a type of resistance that causes 

65 the plant to compensate for pest injury to a degree exceeding non-tolerant plants (Kogan & 

66 Ortman 1978; Painter 1951; Smith 2005). In an evolutionary context, tolerance is defined as the 

67 slope of the line describing the association between fitness and level of damage for a set of 

68 genetically related plants (Strauss & Agrawal 1999). In agronomic situations, tolerant crop 

69 varieties are able to withstand injury and produce acceptable yields (Flinn et al. 2001; Qiu et al. 

70 2011; Webster 1990; Webster et al. 1991). From an ecological perspective, tolerant plants can 

71 maintain fitness in response to pest injury (Núñez-Farfán et al. 2007; Rosenthal & Kotanen 

72 1994). 

73 Both antibiosis and antixenosis involve a plant response and a pest response. However, in 

74 the case of tolerance only a plant response is involved. Therefore, there is a nonreciprocal 

75 process associated with tolerance (Smith 2005). This non-reciprocity has important ramifications 

76 when considering the use of tolerant cultivars in IPM programs.
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77 Like antibiosis and antixenosis, tolerance is a type of resistance. Tolerance (as well as 

78 antibiosis and antixenosis) is not a mechanism of resistance (Smith 1997). There are numerous 

79 mechanisms conferring tolerance (Koch et al. 2016; Strauss & Agrawal 1999; Tiffin 2000), just 

80 as there are numerous mechanisms for antibiosis and antixenosis (Du et al. 2009; War et al. 

81 2012). Therefore, different and distinct mechanisms that enhance pest mortality collectively 

82 belong to the antibiosis resistance type.

83 What do we mean by stating that tolerant hosts can compensate for injury better than 

84 non-tolerant hosts? Plant response to biotic injury depends on four factors: the intensity of injury, 

85 the time of injury, the type of injury, the plant part injured, and interactions with environmental 

86 factors (Peterson & Higley 2001). The intensity of injury is very important when considering the 

87 potential impact of the stressor on host yield or fitness. The relationship was described in the 

88 form of a damage curve by Tammes (1961), and has since been supported by substantial 

89 empirical evidence (Shelton et al. 1990). 

90 Pedigo et al. (1986) defined portions of the damage curve more than two decades after its 

91 inception (Fig. 1). The damage curve can be used to present some of the basic aspects of 

92 tolerance. Although the initial portion of the damage curve is termed the tolerant region, there 

93 are actually four portions that can theoretically be expressed differentially by tolerant plants 

94 when compared with nontolerant plants. The damage curve can be altered by extending the 

95 initial zero slope of the damage curve; i.e., no damage per unit injury is expressed at higher 

96 levels of injury for tolerant plants than for nontolerant plants (Fig. 2a). Tolerant plants also may 

97 be able to affect the compensation area of the damage curve in two ways. First, because this area 

98 is curvilinear (with a negative decreasing slope), tolerant plants may express less damage per 

99 unit injury (Fig. 2b). Second, the slope is not altered, but the curvilinear portion is extended into 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3099v1 | CC BY 4.0 Open Access | rec: 20 Jul 2017, publ: 20 Jul 2017



100 higher levels of injury (Fig. 2c). The linear portion can also be affected by tolerant plants in two 

101 ways. First, the constant, negative slope (constant damage per unit injury) may have a less 

102 negative slope for tolerant plants (Fig. 2d). Second, the linear portion may be shorter. Therefore, 

103 desensitization and inherent impunity would occur at a higher yield (Fig. 2e). The last portion, 

104 overcompensation (increasing yield per unit injury), can be expressed by both tolerant plants and 

105 nontolerant plants; however, tolerant plants may express a higher yield increase per unit injury 

106 (Fig. 2f).

107 As we have shown, the damage curve theoretically can be altered by plants expressing 

108 tolerance. The challenge remains to identify empirically the portion or portions of the damage 

109 curve where tolerance is expressed by plants. In addition, simply because portions are identified 

110 where tolerance is expressed does not mean those would be practical targets for plant breeding. 

111 The tolerance, overcompensation, and compensation portions (Fig. 2a,b,f) most likely would be 

112 the most practical, producer accepted, and economic targets for enhancing tolerance. Enhancing 

113 tolerance in the linearity, desensitization, and inherent impunity portions (Fig. 2c,d,e) most likely 

114 would not be acceptable to producers because economic yield loss would already be occurring in 

115 these portions, except perhaps for lower injury areas of the linearity portion.    

