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Comparing enzyme activity modifier equations through the development of global 

data fitting templates in Excel 

 

Ryan Walsh 

 

Abstract 

The classical way of defining enzyme inhibition has obscured the distinction 

between inhibitory effect and the inhibitor binding constant.  This article examines the 

relationship between the simple binding curve used to define biomolecular interactions 

and the standard inhibitory term (1+([I]/Ki)).  By understanding how this term relates to 

binding curves which are ubiquitously used to describe biological processes, a modifier 

equation which distinguishes between inhibitor binding and the inhibitory effect, is 

examined.  This modifier equation which can describe both activation and inhibition is 

compared to standard inhibitory equations with the development of global data fitting 

templates in Excel and via the global fitting of these equations to simulated and 

previously published datasets.  In both cases, this modifier equation was able to match 

or outperform the other equations by providing superior fits to the datasets.  The ability 

of this single equation to outperform the other equations suggests an over-complication 

of the field.  This equation and the template developed in this article should prove to be 

useful tools in the study of enzyme inhibition and activation. 
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Introduction 

The historical development of enzyme-inhibitory theory relied on the generation of 

rapid equilibrium inhibitory equations akin to the derivation of the Michaelis-Menten 

equation.  These equations developed inhibitory theory around a single constant, 

termed the inhibition constant (Ki), which when inserted into the Michaelis-Menten 

equation (Eq. 1; Michaelis and Menten, 1913), in various ways, was used to describe 

apparent shifts in measured values of the maximum reaction rate (Vmax) and the 

Michaelis constant (KM) (McElroy, 1947). 

 

� = [þ][þ] + ÿ� �ÿ�� 
 

The Michaelis-Menten equation (Eq. 1) shares the same mathematical structure as 

the Hill-Langmuir equation (Eq. 2) or ligand-receptor binding relationship (Eq. 3; 

Gesztelyi et al., 2012).  The main difference is that the Michaelis-Menten equation 

describes the rate of catalytic turnover by an enzyme, where chemical bonds are broken 

or formed, rather than strictly molecular associations such as the binding between 

ligand and receptor (Eq. 3) or the binding of molecules to a surface as in the case of the 

(1) 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3094v2 | CC BY 4.0 Open Access | rec: 6 Aug 2018, publ: 6 Aug 2018



 
 

Hill-Langmuir equation (Eq. 2).   

 

� = [Ā]Ā[Ā]Ā + ÿ� 

 

ýĂĀĂā�Ā� ÿÿÿāÿÿý = [Ā][Ā] + ÿ� 

 

These equations all take the same form, relating a change in response or signal (v, ɵ, 

receptor binding), to the concentration of a substance ([S], [L]) based on a constant (KM, 

Kd) that is itself defined as a concentration of that substance.  For example, in the 

Michaelis-Menten equation, the fraction of the total possible enzymatic conversion of 

substrate to product (v) is determined by the substrate binding affinity, the Michaelis 

constant (KM).  The substrate binding affinity is the concentration at which the reaction 

velocity (v) is half that of the theoretical maximum reaction rate (Vmax).  This relationship 

can be easily demonstrated by assuming that an enzyme with a KM value of 1 is 

exposed to a substrate concentration of 1 ([S]=1).  This produces the situation where 

the substrate concentration of 1 is divided by itself plus the KM value of 1, yielding the 

Vmax multiplied by ½.  This association produces the hyperbolic relationship between 

compound concentration and response ubiquitously found in equations used to describe 

biological interactions (Fig. 1A).  The simple relationship is derived from chemical 

equilibrium mass action relationships and in general, governs most interactions at the 

molecular level.  This relationship has even been used to distill inhibitory theory down to 

its most basic form, IC50 values (Sebaugh, 2011; Eq. 4), where the inhibitory binding 

(2) 

(3) 
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constant is denoted as the concentration of inhibitor needed to reduce the target 

enzyme’s activity by 50%. 

 

% �ÿ/ÿÿÿ�ÿĀÿ = [�][�] + ��50  �100 

 

IC50 values are the most common way of characterizing inhibitors, as they provide an 

easy way of comparing the inhibitory potential of compounds being developed as new 

drug candidates.  IC50 values however only describe changes in the enzyme's reaction 

rate (v) and are not an indication of variations in the maximal turnover (Vmax) or 

substrate affinity (KM).   

