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Extinction models vary in the information they require, the simplest considering the rate of certain

sightings only. More complicated methods include uncertain sightings and allow for variation in the

reliability of uncertain sightings. Generally extinction models require expert opinion, either as a prior

belief that a species is extinct, or to establish the quality of a sighting record, or both. Is this subjectivity

necessary?

We present two models to explore whether the individual quality of sightings, judged by experts, is

strongly informative of the probability of extinction: the `quality breakpoint method' and the `quality as

variance method'. For the first method we use the Barbary lion as an exemplar. For the second method

we use the Barbary lion, Alaotra grebe, Jamaican petrel and Pohnpei starling as exemplars.

The `quality breakpoint method' uses certain and uncertain sighting records, and the quality of uncertain

records, to establish whether a change point in the rate of sightings can be established using a

simultaneous Bayesian optimisation with a non-informative prior. For the Barbary lion, there is a change

in subjective quality of sightings around 1930. Unexpectedly sighting quality increases after this date.

This suggests that including quality scores from experts can lead to irregular effects and may not offer

reliable results. As an alternative, we use quality as a measure of variance around the sightings, not a

change in quality. This leads to predictions with larger standard deviations, however the results remain

consistent across any prior belief of extinction. Nonetheless, replacing actual quality scores with random

quality scores showed little difference, inferring that the quality scores from experts are superfluous.

Therefore, we deem the expensive process of obtaining pooled expert estimates as unnecessary and

even when used we recommend that sighting data should have minimal input from experts in terms of

assessing the sighting quality at a fine scale. Rather, sightings should be classed as certain or uncertain,

using a framework that is as independent of human bias as possible.
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Abstract7

1. Extinction models vary in the information they require, the simplest considering the8

rate of certain sightings only. More complicated methods include uncertain sightings and9

allow for variation in the reliability of uncertain sightings. Generally extinction models10

require expert opinion, either as a prior belief that a species is extinct, or to establish the11

quality of a sighting record, or both. Is this subjectivity necessary?12

2. We present two models to explore whether the individual quality of sightings, judged by13

experts, is strongly informative of the probability of extinction: the ‘quality breakpoint14

method’ and the ‘quality as variance method’. For the first method we use the Barbary15

lion as an exemplar. For the second method we use the Barbary lion, Alaotra grebe,16

Jamaican petrel and Pohnpei starling as exemplars.17

3. The ‘quality breakpoint method’ uses certain and uncertain sighting records, and the18

quality of uncertain records, to establish whether a change point in the rate of sightings19

can be established using a simultaneous Bayesian optimisation with a non-informative20

prior. For the Barbary lion, there is a change in subjective quality of sightings around21

1930. Unexpectedly sighting quality increases after this date. This suggests that including22

quality scores from experts can lead to irregular effects and may not offer reliable results.23

As an alternative, we use quality as a measure of variance around the sightings, not a24

change in quality. This leads to predictions with larger standard deviations, however25
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the results remain consistent across any prior belief of extinction. Nonetheless, replacing26

actual quality scores with random quality scores showed little difference, inferring that the27

quality scores from experts are superfluous.28

4. Therefore, we deem the expensive process of obtaining pooled expert estimates as unnec-29

essary and even when used we recommend that sighting data should have minimal input30

from experts in terms of assessing the sighting quality at a fine scale. Rather, sightings31

should be classed as certain or uncertain, using a framework that is as independent of32

human bias as possible.33

Keywords: extinction model, data quality, IUCN Red List, possibly extinct, sighting uncer-34

tainty, Panthera leo, Tachybaptus rufolavatus, Pterodroma caribbaea, Aplonis pelzelni35

1 Introduction36

The quality of sighting records of rare species, and particularly those that are approaching extinc-37

tion, vary considerably. This can lead to confusion, particularly when identifying whether a species38

is extinct, or identifying when a species went extinct (Roberts et al., 2009 and Elphick et al., 2010).39

An extinction date for a given species is usually inferred from the rate of sightings by assuming40

that the rate changes after the point of extinction. Recent models (Solow et al., 2012, Thompson41

et al., 2013, Lee, 2014, Lee et al., 2014 and Jarić & Roberts, 2014) incorporate uncertain sightings42

as well, thus recorded sightings might occur after extinction. A review of using sightings records43

to infer extinction is provided by Boakes, Rout and Collen (2015).44

Generally sightings are either grouped as certain or uncertain records by researchers, e.g the45

ivory-billed woodpecker (Solow et al. 2012). The subjective quality rather than the certainty of a46

record has been less investigated. To incorporate the varying quality of sighting records, Thompson47
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et al. (2013) and Lee (2014) present a method which allows several different classes of uncertain48

records, where the classification is determined by subjective quality. Their method is optimal49

if at least one sighting from each coarsely defined group occurs before the last certain sighting.50