116 Tolerance can also be expressed in the context of economic injury level (EIL) parameters. 

117 The relationship between damage per unit injury and the EIL typically takes the form of Fig. 3. 

118 Because a tolerant plant ultimately expresses less damage per unit injury, the EIL will be greater 

119 for most levels of injury. This relationship can also be expressed when considering pest 

120 population levels over time and the EIL (Fig. 3).

121 CONSTRAINTS ON THE DEVELOPMENT AND USE OF TOLERANCE 

122 Identifying tolerance and characterizing tolerance mechanisms is difficult
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123 A major factor contributing to the predominance of antibiosis and antixenosis is sheer 

124 amenability. Antibiosis mechanisms often have been relatively easy to identify and breed for, 

125 mainly because the effects on herbivorous arthropods are readily apparent. We realize that the 

126 precise biochemical mechanisms for antibiosis in many systems are not known. For example, 

127 larval survival of the wheat stem sawfly, Cephus cinctus, is reduced by quantitative trait loci 

128 (QTL) on wheat chromosomes 2A, 3A, and 5B (Varella et al. 2015). Although specific 

129 mechanisms causing larval mortality have yet to be determined, this constraint has not hindered 

130 the identification of antibiosis and the ability to breed for wheat resistance to this pest.

131 Although antixenosis mechanisms are not as readily identifiable as antibiosis 

132 mechanisms, they still are more apparent than tolerance mechanisms. This is because antixenotic 

133 mechanisms usually involve morphological features that can be visually identified. For example, 

134 the frego bract character in cotton and glandular trichomes in alfalfa (both of which discourage 

135 larval feeding and oviposition) are very apparent and efficacious (Jenkins & Parrott 1971; 

136 Ranger & Hower 2001). Even less visually apparent mechanisms such as surface waxes, tissue 

137 thickness, and chemical deterrents can be readily identified and assayed (Chamarthi et al. 2011; 

138 Jindal & Dhaliwal 2011; Weaver et al. 2009).

139 In contrast to antixenosis and antibiosis, relatively little is known about tolerance. 

140 Tolerance to arthropod injury has been identified in alfalfa, barley, rice, sorghum, maize, wheat, 

141 cotton, cowpea, okra, muskmelon, turnip, and tea (Velusamy & Heinrichs 1986), northern red 

142 oak, Spanish cedar, Brassica rapa, tall fescue, and perennial ryegrass (Strauss & Agrawal 1999), 

143 lentils, sugarcane, soybean, potato, switchgrass, and cacao (Koch et al. 2016), cassava, tomato, 

144 and strawberry (Byrne et al. 1982; Gilbert et al. 1966; Schuster et al. 1980). In some of these 

145 commodities, tolerance is a very important resistance attribute. For example, the resistance of 
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146 sorghum to greenbug, Schizaphis graminum, is dependent on the survival of seedlings in 

147 response to feeding injury. This is clearly a tolerance response because resistant cultivars have 

148 no effect on greenbug biology or behavior (Schuster & Starks 1973). In barley, the identification 

149 of Russian wheat aphid, Diuraphis noxia, populations virulent to resistance genes has recently 

150 prompted the development of tolerant cultivars (e.g. <Sydney= and <Stoneham=) in an attempt to 

151 reduce selection pressure on the aphid population, thus increasing the durability of genotypes 

152 (Haley et al. 2004; Marithus & Smith 2012; Mornhinweg et al. 2009; Mornhinweg et al. 2012). 

153 Despite its successful use in some crops, little is known about the mechanisms underlying 

154 tolerance. 

155 Tolerance is currently believed to be caused by six general physiological mechanisms: (i) 

156 increased net photosynthetic rate after herbivory, (ii) high relative growth rates, (iii) increased 

157 branching or tillering, (iv) pre-existing high levels of carbon storage in roots, (v) increased 

158 resource allocation from root to shoot after damage (Strauss & Agrawal 1999), and (vi) up-

159 regulation of detoxification mechanisms to counteract deleterious effects of herbivory (Koch et 

160 al. 2016). Possible morphological features of tolerance include protected meristems, number of 

161 meristems, and developmental plasticity (Rosenthal & Kotanen 1994). At the molecular level, 

162 only a few transcripts (e.g. SNF1-related kinases, peroxidases, and catalases) have been 

163 identified as been involved in tolerance to herbivory through resource allocation (Schwachtje et 

164 al. 2006) or reactive oxygen species (ROS) detoxification mechanisms (Ramm et al. 2013; Smith 

165 et al. 2010).

166 It is important to note that mechanisms that contribute to tolerance may vary with 

167 herbivore specialization (e.g. specialists, generalists) (Foyer et al. 2015), feeding guild (e.g. 