Traditionally, changes in reaction velocity produced by changes in substrate affinity 

and/or maximal velocity, have been defined with equations that were derived from 

reaction schemes based on enzyme, substrate and inhibitor interactions.  This method 

of describing enzyme inhibition was highly dependent on the use of inhibition constants 

(Ki) which initially made its appearance in the competitive (Eq. 5), non-competitive (Eq. 

6), uncompetitive (Eq. 7) and mixed non-competitive inhibition equations (Eq. 8) 

(McElroy, 1947; Cleland, 1970).   

 

� = [þ][þ] + ÿ� (1 + [�]ÿ� )�ÿ�� 
 

� = [þ]([þ] + ÿ�) (1 + [�]ÿ� )�ÿ�� 

(4) 

(5) 

(6) 
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� = [þ][þ] (1 + [�]ÿ� ) + ÿ� �ÿ�� 
 

� = [þ][þ] (1 + [�]ÿÿ�) + ÿ� (1 + [�]ÿ� ) �ÿ�� 
 

While these equations added both inhibition constants and terms for the inhibitor 

concentration to the Michaelis-Menten equation, absent are terms defining the potential 

catalytic activity of the enzyme-inhibitor complex.  This may be due to the mechanisms 

used in the derivation of these equations which do not take into account partial inhibition 

and have resulted in their designation as total inhibitors (Cleland 1970).  To overcome 

this limitation, other equations have been developed to describe compounds that do not 

completely stop the catalytic activity of their target (Bisswanger, 2002; Cleland 1970; 

Segel, 1975; Yoshino, 1987).  However, these equations, known as partial inhibition 

equations, are rarely utilized in the literature.   

So what do the equations for total inhibition describe?  An easy way of visualizing 

how these equations are believed to affect the activity of an enzyme is to plot 

experimentally determined values of Vmax and KM on a Cartesian coordinate graph with 

Vmax on the y-axis and KM on the x-axis (Fig. 2a).  If the catalytic activity of an enzyme is 

defined as the coordinates KM and Vmax then inhibtion or activation of the enzyme's 

activity can be expressed as a shift to a different position on the graph.  For example, 

the classical competitive inhibition equation (Eq. 5) represents a decrease in substrate 

(7) 

(8) 
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binding resulting from the presence of a substrate mimic that blocks the enzymes active 

site.  This is characterized by a decrease in apparent substrate affinity producing an 

increase in the apparent KM value from its initial value to infinity in a linear fashion (Fig. 

2b).  While, the non-competitive inhibition equation (Eq. 6), represents a hyperbolic 

decrease in Vmax from its initial value to zero (Fig. 2c).  The uncompetitive equation 

(Eq. 7) causes an apparent reduction in the KM value implying a higher substrate 

affinity, while also decreasing the apparent value of the Vmax (Fig. 2d).  The mixed non-

competitive inhibition equation (Eq. 8) produces a reduction in the Vmax while either 

increasing or decreasing the KM based on the ratio between Ki and Ki (Fig. 2e).   The 

changes in enzymatic activity described by these equations leave many other undefined 

inhibitory and stimulatory possibilities (Fig. 2f).  As previously stated, while these 

equations are the most common forms of inhibition reported in the literature, aside from 

IC50s, their primary disadvantage is their inability to describe the activity of an enzyme-

inhibitor complex.  This has been addressed with the derivation of separate sets of 

equations to cover what is referred to as the partial forms of inhibition associated with 

each of the classical inhibition types, ie. partial competitive, partial non-competitive, 

partial uncompetitive and partial mixed non-competitive (Bisswanger, 2002; Cleland 

1970; Segel, 1975; Yoshino, 1987).  To simplify and standardize the field Fontes et al., 

(2000) and more recently Baici (2015) have attempted to redefine all the possible 

interactions inhibitors and activators may have with an enzyme.  However, as the 

complexity of the proposed equations has continued to increase, their application has trailed off, 

with many journals now accepting or having a preference for IC50 values (Brandt et al., 

1987; Lazareno and Birdsall, 1993).   
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In my opinion, overcomplication of the enzyme modifier kinetics is contributing to the 

demise of the field and this overcomplication is related to the treatment of Ki in the total 

inhibitor equations (Eqs 5-8).  In the total inhibitor equations, the Ki is equated to the 

effect of the inhibitor on the enzymatic activity rather than an equilibrium binding 

constant marking the concentration where half the enzyme population is bound by the 

inhibitor.   

The arrangement of the Ki in the total inhibition equations is unusual, in that, while 

the general term (Eq. 9) appears to be the same in all of the equations (Eqs 5-8), it 

functions as a factor of the denominator in the non-competitive equation (Eq. 6) and as 

a factor of individual terms in the denominator with the other equations (Eqs 5, 7, 8).  