Any approach requires expert information about the quality of records. Suppose we have high51

resolution information for the quality of sighting records, that is, we have pooled expert opinions52

on the quality of each individual sighting record. Does expert information actually improve our53

inference on extinction estimates? We use the Barbary Lion as an initial test-bed. Collecting54

pooled expert opinions on individual sighting records is a time-expensive exercise, thus only the55

Barbary lion sightings currently have this high level of detail. Indeed the primary motivation for56

this paper is to ascertain whether this cost is necessary.57

Lee et al. (2015) provided distributions for 32 alleged sightings of the Barbary lion (Panthera58

l. leo) which occurred between 1895 and 1956 in Algeria and Morocco. In this paper we use the59

individual quality score provided by Lee et al. (2015). We also examine the importance of the60

expert’s prior of the lion being extinct on the results.61

The work of Lee et al. (2015) provides several distributions for each lion sighting. One method62

considers the expert estimates for three different questions relating to the distinguishability of the63

species, observer competence and verifiability, and pools across experts and questions linearly, while64

another pools them logarithmically. The distributions from pooling across experts and questions65

provide a quality distribution for each sighting, which we use in this paper. For clarity, we present66

results from using the linear pooling distributions only, since, as can be seen from Lee et al. (2015),67

the distributions are similar, and thus our conclusions will be similar.68

We begin by examining these distributions (Section 2), where it is already implied that indi-69

vidual distributions for the quality of each sighting may lead to counter-intuitive results, and thus70
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expert opinion on an individual sightings should be ignored. However, before confirming this con-71

tentious statement, we incorporate these distributions into an existing extinction model to further72

understand the effect of sighting quality scores on extinction estimates.73

For the lion, we consider two methods to include the additional information about the quality of74

uncertain sightings. Both these methods are extensions of the Bayesian model of Lee et al. (2014),75

which assumes a constant population prior to extinction. The first method looks for a breakpoint76

in the sighting quality, where one would assume that the average sighting quality before extinction77

is higher than the average sighting quality after extinction (when all sightings should be false).78

The assumption is that this breakpoint broadly coincides with the change in sighting rate. Quality79

should inform when all sightings must be false, and vice versa. We refer to this method as the80

‘quality breakpoint method’. Alternatively, we use the sighting quality as a measure of uncertainty81

around a sighting record. We refer to this method as the ‘quality as variance method’. To further82

explore the effect of quality under this method, we also assign random quality measures, such that83

if results from simulated random quality measures are similar to the results from actual quality84

measures, then expert quality measures are superfluous.85

To further demonstrate our methods on additional data sets we also consider three birds, the86

Alaotra grebe, Jamaican petrel and Pohnpei starling. Since there are not quality distributions for87

the individual sightings, for these three birds we use the uniformly distributed sighting qualities88

provided by Birdlife International (Lee et al., 2014). There are fewer uncertain sightings with the89

bird species, disqualifying them as a critical tests of the change point method (see Table 1). For90

the three bird species, only the ‘quality as variance method’ is applied. As with the lion, the model91

is also run with random quality measures to determine the importance of quality estimates.92

As a small addition, we consider the finding of Lee et al. (2014) that the conclusions may93
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depend upon the prior. If one assumes that the prior of extinction is provided by an expert,94

then perhaps this influence is welcomed. However in our method, for all four species, we use95

an non-informative prior (Congdon, 2001) effectively integrating over all possible expert’s views.96

When inferring extinction for a given species it is recommended to always run a model with an97

uninformative prior. If an expert prior is provided, an additional model with an uninformed prior98

allows one to observe the effect of the expert’s opinion.99

Both models are based upon the model of Lee et al. (2014). The framework is presented in100

Section 3. Within this section we examine the sighting quality, and identify a change point in101

sighting quality for the Barbary Lion. In Section 4 we examine the choice of the expert’s prior,102

and discuss the influence it has on the outcome, and hence present an alternative, non-informative,103

prior. In Section 5 we discuss our findings: sighting data that consists of certain and uncertain104

only is the most reliable. Quality is not strongly informative of extinction.105

Before discussing the models, it is illuminating to examine the information in sighting quality q106

itself first. Do any changes make rational sense? We do this with the lion sighting data, looking at107

the general form of the continuous density assumed for q ∈ [0, 1] (where 1 is certain), and whether108

q exhibits a change point over time.109

2 Examining sighting quality110

The elicitation in Lee et al. (2015) was not carried out explicitly under a belief of extinction or111

non-extinction. Five experts offered a best estimate and lower/upper bounds for three different112

aspects of sighting quality (in an un-blinded manner) for each sighting at time t. Lee et al. (2015)113

use the most straightforward way to represent these three points as a probability density, that is as114

a triangle density. For simplicity we treat experts as exchangeable, ignore any correlation between115
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the best and lower/upper estimates, and also ignore any correlation between the j questions (the116

differential weights of expert competency does something to adjust for inter-expert correlation as117

does the exhaustive group elicitation process). The quality density for a given sighting p(Q = qt)118

is the result from linear pooling across questions and experts. Note that the distribution resulting119

from pooling across 15 triangle densities, is not a triangle density. Under the Central Limit Theorem120

of the sum of identical, independently distributions, one could work in accumulated (normalised)121

quality measures and thus detect a level change rather than a breakpoint over time as we do herein.122