168 chewing, sucking) (Zhou et al. 2015), the plant9s symbiotic relationships (e.g. several milkweed 
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169 species show increased tolerance to herbivory when associated with arbuscular mycorrhizal 

170 fungi) (Tao et al. 2016) and environmental conditions (Wise & Abrahamson 2007). All of these 

171 factors complicate the identification and characterization of tolerance mechanisms. Also, some 

172 mechanisms are constitutively expressed while others are induced. Evaluation of germplasm 

173 showing induced tolerance must be done in the presence of pest populations, which is often more 

174 challenging due to seasonal variation in pest infestation at any given location.  

175 Many crop varieties expressing tolerance have been discovered fortuitously. 

176 Development of resistant cultivars usually has been the result of general screening for any 

177 expression of resistance. For example, the development of the alfalfa cultivar "Team," which is 

178 tolerant to alfalfa weevil, Hypera postica, injury, was the result of large-scale screenings of 

179 germplasm, in which more than two million seedlings were exposed to weevil infestation in an 

180 attempt to identify any resistance. After 10 years of breeding, "Team" was released in 1970. The 

181 cultivar is believed to express all three resistance types, but tolerance seems to be the dominant 

182 resistance factor (Barnes et al. 1970). It should be noted that the goal of the researchers was not 

183 to characterize mechanisms, but rather to produce a resistant variety. Large scale screenings 

184 focusing exclusively on plant tolerance have also been successful (Dunn et al. 2011). 

185 The genetics of tolerance is poorly understood

186 The ability to predict phenotypic characteristics based on plant genotype is key to 

187 expedite the development of improved crops, mainly because it adds efficiency and precision to 

188 germplasm screening and selection. Nevertheless, understanding the genetics of plant tolerance 

189 to herbivory, as with any other trait, requires both the capability to detect polymorphic alleles 

190 and the recombination or segregation of these alleles. 
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191 To meet these requirements, large breeding populations need to be developed and 

192 screened. Lack of knowledge of the mechanisms underlying tolerance hinders the ability to 

193 precisely phenotype plants and interferes with the capacity of detecting polymorphisms. Despite 

194 the challenges, genetic variation in tolerance to herbivory has been demonstrated in crop and 

195 non-crop species (Marithus & Smith 2012; Punnuri et al. 2013; Shen & Bach 1997). Similar to 

196 antibiosis and antixenosis, tolerance seems to be mostly controlled by multiple loci and their 

197 interactions. Though QTL associated with tolerance to herbivory have been identified, to our 

198 knowledge, no gene has been cloned. Thus, further research should aim to enhance the genetic 

199 resolution of target QTL, which ultimately may result in the identification and cloning of causal 

200 genes.  

201 Establishing high-throughput screening methods for large-scale phenotyping of tolerance is 

202 difficult

203 One of the bottlenecks of breeding for insect tolerance is the difficulty in identifying 

204 diagnostic traits that can be easily, precisely, and consistently quantified under natural and/or 

205 imposed insect pressure. Screening methods that are laborious or time-consuming might be 

206 adequate for research purposes, but are for the most part not useful for screening the large 

207 number of lines regularly phenotyped in plant breeding programs. 

208 For example, wheat tolerance to the bird cherry-oat aphid, Rhopalosiphum padi, can be 

209 assessed using a diverse set of methods that target a variety of plant traits (e.g. gain yield, 

210 thousand kernel mass, biomass ratios, and development of roots and shoots) (Dunn et al. 2011; 

211 Lamb & MacKay 1995; Papp & Mesterházy 1993). However, not all methods allow for the 

212 evaluation of thousands of plants in a timely manner (Dunn et al. 2011). Thus, the establishment 

213 of high-throughput phenotyping methods that allow for the precise characterization of a large 
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214 number of lines will greatly contribute for the development of tolerant crop plants. Challenges 

215 associated with implementing high-throughput phenotyping for plant breeding programs are 

216 associated with costs of equipment, facilities, and software licenses (required for data analysis), 

217 lack of personnel trained for manipulation of large data sets, and lack of standards for 

218 experimental design and data analysis (Goggin et al. 2015).

219 Entomologists lack substantial training in plant biology

220 Because entomologists have been the primary participants in research on plant resistance 

221 to insects, entomocentric views have prevailed. Consequently, instead of concentrating on plant 

222 responses to insect-induced injury, entomologists have often used the plant to deliver a control 

223 tactic. This strategy reflects an inherent disadvantage in research training specialization 

224 (overspecialization?) of contemporary scientists (Jacobs & Frickel 2009; Rhoten 2004; Welter 

225 1989). Very few entomologists have had formal training in aspects of plant biology, such as 

226 photosynthesis, metabolism, anatomy, and water relations. Entomologists trained to consider the 

227 plant in insect-plant interactions potentially would improve research and development of tolerant 

228 cultivars. Additionally, interdisciplinary research teams may be able to develop tolerant cultivars. 