Additionally, this general term (Eq. 9) that is supposed to describe the binding of the 

inhibitor to the enzyme does not share the same format as other equations used to 

describe biological interactions (Eq. 1-4).  However, a rearrangement of the non-

competitive equation (Eq. 10) demonstrates that this notation is actually the reciprocal 

form of the hyperbolic equation used to describe biological interactions (Eq. 11; Walsh, 

2012). 

 

(1 + [�]ÿ�) 

  

� =  [þ]([þ] + ÿ�) (1 + [�]ÿ� )�ÿ��  =  [þ][þ] + ÿ� (�ÿ�� 2 �ÿ�� [�][�] + ÿ�) 
(9) 

(10) 
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 1(1 + [�]ÿ� ) = (1 2 [�][�] + ÿ�) 
 

This rearrangement (Eq. 10), directly relates the non-competitive equation’s 

hyperbolic decrease in Vmax, to the binding of the inhibitor with the enzyme population.  

This rearrangement also explains why the non-competitive inhibition equation is limited 

to situations where the inhibitor completely stops the catalytic activity of the enzyme, as 

the Vmax is reduced by itself, as the inhibitor binds the enzyme population (Eq. 10).  This 

alternate form of the inhibitory term also suggests a rationale for the odd pattern of the 

classic competitive inhibition equation.  In the competitive equation (Eq. 5), the KM is 

multiplied by the inhibitory term (Eq. 9) resulting in the KM getting divided by the fraction 

of the enzyme population not bound by the inhibitor (Eq. 12).  This produces the linear 

trend of increasing KM driving its value to infinity rather than generating a hyperbolic 

shift from one substrate affinity to another.  A one to one association of inhibitor with 

enzyme would mean that each enzyme bound by inhibitor expresses the new apparent 

KM value induced by the inhibitor.  As the enzyme population is converted from an 

inhibitor-free group to an inhibitor bound group, the observed KM would shift from the 

initial KM to the inhibitor-induced apparent KM in a hyperbolic manner.  Therefore, the 

competitive model cannot describe changes in KM resulting from a one to one 

association of the inhibitor with the enzyme.  

 

(11) 

(12) 
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� =  [þ][þ] + ÿ� (1 + [�]ÿ� )�ÿ��  =  [þ][þ] + ÿ�(1 2 [�][�] + ÿ�)
�ÿ�� 

 

While many inhibitors that only change substrate affinity are classified as competitive, 

it is not hard to envision situations where changes in enzyme-substrate binding could be 

caused by interactions not related to blockage of the enzyme’s active site by an inhibitor 

which mimics the substrate.  For example changes in the conformation of the active site 

could reduce the ability of the substrate to bind without reducing the catalytic rate of the 

enzyme.  This could occur through alosteric interactions or even through partial 

blockade of the active site when the enzyme is associated with the inhibitor.  For 

example, the peptidase kallikrein was believed to be competitively inhibited by 

benzamidine (Sousa et al., 2001).  However, the crystal structure of benzamidine 

binding to kallikrein demonstrated that it does not block the catalytic site of the enzyme 

but instead binds to a portion of the protease that deals with substrate specificity.  

Known as the side chain binding pocket, benzamidine binds to a portion of the enzyme 

which recognizes the side chain of phenylalanine (Bernett et al., 2002). This results in a 

hyperbolic decrease in substrate affinity based on the portion of the kallikrein population 

bound to benzamidine.  While each kallikrein enzyme bound by the benzamidine has 

less affinity for its substrate it still hydrolyses the substrate at the same rate.  This is 

supported by a better fit of the experimental data to a hyperbolic rather than linear 

change in KM (Walsh et al., 2011a).   

While inhibitor interactions that conform to the traditional competitive equation cannot 

be ruled out, the evidence for classifing an inhibitor as competitive must be closely 
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scrutinized before the inhibition can be attributed to the standard competitive equation 

(Eq. 12).   

Assuming that enzyme-inhibitor interactions are dependent on the same relationship 

which defines other molecular systems (Eq. 1-4), the Michaelis-Menten equation can be 

modified to accommodate both positive and negative changes in KM and Vmax by adding 

terms which relate binding of the inhibitor with the enzyme population directly to change 

in enzymatic activity (Walsh et al., 2007; Eq. 13).   