Examination of the raw qt values is very noisy. A degree of smoothing is needed to see the123

choice of right density, any pattern (suggesting p(q|E), where E denotes extinction) is or is not124

equivalent to p(q|notE) and any breakpoint that is informative of extinction. We assume that the125

first sighting in 1895 (in Morocco) is certain. (Note that no sightings receive a quality score of one,126

implying no sightings are defined as ‘certain’.) Sweeping across the sightings, sightings are classed127

as either ‘before’ or ‘after’ the sighting in question, that is, ‘the current sighting’, where ‘after’128

includes the current sighting. The ‘before’ sightings are combined, as are the ‘after’ distributions,129

see Figure 1. Inspection suggests a unimodal distribution like a beta is a sensible choice for the130

density. A one-sided t-test of the quality data in this way indicates that the before and after131

distributions first become significantly different to each other in 1929.132

Notice that the ‘before’ distribution has a large variance when examining the early sightings,133

and a similar phenomenon for the ‘after’ distributions for the later sightings (Figure 1). This134

is because at these extremes, we have less information. For example, when establishing whether135

extinction occurred between 1895 and 1898 we are comparing the distribution for the single 1895136

sighting with the combined distribution from the 31 other sightings.137

The issue with this ‘burn-in’ and ‘burn-out’ is evident when examining the peak for the two138
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distributions. Ideally it would be clear to see that the peak (i.e. the mode) of the distribution for139

before sightings is initially larger, then a switch occurs around 1929. However the lack of data at140

the time boundaries makes this more challenging to clearly see from the peaks alone. For example,141

around 1934 the before and after distributions seem very similar. Further smoothing is needed to142

see any coherent changes.143

So instead we consider the combination of the distributions presented in Figure 1. We denote144

Θb(year) as the peak of the combined distributions (in Figure 1) before year. And similarly for145

Θa(year) from combined distributions (in Figure 1) after year. With this measure it is apparent146

that a shift in the relationship between these two values occurs around 1930 (Figure 2), as predicted147

by the t-test.148

The Θb(year) and Θa(year) allow us to better examine how the quality of sighting changes.149

The mean of the combined quality of sightings ‘before’ for each sighting year Θb(year) increases150

until 1929, and then the quality remains unchanged, Figure 2. Conversely, the combined ‘after’151

distributions, Θa(year), remains reasonably steady and then increases. This phenomenon is unex-152

pected since one would assume that after extinction, around 1930, the quality of sighting would153

decrease. However, it is likely that this change is due to human factors such as observers still being154

alive (first hand account), and the increased use of cameras. This already suggests that the quality155

breakpoint method may be inconsistent with the sightings process.156

Lastly, the empirical Bayes Factor (likelihood ratio) for just the quality data alone (below157

labelled as dataq) is the calculated ratio158

BFq =
3(dataq|notE)

3(dataq|E)
. (1)
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If the species is extant, the 3(dataq|notE) is small, giving a log Bayes Factor that tends to negative159

infinity. At each sighting year we calculate the empirical Bayes Factor and find that before 1929160

the log Bayes Factor is indeed approximately zero. After 1929 the behaviour of the Bayes Factor161

changes. We would expect the Bayes Factor to steadily increase after 1929, however, again we162

observe how human factors have influenced the before and after distributions to create erratic163

behaviour. Nonetheless, as in the t-test there is clearly a shift around 1929 where quality increases.164

Could this be a technological change?165

If the lion data is typical, changes in quality may not indicate the breakpoint for extinction,166

and thus the sighting quality alone is likely to be unreliable to infer extinction. Let us now consider167

using it in conjunction with the sighting record. Perhaps, together with analysis on sighting rate,168

quality scores can provide more information that either of sighting rate or sighting quality alone.169

3 Model framework170

The objective is to determine the estimated posterior probability distribution of extinction:-

p(Extinction|data) = p(E|data)