229 However, interdisciplinary research incorporating aspects of pest biology, plant physiology, and 

230 agronomy is still in its infancy (Peterson 2001; Peterson & Higley 2001). 

231 Plant resistance efforts are targeted toward the control of pest populations

232 We believe that plant resistance research, although overtly very progressive and fitting in 

233 well with IPM, has largely followed a unilateral approach to pest management, similar to the 

234 control tactic of insecticide use common in the 1950s and early 1960s. Through antixenosis, and 

235 especially antibiosis mechanisms, resistant cultivars essentially are controlling insect 

236 populations. Unlike insecticide use, the adverse environmental impacts of using resistant 
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237 cultivars are quite low. In this respect, resistant cultivars satisfy one objective of IPM: 

238 minimizing detrimental environmental effects. However, cultivars with antibiotic mechanisms 

239 place selection pressure on insect populations, potentially encouraging the development of 

240 resistance. Although, resistant cultivars may represent a more desirable control tactic, they do not 

241 necessarily represent a truly sustainable pest management practice. New approaches for 

242 incorporating resistance in plants also will not be sustainable. For example, plants that are 

243 engineered to produce the Bacillus thuringiensis (Bt) toxin have selected for resistance (even 

244 when pest populations were not economic) (Tabashnik et al. 2008).

245 The issue of control versus management in IPM is a critical factor when attempting to 

246 understand why tolerance is not as prominent in plant resistance. The terms "control" and 

247 "management" as they relate to pest management have been discussed (Higley & Pedigo 1993; 

248 Higley & Pedigo 1996; Menalled et al. 2016; Pedigo & Higley 1996; Pedigo & Rice 2009). 

249 Briefly, <Control= implies a program focused on the pests themselves, and, in particular killing 

250 pests. Therefore, this often results in strong selection pressure for resistance. The focus on killing 

251 pests includes the highly efficacious antibiotic tactic represented by Bt crops. <Management= 

252 implies a program focused on the <judicious use of means to accomplish a desired end= (Pedigo 

253 & Higley 1996). Tolerance, then, as a type of plant resistance, clearly fits well with management. 

254 Other biological factors

255 Conceptually, tolerance has very attractive attributes for use in IPM programs. However, 

256 because tolerance has been so poorly studied and understood, we do not know if or how much 

257 specific interactions with the environment (such as drought or heat stress) will render the tolerant 

258 variety completely susceptible to pest injury. This is especially relevant in the face of climate 

259 change and the increase in drought-prone areas. In non-crop species for instance, drought has 
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260 been shown to limit a plant9s ability to tolerate herbivory (Atala & Gianoli 2009; Gonzáles et al. 

261 2008). But even closely related species of plants may respond differently to herbivory under 

262 drought conditions (Shibel & Heard 2016). Thus, the impact of environment on the plant9s 

263 ability to tolerate insect herbivory might have to be assessed for each crop species and/or variety.   

264 In several crop systems, some arthropod species move from one crop species to another 

265 during their life cycle. For example, in North Carolina the corn earworm, Helicoverpa zea, may 

266 injure corn, tobacco, wild hosts, soybean, and cotton. Having just one crop species in an area 

267 tolerant to corn earworm injury may result in unacceptable populations for the other crop 

268 species. 

269 Socioeconomic factors

270 In the U.S., growers attempt to control pests to avoid risk as much as, if not more, than to 

271 optimize yields (Higley 2006). Understandably, then, growers may be uncomfortable with a 

272 large number of pests feeding on their tolerant cultivar. In this case, the cultivar may be able to 

273 tolerate the injury, but the grower cannot. The attitude that the "only good bug is a dead bug" is 

274 undoubtedly alive and well in modern farming systems. Additionally, private companies may not 

275 embrace tolerant cultivars because they do not want their customers to doubt that their varieties 

276 are indeed resistant. Therefore, education about tolerance and tolerant cultivars must be a priority 

277 if this resistance strategy is to be successful.