 

� = [þ][þ] + ÿ�1 2 (ÿ�1 2 ÿ�2) [�][�] + �� �ÿ��1 2 (�ÿ��1 2 �ÿ��2) [�][�] + �� 

 

In this equation, the changes from the initial KM and Vmax values are directly related to 

the binding of modifier (X) with the enzyme (Fig. 1B, 1C).  The change from inhibitor to 

modifier notation refers to the ability of this equation to describe activators of enzymatic 

activity as well as inhibitors.  The numrical subscripts associated with the Vmax and KM 

are used to represent the distinct states of the enzyme.  For example in the absence of 

modifier the Vmax and KM are denoted as Vmax1 and KM1 while Vmax2 and KM2 represent 

Vmax and KM values produced by the modifier.  By clearly defining Vmax2 and KM2, this 

equation can be used to model either negative or positive changes in the Vmax and KM 

(Fig. 2f) provided the shifts are hyperbolic.  As previously stated the designation of a 

Vmax2 stems from a simple rearrangement of the non-competitive inhibition equation (Eq. 

10), while the term describing changes to the KM can be derived the same way the other 

classical equations have been derived, using the rate equation, conservation of mass 

(13) 
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and equilibrium relationships (S1).  Indeed, the main failing of this equation may be that 

it is unable to produce the linear increase in KM which characterizes the standard 

competitive inhibition equation (Fig. 2b).  However, whether previously observed linear 

changes in KM are in fact linear or just represent the linear portion of a hyperbolic curve, 

(as it could be argued was the case with benzamidines’  inhibition of kallikrein) deserves 

more attention (Walsh et al., 2011a).   

 

Materials & Methods 

Templates for comparing inhibitor and activator equations were developed using 

Excel.  All enzyme kinetic data analyzed in this study was collected from previously 

published results or simulated using the equations described.  The ability of the 

equations to model the data was evaluated using non-linear regression with the solver 

add-in of Excel to globally fit the data (Kemmer & Keller, 2010). 

 

Results & Discussion 

To truly assess the fitting of an equation to experimental data the equation should be 

globally fit to the data.  To this end, a template which can compare the capacity of the 

classical inhibition equations (Eq. 5-8) and the modifier equation (Eq. 13), to globally fit 

experimental data was developed (S2).  To illustrate the functionality of the template, 

data was acquired from Biotek’s application note on basic enzyme kinetic 

determinations (Held, 2007), where the inhibition of β-galactosidase by β-D-

thiogalactopyranoside was examined.  The structural similarity between the inhibitor and 

the substrate, combined with the pattern observed using a double reciprocal plot lead to 
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the conclusion that β-galactosidase was competitively inhibited by β-D-

thiogalactopyranoside (Held, 2007).  However, this analysis was based on standard 

pattern recognition where regression lines for each inhibitor concentration were overlaid 

and convergence of the lines close to the y-axis was interpreted as competitive 

inhibition.  This sort of analysis does not determine whether the pattern produced by the 

regression lines conforms to a global fitting of the competitive inhibition equation (Eq. 

12) to the experimental data.  Indeed, this reliance on pattern recognition is a major 

hindrance for proper identification of inhibition mode.  To address this issue, the 

template has been designed to facilitate the quick comparison of the non-competitive, 

competitive, uncompetitive, mixed non-competitive and modifier equation (Eq. 5-8 & 13, 

Fig. 3, S2, Please refer to S3 for step by step pictorial instructions on the use of the 

fitting template).  To determine if the data from Biotek’s application note truly does 

conform to the classical competitive inhibition model the data was analyzed using the 

modifier template (Fig. 3a).  Inserting data into the template generates KM and Vmax 

values (Fig. 3b) using a modified direct linear plot.  The modified direct linear plot 

provides a statistically robust way of determining apparent KM and Vmax values by 

providing N(N-1)/2 intercept values from which the median can be determined (Cornish-

Bowden, 1995).  These median values are used as initial parameters in the fitting of the 

various inhibition equations.  The KM and Vmax generated by the modified direct linear 

plot are in close agreement with the values reported by Held (2007), calculated KM 0.15 

mM Vmax 28.2 mOD/min versus reported KM 0.24 mM Vmax 33.4 mOD/min.  Additionally, 

the template provides a Ki estimate based on the decrease in observable rate 

associated with the top substrate concentration ([S]1) and the assayed inhibitor 
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concentrations ([I]1 to [I]7, Fig. 3A).  The fit of the inhibition equations using the initial 

kinetic parameter is displayed both tabularly and graphically (Fig. 3c).  The primary 

table contains the parameters employed in the fitting of each equation and values used 

to assess the ability of each equation to model the data.  The columns containing values 

to evaluate the fit, namely the sum of squared residuals (RSS), relative standard error 