By Bayes Theorem171

p(E|data) =
l(data|E) · p(E)

l(data|E) · p(E) + l(data|notE) · p(notE)
(2)

where p(E) is the expert’s prior on extinction.172

Let us retain the general form of the existing problem in Lee et al. (2014). That is, we consider173
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the period of observation (0, T ) where 0 is the beginning of the sighting record, and T is the length174

of the sighting record. During this observation period, certain and uncertain sightings occur in175

parallel. The vector s1 represents certain sightings (s1,t) at time t, t ≤ T . Similarly s2 represents176

uncertain sightings (s2,t) at time t, t ≤ T . Our input data comprises of both types of sightings,177

s = s1∪s2. These sightings are used to estimate the posterior probability of extinction and the time178

at which this extinction occurs. Note that whilst the model does not require an uncertain record179

s2, a certain record s1 with at least two sightings is required. Certain and uncertain sightings are180

assumed to follow a stationary Poisson process of regular spacing with constant, unknown rates181

(m1 and m2 respectively). Since we include the possibility of false sightings, sightings may occur182

after extinction, but at a different constant rate to that rate occurring before extinction. This is183

an offset denoted f2 as a background for the whole series (0, T ). These false sightings by default184

must only be uncertain sightings. So, given the notation that l means likelihood we obtain the four185

elements of the model:186

• l(s1|notE) = Bernoulli(1− e2m1)187

• l(s1|E) = Bernoulli(1 − e2m1) if the time is before or equal to the time of extinction, with188

l(s1|E) = 0 if afterwards189

• l(s2|notE) = Bernoulli(1− e2f22m2)190

• l(s2|E) = Bernoulli(1−e2f22m2) if the time is before or equal to the time of extinction, with191

l(s2|E) = Bernoulli(1− e2f2) if afterwards.192

The form (1 − e2(·)) is used for efficient parameterisation. We assume no population decline (see193

Lee et al. (2014) and references therein). This model of Lee et al. (2014) determines a change point194

in the sighting rate, which provides an estimate for the year of extinction. The input is two sighting195
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records (certain and uncertain) and the output is a probability that the species is extinct at the196

end of the sighting record, and a corresponding year in which extinction would have occurred. Our197

method uses:- a uniform distribution from the last certain sighting to the end of the sighting record;198

a non-informative Jeffreys prior (Beta(0.5, 0.5)) for non-extinction (Congdon, 2001); together with199

wide uniform prior distributions (range 0 to 100) for m1, m2 and f2 to ensure that there is no bias.200

Now consider that our input data comprises of both certain and uncertain sightings, s = s1∪s2,201

and the individual quality of uncertain sightings, q. We interpret individual quality scores as a202

score for the year in which the sighting occurred. However, we require a quality score for every203

year, even if no sighting occurred. We take a wide interpretation of what quality is. One could204

infer that a high quality sighting (e.g. a skin sample that can be tested) implies that the sighting205

is certain (or close to certain), and conversely, a low quality sighting (e.g. a second-hand verbal206

account) is less certain to be a true sighting. Note that the quality vector q initially seems to only207

have a quality assigned during years of uncertain sightings. Later we will discuss how we assign208

a sighting quality for all other years. We take quality simply to be a subjective attribute of the209

sighting - no implicit model of its basis is assumed. A method for eliciting the quality measures is210

provided in Lee et al. (2015).211

Let us partition the data into the stochastic sightings, s, and the stochastic quality measure212

for each of the uncertain sightings (q), measured and stochastically modelled simultaneously. Note213

that only q ∈ [0, 1) are used as quality measures, which only relate to uncertain sightings. The214

sighting quality q is thus in a sense a nuisance variable which we take as Beta distributed, which215

ensures that it is bounded between [0, 1] as required. We use non-informative Exponential(1)216

and Jeffreys (Beta(0.5, 0.5)) priors for its parameters using the Stroud (1994) method in Congdon217

(2001). Equation (3) in full would rely upon specifying a general stochastic model for the quality218
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measure p(Q = q) under the alternative hypothesis of extinction versus that under non-extinction.219

One would expect that after extinction, sighting quality drops, yet Section 2 proved this may220

not be the case. So for simplicity (and to avoid specifying even more unknown priors in the221

computations to integrate over) we assume herein that the probabilistic generating process for222

quality attribution is unaffected by whether the species is extinct or not, unless the sighting is223

deemed as ‘certain’. Formally:- l(q|E) = l(q|notE) = l(q). This approximation is reasonable since224

the alternative requires an estimate for the error process arising from experts assigning quality225

measures for l(q|E) and l(q|notE), which needs repeated blinded data for a variety of species226

whose extinction date and status were well known but that investigative adjudicators had little227

experience about before. A significant practical challenge.228

For the quality breakpoint method, we assume that the probabilistic generating process of

sightings is unrelated to the generating process of quality attribution, that is, p(data) = p(s&q) =

p(s) · p(q). The two processes are taken to be independent. So integrating out the uncertainty of

the nuisance gives

l(data|E) →

∫ 1

0
ls(s|E) · lq(q|E) dp(q), (3a)

l(data|notE) →

∫ 1

0
ls(s|notE) · lq(q|notE) dp(q), (3b)

which are the weighted sums of likelihoods over the stochasticity of the quality measure at Q =229

q, where Q is a particular realisation of q. Conjugacy makes this integration efficient. The230

likelihoods (3) can be fed into equation (2) to yield the extinction posterior for sightings p(E|s). The231

same four-part structure of the approach (with subscript 1 indicating certain sightings and subscript232