278 Tolerant cultivars must be agronomically desirable. Nguessen and Quisenberry (1994) 

279 identified several rice lines that are tolerant to rice weevil, Sitophilus oryzae, injury. However, 

280 they were not agronomically desirable. This is a major limitation to incorporating tolerance into 

281 crops and must be addressed by researchers. Another major limitation is that tolerant crops may 

282 be more vulnerable to cosmetic damage than crops displaying other types of resistance. 
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283 Consumer preference for fruits and vegetables, for example, is influenced by product 

284 appearance. Thus consumer preference for undamaged food products might limit the use of 

285 tolerance in some crop species.  

286 CONCLUSIONS AND RECOMMENDATIONS

287 Although antixenosis and antibiosis may lessen or negate the need for pesticides applied 

288 to the crop, they can produce selective pressures on insect populations that are similar to 

289 pesticides. The management tactic may be more environmentally acceptable and therefore may 

290 be more popular with policy makers and the public, but if sufficient selective pressure is placed 

291 on the pest population the tactic is not sustainable in the long term (Kennedy et al. 1987; Tolmay 

292 et al. 2007). Tolerance, as a resistance mechanism, is very appealing because it is a sustainable 

293 tactic (Kennedy et al. 1987; Pedigo 1995; Pedigo & Rice 2009; Rausher 2001).  By not placing 

294 selective pressure on insect populations, it essentially factors the pest out of the equation. 

295 Additionally, EILs for tolerant varieties would be substantially higher than for susceptible 

296 varieties. Therefore, reduced pesticide inputs would result. Because of these factors, tolerance is 

297 a more stabilizing management strategy for pests.

298 Velusamy and Heinrichs (1986) list three factors they believe are responsible for the lack 

299 of attention to tolerance. They include: a lack of suitable techniques to identify and incorporate 

300 tolerance into crops; the ability of tolerant cultivars to serve as reservoirs for insect vectors of 

301 viruses; and, the lack of basic information on the inheritance of tolerance. We believe they have 

302 identified three factors that potentially constrain the development of tolerance. However, we 

303 believe our factors are more encompassing, reflecting the biological, economic, and social 

304 constraints on tolerance development. For example, the lack of suitable techniques to identify 
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305 tolerance is really a reflection of the lack of understanding about basic physiological mechanisms 

306 underlying tolerance.

307 Before substantial work on tolerance development can occur, we must conduct basic 

308 research on the physiological and biochemical mechanisms of tolerance. This must involve 

309 interdisciplinary research between plant scientists and entomologists. Beyond an 

310 interdisciplinary focus, it is important that there is awareness from applied researchers about 

311 research and findings from fundamental researchers and vice-versa. There are longstanding 

312 issues of lack of communication between ecologists and agricultural scientists (Higley et al. 

313 1993) and this must be addressed before tolerance can be appreciably advanced.

314 More generally, research on the physiological responses of plants to arthropod injury 

315 (irrespective of tolerance) must progress beyond what is currently known. Higley et al. (1993) 

316 argued that a focus on plant physiology provides a common language for characterizing plant 

317 stress and is essential for integrating understanding of stress. Peterson and Higley (1993) and 

318 Peterson (2001) discuss approaches for synthesizing plant responses to arthropod injury. 

319 Based on the factors we have discussed above, we believe the development and use of 

320 tolerance in plant resistance to arthropods can be hastened by achieving the following goals: (1) 

321 research characterizing the physiological mechanisms underlying tolerance; (2) research 

322 determining the physiological responses of plants to arthropod injury; (3) encouragement of 

323 interdisciplinary research and communication among entomologists, plant scientists, ecologists, 

324 and molecular biologists; and, (4) progression of IPM theory to a true paradigm for managing 

325 plant stress. Ultimately, to understand the conceptual importance of tolerance to plant resistance, 

326 the importance of tolerance to IPM must be appreciated. 

327
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Figure 1

The damage curve relating intensity of injury to yield.
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Figure 2

The damage curve showing different portions where tolerance can be expressed.

a) shows extending the initial zero slope of the damage curve, i.e., no damage per unit injury

may be expressed at higher levels of injury for tolerant plants than for nontolerant plants; b)

shows that because this area is curvilinear (with a negative decreasing slope), tolerant plants

may express less damage per unit injury; c) shows that the curvilinear portion may be

extended into higher levels of injury; d) shows that the constant, negative slope (constant

damage per unit injury) may have a less negative slope for tolerant plants; e) shows that the

linear portion may be shorter; e) shows that desensitization and inherent impunity may occur

at a higher yield; f) shows that overcompensation (increasing yield per unit injury), may be

expressed by both tolerant plants and nontolerant plants, but tolerant plants may express a

higher yield increase per unit injury.
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Figure 3

The relationship between injury (often expressed as number of insects), time, and the

economic injury level with and without tolerance.
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