(RSE) for the regression and the Bayesian information criterion (BIC), which are color-

coded such that the smallest values appear green representing the best fit and red the 

worst.  These parameters allow evaluation of the ability of each equation to fit the 

observed data set with the Bayesian information criterion being included for evaluation 

of potential overfitting as it negatively scores fittings based on the complexity (number of 

parameters) of the model being used (Burnham and Anderson, 2002).  In this case, the 

number of parameter for each model is listed in the table as k.  Representation of the fit 

of each equation is also visualized with a boxplot of the residuals, with the residuals 

used to generate the boxplot appear to the right of the corresponding boxplot.  Ideally, a 

good fit would consist of an even distribution of the residual values around zero so for 

evaluation purposes a secondary table is presented which contain values used in the 

generation of the boxplot.  The initial parameters produced by the template may result in 

fairly good fits or extremely poor fits as is apparent in the poor distribution of the 

residuals with the modifier equation (Fig. 3c).  

To apply a global fit to the data the solver add-in for Excel is utilized (Kemmer and 

Keller, 2010, Please refer to S3 for step by step instructions on using the solver feature 

with the template).  In fitting to the Biotek data, the solver feature was used to minimize 

the RSS of the fits, initially by varying parameters for the inhibition followed by all the 
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parameters associated with the equation.  For example, the fitting of the non-

competitive inhibition equation was performed by minimizing the RSS through varying 

the Ki value, this was followed by a second minimization of the non-competitive RSS 

value by varying the Vmax, KM and Ki simultaneously.   

The improvement in fit between the initial parameters generated by the template (Fig. 

3c) and those present after minimizing the residuals is clear (Fig. 4, S4).  Both RSS and 

BIC values are noticeably reduced and the boxplot demonstrates a much evener 

distribution of the residuals around zero (Fig. 4a).  The presented values suggest that 

rather than β-D-thiogalactopyranoside conforming to the classical competitive inhibition 

model a better fit can be produced using the modifier equation which assumes a 

hyperbolic change in KM and Vmax.  Global fitting of the data with each equation is 

plotted below the boxplot (Fig. 4b-f).  For each equation, the data is presented as a 

correlation plot of the calculated versus the experimental data, an overlay of the model 

with the experimentally observed rates (v vs [S]), a double reciprocal Lineweaver-Burk 

plot (1/v vs 1/[S]) (Lineweaver and Burk, 1934) and a Dixon plot (1/v vs [I]) (Dixon, 

1953; Butterworth, 1972).  The correlation plot provides another way of visualizing the 

ability of each equation to fit the data as a linear regression of the observed versus the 

calculated values should produce a slope of 1 and a high R2 value if the calculated 

values equal the observed values.  For the Lineweaver-Burk plots, the lines represent 

the overlay of the globally fit equations rather than best fit linear regressions of the 

individual data sets.   

An examination of the competitive plots (Fig. 4c) demonstrates the deviation of the 

observed data from the competitive model, where the model at higher inhibitor 
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concentration and lower substrate concentration suggests lower rates than those 

observed.  This problem is mirrored by the mixed non-competitive equation (Fig. 4e) 

which approximates the linear increase in KM produced by the competitive equation as 

long as the predicted Ki is significantly removed from the range of the Ki value, as is 

observable in the fitting (Ki = 4.2x10-4 and Ki = 1.4x10-1, Fig. 4a).  As previously stated 

the modifier equation (Eq. 13) provides a better fit to the data which is apparent 

specifically in the low substrate, high inhibitor region of the Lineweaver-Burk plot (LWB 

plot Top Line Fig. 4f) and the high inhibitor region of the Dixon plot.  Unfortunately, the 

Ki for the fit produced in Biotek’s application note was not provided so a more in-depth 

comparison of the templates ability to fit the data cannot be undertaken.   

A more thorough evaluation of the present method can be realized by studying a 

recent a recent publication by Pintus et al. (2015) which describes the discovery of E. 

characias leaf extracts with tyrosinase inhibitory activity.  The inhibitory properties of 

these extracts were characterized using Lineweaver-Burk plots and the data used in 

their analysis was made available online.  To determine if the data conformed to their 

reported modes of inhibition, the data provided in their supplementary information was 

analyzed using the template.  The Lineweaver-Burk plot of their aqueous extract 

suggested that it acted as a mixed non-competitive inhibitor.  This analysis was not 

based on global fitting of the model to the data but rather the accepted pattern 

recognition associated with the position of the intercept produced by the individual best 

fit linear regression lines for the data produced with varying inhibitor concentrations.  