2 indicating uncertain sightings) would now follow but with Beta likelihoods for q. However, the233
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quality measures are for uncertain sightings only, thus:234

• l(q2|notE) = Beta(³+ ³2, ³ + ³2)235

• l(q2|E) = Beta(³ + ³2, ³ + ³2) if the time is before or equal to the time of extinction, with236

l(q2|E) = Beta(³, ³) if afterwards.237

The overall form for estimation over s&q is then comparable to that of Lee et al. (2014) and238

can be fitted using the same OpenBugs (2012) approach via Markov Chain Monte Carlo (MCMC)239

integration. Any change point in q will reinforce or conflict with any change point in s in the overall240

optimistaion for p(E|data). Later work may investigate our assumption that sighting rate and241

quality scores are independent. For example, perhaps an event occurs (change in IUCN classification242

or a reward offered) that causes an influx of low quality sightings.243

For the quality as variance method we assume that p(data) = p(s|q)·p(q) and solve accordingly.244

In this case p(q) is taken to be a Gamma distributed expansion/shrinkage factor to the variance245

of the rate of the uncertain (only) Poisson distributed sightings s2 above. Full calculation detail246

is given in a later section. Again, later work may test whether it is appropriate to view (s&q) as247

independent (conditional on extinction) and this Bayesian model extended.248

One thus chooses between: The changes in sighting quality inform the inference of whether249

extinction has occurred by directly affecting the likelihood of the sightings (the quality breakpoint250

method). Or, that quality is a proxy for the variance around the degree of certainty of the uncertain251

sightings and so affects the likelihood of the sightings indirectly (the quality as variance method).252

In either case, integrating over the nuisance modifies the relative sightings likelihoods which arise253

from the simple approach of assuming all sightings are of similar quality used in Lee et al. (2014).254
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3.1 Bayesian modelling: Quality data255

Certain and uncertain sightings are interlaced over time, yet for their joint Bayesian modelling a256

quality measure is needed at each time point for either type of sighting. For implementation on257

the lion data we assume the first sighting and the most certain sighting (in 1925) are both certain,258

that is they have a quality score of one and the lion is assumed extant in 1925. The remaining259

sightings are left as uncertain.260

By the nature of the logic of the observing process, there are some per force missing quality261

values. Accordingly a form of Last Observation Carried Forward (LOCF) for uncertain qualities is262

used to fill in any such missing quality values. However, LOCF is modified such that observations263

carried forward are randomly drawn from the quality density from the last sighting p(Q = qt).264

Furthermore, since the method of Lee et al. (2014) requires a certain sighting at the beginning,265

and an uncertain sighting may not occur for some years after this initial sighting, there needs to266

be a quality measure for these unobserved values. As with LOCF, a form of First Observation267

Carried Backwards (FOCB) is deployed such that the quality for previous years is drawn from268

the density for the first sighting. Therefore, due to our modified form of FOCB and LOCF, the269

quality density of the first uncertain observation is used from the first (certain) sighting until the270

second uncertain observation, where the mean quality is used at the time of the first sighting. The271

argument is that whilst the mean from the quality density for the first uncertain sighting is the272

closest to the unknown quality of ‘never seen’ uncertain sightings during this time period, there is273

still uncertainty around this value, so using information from the distribution as a whole is more274

appropriate. Using quality information from the whole time period (not just the quality from the275

first sighting quality) would be using information from a significantly different time period and276

induce bias. Of course a more sophisticated stochastic model for missing quality data could be277
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posed.278

Bayesian modelling: Quality as a breakpoint method279

Exactly the same approach as in Lee et al. (2014) is used in which a change in sighting rate is280

sought, which infers an extinction time. The model provides a probability and variance around281

this estimate, that is, the probability that the species is extinct, and the variance around this282

probability.283

Now due to the independence of s and q, simply a second simultaneous Bayesian optimisation284

of a beta distributed quality variable over time is made around a common extinction point with285

the sightings. A non-informative hyper-prior is used. For demonstration purposes, here the model286

is run on the data as it stands every year after the last certain sighting, up to 2016. This allows us287

to examine the effect of additional uncertain sightings.288

For each run of the model, the probability that the lion is extinct (the posterior) and the289

standard deviation around this estimate is noted. When using the data set as it stood in 2016, we290

also note the corresponding inferred extinction time. We also make a note of the corresponding291

inferred extinction time when the posterior first overwhelms the experts’ prior belief of extinction.292

Bayesian modelling: Quality as variance method293

Let us return to the Bayesian model of Lee et al. (2014). The rate of uncertain sightings is assumed294

to follow a Poisson distribution with rate m2 + f2 where m2 is the rate of true uncertain sightings295

and f2 is the rate of false uncertain sightings, such that a change point indicates when m2 sightings296

have ceased, that is, extinction has occurred. The rate of certain sightings m1 is consistent until297

extinction.298
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The same model and computational algorithm as in Lee et al. (2014) is used. No attempt is299

made to model an exponentially declining quality post extinction for data deemed to be extant yet300

observed after the extinction time - rather a common offset is used over all cases. Unlike Lee et301

al. (2014), here we use vague parameter priors throughout. The sensitivity of the initial prior on302

being extant is explored with the lion species only, since the effect of the prior on the bird species303

data sets has already been explored by Lee et al. (2014).304

Instead of seeking a breakpoint in the quality q, we slightly relax the assumption that quality and305

sightings are independent. Whilst we maintain that the occurrence of sightings, and the quality of306

sightings are independent, we now incorporate the quality of a sightings as unique variance around307

each sighting. Quality then behaves like a fractional replication factor. To incorporate quality,308

each uncertain sighting follows a distribution with expected rate as before but with a variance that309

increases as the quality of the sighting decreases. So an uncertain observation at time t is ‘fuzzed’310

by a Gamma distribution, such that the ‘fuzzed’ rate of uncertain sightings is311

m2

2 = m2r, (4)

where r is a random variable. The random variable r is drawn from a Gamma distribution of312

mean 1313

r ∼ Γ(1/Ht, 1/Ht), (5)

where Ht = −a ln(qt), qt is the corresponding beta distributed (0, 1] quality score for the sighting,314

and a is a penalty factor such that large a penalises low quality sightings more. In doing this we315

are using the log link model (McCullagh & Nedler, 1989) philosophy. In this, a = 1, 2, 4, where a316
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is a penalty variable which quantifies the relationship between the measured quality and the ‘fuzz’317

applied to the model. Large values of a model when a small change in quality produces an even318

large uncertainty i.e. uncertainty is inflated. If sighting quality is not considered important, a is319

small such that at a = 0 and it reverts back to the model of Lee et al. (2014).320

Equation (4) and (5) ensures: the rate remains positive; the variance around uncertain sightings321

is −a ln(qt); and when sightings are certain (qi = 1), the rate is not fuzzed, m2

2 = m2. Note that the322

variance is not added to f2, the false sightings offset. Under this adaptation of the model, f2 can323

be thought of us a constant characteristic background rate of sightings for the whole data set that324

remains unchanged throughout the whole period - an attribute which changes solely from species325

to species.326

As with the quality as a breakpoint method, the model is run on the data as it stands every327

year after the 1925 sighting. And for each run of the model, the probability that the lion is extinct328

(the posterior) and the standard deviation around this estimate is noted. When using the data set329

as it stands in 2016, we also note the corresponding inferred extinction time. We also make a note330

of the corresponding inferred extinction time when the posterior first overwhelms the experts’ prior331

belief of extinction. We also run this model on the three bird species. The same output details are332

recorded as with the lion species.333

4 The choice of prior334

As previously shown, the method of Lee et al. (2014) is affected by the experts’ prior. This335

phenomenon is presented for the bird data sets in Lee et al. (2014), and with the Barbary lion336

data set in Figure 3. Whilst the three different choices of prior are all initially overwhelmed by337

the posterior in 1953 (that is, the extinction probability is larger than the prior), the estimated338
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extinction year that corresponds with the data set as it stood in 1953 is different. When the model339

is run with the data that exists up to 1953 only, with a prior belief of extinction of 0.9, the model340

infers extinction occurred in 1936; with a prior of 0.5, the model infers extinction occurred in 1931;341

and with a prior of 0.1, the model infers extinction occurred in 1925, which is when the ‘certain’342

sighting of 1925 occurs, so is clearly incorrect.343

Using the full data set as it stands in 2016 only includes one additional sighting after 1953, a344

sighting in 1956. The estimated extinction year does not vary between the three prior choices: a345

prior belief of extinction of 0.9, 0.5 and 0.1 all predict extinction in 1954. Therefore the model346

assumes that the 1956 sighting is false. Additionally, the results are less influenced by the prior347

when the model is run with more data, as one would expect.348

To avoid the bias towards the expert’s prior choice, for all four species, we use a non-informative349

hyper-prior - the beta distribution p(E) ∼ Beta(0.5, 0.5) (Congdon, 2001) and optimise accordingly.350

This distribution actually slightly favours the extremes equally, that is the species is definitely351

extinct p(E) = 0 or definitely extant p(E) = 1, and all other possibilities are equally likely to352

each other. The expected value of this density is 0.5 i.e. a 50:50 evens bet of prior ignorance.353