From the best fit linear regression lines, the Ki and Ki were reported as 0.097 and 0.33 

mg/mL.  Using a global fitting approach produced slightly different values (0.099 and 
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0.37 mg/mL) and almost halved the associated RSS value (RSS 7x10-4 to 4x10-4 Fig. 5a 

S5).  Global fitting agreed with the reported inhibition model suggesting that only the 

mixed non-competitive (Fig. 5b) or modifier (Fig. 5c) equations were able to adequately 

model the data.   

The Lineweaver-Burk plot of their ethanolic extract was reported to produce the 

recognizable competitive inhibition pattern where the linearly regressed best-fit lines 

intercepted on the Y-axis (Pintus et al., 2015).  However, when the data was examined 

using global fitting, the competitive model did not demonstrate a significantly better fit to 

the data when compared to the other models.  When the reported Ki (23.7 μg/mL) was 

fixed during the global fitting process the sum of squared residuals was further 

worsened (RSS 0.0183 vs. 0.0143, Fig. 6a & S6).  Compared to the other models, the 

only fit which was worse than the competitive model was the uncompetitive form of 

inhibition.  Even the non-competitive model which was completely unable to model the 

results of the higher inhibitor concentrations was able to produce a slightly better fit 

according to the sum of squared residuals (Fig. 6a-c).  This is a good example of the 

limitations associated with the competitive model, as the mandatory linear increase in 

KM described by the model, requires a pattern with a strict distribution of the lines in a 

double reciprocal Lineweaver-Burk plot rather than simply an intercept on the Y-axis.  

As is apparent, in the Lineweaver-Burk plot, global fitting of the competitive equation 

produced a relatively good fit to the data in the absence of inhibitor (lowest line in LWB 

plot Fig. 6c) and to the data for the enzyme in the presence of the highest concentration 

of inhibitor (highest line in LWB plot Fig. 6c).  However, the other lines of the plot are 

clearly above the data points that they should be bisecting for a proper fit.  For this 
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situation, global fitting suggests that the mixed non-competitive and modifier models 

both provide better fits than the competitive equation (Fig. 6a,d,e).   

 

Partial Inhibition Equations 

The limitations of the total inhibition equations have been acknowledged through the 

development of partial inhibition forms for each of these equations, ie., the partial non-

competitive (Eq. 14; Segel, 1975), partial competitive (Eq. 15; Segel, 1975), partial 

uncompetitive (Eq. 16; Bisswanger, 2002) and partial mixed non-competitive (Eq. 

17;Yoshino, 1987). 

 

� = �ÿ�� ([þ]ÿ� ) + Ā�ÿ�� ([þ][�]ÿ�ÿ� )(1 + ([þ]ÿ� ) + ([�]ÿ� ) + ([þ][�]ÿ�ÿ� )) 

 

� = �ÿ�� ([þ]ÿ� ) + ( [þ]ÿÿ�ÿ�)(1 + ([þ]ÿ� ) + ([�]ÿ� ) + ([þ][�]ÿÿ�ÿ�)) 

 

� = (�ÿ�� + �2[�]ÿ� ) [þ]ÿ� + (1 + [�]ÿ� ) [þ]  

 

(14) 

(15) 

(16) 
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� = �ÿ�� ((1 + ([�]ÿ�′) (Ā)) ([þ]ÿ� ))
(1 + ([�]ÿ�′))(  

 ([þ]ÿ� ) + (1 + ([�]ÿ�′) (ÿ�
′ÿ�))(1 + ([�]ÿ�′)) )  
  

 

While there has been limited use of these equations where the raw data is 

accessible, Whiteley (1997, 1999 & 2000) expanding on Yoshinos’ (1987) work 

identifying forms of partial inhibition through the examination of fractional velocity plots, 

made the data in his papers available.  The modifier template developed in the previous 

section also has the advantage that almost any equation can be easily inserted into the 

spreadsheets for global fitting analysis.  This allowed the global fitting of the data 

presented by Whiteley (1997, 1999 & 2000) to be analyzed with the total inhibition 

equations (S2) and the partial inhibition equations using a version of the template 

modified to model the partial inhibition equations (S7).   