The model from Lee et al. (2014) applied to the lion data set, with this improvement, provides354

similar results to when a prior of 0.5 is used, as one would expect, see Figure 4a. The first year355

that the likelihood overwhelms the average of the prior, 0.5, occurs in 1953 again, which gives a356

corresponding year of extinction of 1931. When the model is run on the sighting record as it stands357

in 2016, the corresponding extinction year is 1954. Although these results are similar to a prior of358

0.5, a non-informative prior is preferred to a point estimate as it integrates over all uncertainties359

appropriately.360
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5 Results361

Lee et al. (2014) considered the rate of certain and uncertain sightings, and sought to find a change362

point in the sighting rate, thus the model requires as least two certain sightings. The individual363

quality of each sighting was not considered. As discussed in the previous section, using this approach364

the probability that the Barbary lion is extinct is not above the average of the experts’ prior until365

after 1953 (Figure 4a), which has a corresponding extinction date estimate of 1931 approximately,366

the same time period that there is a change in the quality of the data (Figure 2).367

When seeking a change in the quality (‘quality as a breakpoint method’), there is low over-368

all information, that is, it is only after an absence of sightings for 13 years after the very last369

sighting when the likelihood first overwhelms the prior (Figure 4b). This is inconsistent with the370

sightings information. The model cannot identify a common change zone for sighting rate whilst371

simultaneously identifying the change in sighting quality.372

Continuing with the lion, we used the sighting quality as a variance method with both expert373

estimates (Figure 4c) and random estimates (Figure 4d) for the sighting qualities. Both choices374

provide results very similar to the model of Lee et al. (2014), which does not include sighting375

quality (Figure 4a). The posterior from all three models first overwhelm the average of the prior in376

1953, and, at this point, estimate extinction to have occurred around 1931. As before, the effect of377

the quality is apparent when the full data set up to 2016, is used. The additional sighting in 1956378

affects the sighting rate, causing the change point in sighting rate to shift to 1954.379

For the bird species, there were not enough uncertain sightings to seek a change point in380

sighting data, see Table 1. Therefore, we only use the method where quality is implemented as381

a variance. As with the lion, we find similar results between omitting sighting quality, using the382

sighting quality estimates, and using random sighting quality estimates, see Figure 5. Moreover,383
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the Pohnpei starling demonstrates the challenge of trying to infer an extinction date when there is384

a paucity of data, since the likelihood never overwhelms the prior. This is a similar problem to the385

‘quality breakpoint method’ (Figure 4b) where a long period of no sightings was required.386

Reducing the weighting penalty, a, further reduces the effect of the sighting quality, whereas387

increasing a increases the standard deviation around each annual estimate. When a is increased388

to, say, a = 10, the change point in the sighting record dissipates into fuzz, and thus cannot be389

determined. That is, everything becomes uncertain.390

There is a consistent similarity of extinction inferences over all species between using actual391

quality measures and simulated random quality scores. Since it was shown in Section 2 that the392

quality distributions are non-random through time, this points to the lack of sensitivity to expert393

opinion for the inference of extinction.394

6 Discussion395

We have presented a method that considers the quality of each sighting individually. Previous work396

has initially used sightings that are classed as either certain or uncertain (Solow et al., 2012 and Lee397

et al., 2014). Further work then sought to divide uncertain sightings further, into several categories398

(Lee, 2014). However, each additional classification provides less information about the rate of399

occurrence for this particular class of sighting (law of diminishing returns). To avoid continually400

dividing uncertain sightings into more specific categories we investigated a method that sought to401

find the change point in the continuous quality of sightings. This required several experts to rate402

all sightings of a species. As discussed in previous work (Lee et al., 2015), the method by which403

the experts are questioned is important to the outcome.404

There is a change in sighting quality scores at 1930, where sightings after this date have a per-405
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ceived higher quality. However the change in sighting quality may be picking up on our preference406

to believe accounts from living observers more than records left by deceased observers. There is407

a large literature on unbiased Bayesian elicitation methods to help avoid this (see review article408

Kuhnert et al., 2010). Being blinded to date and the historical age of sightings is important - how-409

ever this is difficult. Technological changes over time are apparent even when species observations410

are not explicitly labelled (an old photo is clearly an old photo). Whilst human nuances affect411

all sighting records, and thus all extinction models, methods which rely more heavily on expert412

opinion may be more susceptible to these external factors.413

Establishing the balance between an extinction model with assumptions that over simplify, and414

a model that seeks to incorporate everything, is discussed by Caley and Barry (2014), where the415

authors develop an extinction model that does not constrict the species population to be constant416

(as assumed here), nor declining. In line with their findings, our work also suggests that a simple417

model makes it easier to identify the underlying population processes. If quality is to be used, the418

quality as variance method is recommended.419

We have shown that the rate of sightings is the strongest indicator to infer extinction, and too420

much information about the quality of the sighting can actually be detrimental. Ideally a sighting421

record would be a list of certain and uncertain sightings only. Using only these two parallel sighting422

records, a Bayesian model (Lee et al., 2014 or Thompson et al., 2013), with the non-informative423

prior presented here, could establish a synchronised change point to infer an extinction date. No424

further classification, nor prior belief about extinction, is required.425

The less propensity for human influence in the sighting data the better. As such, an objective426

method of assessing whether sightings are certain or uncertain is needed. However, even the rate of427

sightings is susceptible to human influence, such as periods of high interest due to publicity. Future428
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work could try to quantify the effect of publicity on sighting rate.429
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Alaotra grebe Jamaican petrel Pohnpei starling

Year Quality Year Quality Year Quality

1929 1 1789 0.4-0.8 1930 1

1947 0.4-0.8 1829 1 1995 1

1960 1 1847 0.4-0.8 2008 0.4-0.8

1963 1 1866 1

1969 1 1879 1

1970 0.1-0.4 1891 0.8-0.9

1971 0.1-0.4

1972 0.6-0.8

1982 0.6-0.8

1985 0.6-0.8

1986 0.1-0.4

1988 0.1-0.4

Table 1: Sighting data for three bird species. A quality score of 1 indicates a certain sighting.
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Figure 1: Comparing before and after distributions for the pooled quality densities of each Barbary lion
sighting. The year and location (Morocco/Algeria) of the current sighting are listed along the top. The
current sighting is grouped with the ‘after’ distribution. The first sighting is 1895 (M). A one sided t-test
states that the before and after distributions first become significantly different from each other in 1929.
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Figure 2: For the Barbary lion data set, the combined average of the sighting record quality before Θb(year)
and after Θa(year) each sighting.
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(a) (b) (c)

Figure 3: Results for the Barbary lion from the method of Lee et al. (2014), where sightings are divided
into certain and uncertain over a varying expert’s value for prior of extinction: (a) 0.9 (b) 0.5 (c) 0.1. The
bars represent the standard deviation around the estimate and the black circles indicate when an uncertain
sighting occurred. Note changes to the standard deviation of estimates as well as the curve translocation.
The light shaded region marks the predicted extinction year identified by the model in 2016 (using the full
dataset), which is in 1954 in all cases. The dark shaded region marks the predicted extinction year identified
when the likelihood first overwhelms the prior, i.e., the extinction date inferred when there is enough data,
which is in 1953 in all cases, giving a prediction extinction year of (a) 1937 (b) 1931 (c) 1924 (before the last
certain sighting of 1925 so is clearly incorrect).
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(a) (b)

(c) (d)

Figure 4: The probability of extinction for every year after the last certain sighting (using data only to
that particular year) for the Barbary lion from (a) the method of Lee et al. (2014) where sightings are
divided into certain and uncertain now with an non-informative hyper-prior of extinction, (b) the ‘quality
break point method’, the ‘quality as a variance method’, where the quality is either (c) provided by experts,
or (d) the quality is random. The bars represent the standard deviation around the estimate and the black
circles indicate when an uncertain sighting occurred. The light shaded region marks the predicted extinction
year identified by the model in 2016 (using the full dataset), which is in 1954 in all cases. The dark shaded
region marks the predicted extinction year identified when the likelihood first overwhelms the prior, i.e.,
the extinction date inferred when there is enough data, which is in (a, c, d) 1953 and (b) 1969, giving a
prediction extinction year of (a) 1878 (b) 1938 (c) 1932 (d) 1930.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5: The probability of extinction for every year after the last certain sighting (using data only to
that particular year), with the ‘quality as a variance method’, where the quality is either (a,d,g) excluding
quality, or using the quality as a variance where the quality is either (b,e,h) provided by experts, or (c,f,i)
the quality is random. The bars represent the standard deviation around the estimate and the black circles
indicate when an uncertain sighting occurred. All models use a non-informative hyper-prior on extinction.
When quality is included, a penalty a = 2 is used. The light shaded region marks the predicted extinction
year identified by the model in 2016 (using the full dataset). The dark shaded region marks the predicted
extinction year identified when the likelihood first overwhelms the prior, i.e., the extinction date inferred
when there is enough data. Alaotra grebe (a,b,c): the likelihood first overwhelms the prior in 1998, with
a corresponding extinction year of 1973 (a) or 1974 (b,c). With the full dataset, extinction is estimated to
have occurred in 1988 in all three cases. Jamaican petrel (d,e,f): the likelihood first overwhelms the expected
value of the prior in 1925 with a corresponding extinction year of 1878, before the last certain sighting. With
the full dataset, extinction is estimated to have occurred in 1906. Pohnpei starling (g,h,i): The likelihood
never overwhelms the prior meaning that there is not enough data.
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