In Whiteleys’ article examining partial competitive inhibition, data for the inhibition of 

glutamine synthase by alanine was presented as an example of this form of inhibition 

(Whiteley. 1997).  Inserting the data into the modifier template suggests that the data 

did not conform to the traditional inhibitory equations, but was modeled by the modifier 

equation very well (Fig. 7a, S8).  Fitting the data to the partial inhibition equations did 

indicate that partial competitive inhibition provided an even distribution of the residuals 

and a slightly better fit than the competitive inhibition model.  However, of the partial 

inhibition models, the partial mixed non-competitive inhibition equation (Eq. 17) was the 

only model able to fit the data as well as the modifier equation (Fig. 7B, S9).   

(17) 
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In a subsequent publication on partial and complete non-competitive inhibition, 

Whiteley provides two examples of inhibition.  The first example of inosine nucleosidase 

inhibition by adenine is presented as a partial non-competitive form of inhibition and the 

second example in which adenosine monophosphate is used to inhibit alcohol 

dehydrogenase is classified as non-competitive (Whiteley, 1999).   

Examining the first example suggests that none of the basic models fit the data as 

well as the modifier equation (Eq. 13; Fig. 8A; S10).  When examined with the partial 

inhibition template the partial non-competitive (Eq. 14) and partial mixed non-

competitive (Eq. 17) equations provided slightly better fits than the total inhibition 

models but were unable to improve on the fit provided by the modifier equation (Fig. 8B 

S11).   

In the second example, rather than presenting as non-competitive the fitting 

suggested that the modifier, mixed non-competitive and partial mixed non-competitive 

equations all provided improved and roughly equivalent fits to the data (Fig. 8C, D; S12, 

S13). 

Whiteleys’ most recent publication on identifying partial forms of inhibition, identifies 

adenosine triphosphate as a partial uncompetitive inhibitor of mevalonate diphosphate 

decarboxylase (Whiteley, 2000).  However, when globally fit to the total and partial 

inhibition equations, even the uncompetitive inhibition equation outperforms the partial 

uncompetitive equation (RSS:1.69x10-5 vs. 1.92x10-2, Fig. 9A, B; S14, S15).  Out of all 

the models, the partial uncompetitive fared the worst while the modifier equation and the 

partial mixed non-competitive equation modeled the data the best (Fig. 9B).  
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Overall equation fitness 

A comparison of the ability of the equations to fit the examined experimental datasets 

suggests that the modifier equation (Eq. 13) can fit each example just as well if not 

better than all the other equations (Table 1, S16, S17, S18).  Indeed, only the partial 

mixed non-competitive equation (Eq. 17) was comparable to the modifier equation in its 

ability to fit the experimental datasets.  The ability of the modifier equation to outperform 

the other equations was further supported with simulated data (Table 2).  Using 

simulated data for the non-competitive (Eq. 6, S19, S20), competitive (Eq. 5, S21, S22), 

uncompetitive (Eq. 7, S23, S24), mixed non-competitive (Eq. 8, S25, S26) equations 

and an example of activation generated with the modifier equation (Eq. 13, S27, S28), 

the ability of each of the models to fit the simulated data was also examined.  The 

simulated data contained many more data points than the experimental data used in the 

fittings found in table 1.  This highlighted the inability of the total inhibitor equations 

aside from the mixed non-competitive inhibition equation to model the data generated 

with the other total inhibitor models.  For example, the competitive equation was unable 

to fit the data produced with the non-competitive equation (Table 2, RSS 3100).  The 

modifier equation, apart from the competitive inhibition simulated data, was able to fit 

the other simulated data sets as well as or better than the other equations.  Similarly, 

the partial mixed non-competitive equation also produced a good fit for the datasets and 

was able to fit the example of activation generated with the modifier equation (Table 2, 

S28).  This suggests the partial mixed non-competitive equation may be almost as 

adaptable as the modifier equation for describing a wide variety of modifier interactions.  
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However, the modifier equation outperformed the partial mixed non-competitive 

equation in all the simulated datasets.   

 

Conclusions 

Based on these examples, the modifier equation (Eq. 13) has been able to model 

each dataset just as well if not better than the other equations based on the sum of 

squared residual values.  While both the inhibition of β-galactosidase by β-D-

thiogalactopyranoside (Held, 2007) and inhibition of tyrosinase with an ethanolic extract 

of E. characias leaves (Pintus et al., 2015) were reported as examples of competitive 

inhibition, global fitting of their data suggested they do not conform to the classical 

competitive inhibition equation (Fig. 4 & 6).  As none of the datasets conform to a linear 

change in KM, it is not surprising that the modifier equation which directly relates 

fractional association of modifiers with the enzyme population to change in activity fits 

all the examples very well.   

The modifier equation defined here unifies inhibition and activation in a single 

equation by describing changes in Vmax and KM using a single binding constant (Eq. 13), 

something which was not described with the traditional equations such as the mixed 

non-competitive equation (Eq. 8).  The clear distinction between inhibitor binding 

constants and effect on KM and Vmax also permits the modular expansion of the 

Michaelis-Menten equation to accommodate multiple substrate and modifier binding 

interactions (Walsh, 2012).  This approach has already proven its value, providing 

valuable new insight into how the compound DAPT interacts with the multiple-substrate 

regulated forms of -secretase and the implications this has for amyloid precursor 
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protein processing in Alzheimer's disease (Walsh 2014).  Additionally, it has been used 

to provide more information on the effect drugs for Alzheimer's disease have on the 

multiple-substrate regulated forms of cholinesterases (Walsh et al., 2007; Walsh et al., 

2011b).   

New initiatives for reproducibility and openness such as the database proposed by 

the Standards for Reporting Enzyme Data (STRENDA) commission which will include 

raw data (Tipton et al., 2014) suggests enzyme kinetic data will become much more 

transparent.  This transparency will allow easier sharing and evaluation of raw data 

sets, which will in turn lead to the refitting of raw data with alternative models such as 

the modifier equation.  The global fitting templates presented here should be useful for 

both evaluating model suitability and in assessing whether the modifier equation 

described here can replace traditional approaches to inhibition and activation modeling. 
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Figure captions 

Figure 1. A) Enzyme-substrate binding, like any bimolecular system where ligand is in 

excess, can be expressed using a hyperbolic binding curve. Similarly, hyperbolic 

binding curves are also useful for describing the binding of modifiers, either inhibitors or 

activators, with the enzyme. B) A basic way of conceptualizing the rate at which an 

enzyme population hydrolyses its substrate and how that rate may be affected by 

modifiers, is to limit the potential states the enzymes may be found in to free enzyme (

), enzyme-substrate complex ( ), enzyme-modifier complex ( ) and enzyme-

substrate-modifier complex ( ). Catalysis is then defined by the portion of the substrate 

bound population affected by modifier (kcat2, ) or free of modifier (kcat1, ). C) The 

hyperbolic association of substrate (yellow boxes) and modifier (blue boxes) with the 

enzyme population is then able to provide a way of determining the rate of substrate 

catalysis.  The depicted table is very similar to a simple multiplication table where the 

percent of substrate associated enzyme is displayed vertically with yellow bars, while 

association of modifier is displayed horizontally with blue bars. Overlap of the two 

populations is depicted as green, and along with the yellow bars represent the portion of 

the enzyme population which are catalytically relevant.  While the hyperbolic curves 

described by the binding isotherm is a continuum between 0% and 100% association, 

the table is limited to 0%, 25%, 50%, 75% and 100% for simplicity. Substrate hydrolysis 

is then defined by the portion o the enzyme population associated with substrate in the 

presence or absence of modifier.  For example, in the absence of modifier (0%), at a 

substrate concentration equal to the KM, 50% of the enzyme population is bound by 

substrate and the reaction rate is half that of the VMAX1.  However, if a concentration of 
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modifier equal to the modifier binding constant (KX) is added, half of the enzyme 

population is shifted to the new catalytic rate (kcat2) and substrate affinity (KM2).  This 

results in 25% of the population hydrolysing substrate free of modifier (Yellow box) and 

25% shifted to the altered state (green box).  The altered state produced by the modifier 

may result in a very different substrate association than that observed with the 

unmodified enzyme population, so it must be recognized that the green boxes represent 

the portion of the population that is altered by the modifier unlike the yellow boxes that 

represent substrate association and can be directly related to the VMAX1.  

 

Figure 2.  Cartesian coordinate plots of A) the maximum velocity (Vmax) and substrate 

affinity constants (KM) used to define the Michaelis-Menten equation B) the effect of 

competitive inhibition C) non-competitive inhibition and D) mixed non-competitive 

inhibition.  E) A representation of the full range of effects which may occur using 

equation 13 and F) A plot of a theoretical compound which activates the catalytic rate 

while decreasing substrate affinity emphasizing the hyperbolic relationship that should 

govern a transition between any of the points on the Cartesian plot. 

 

Figure 3. The enzyme modifier kinetic template A) provides fifteen rows for substrate 

concentrations as well as sixteen columns for varying concentrations of enzyme 

modifiers, either activators or inhibitors.  B) Below the raw data, a modified direct linear 

plot uses the data in the no inhibitor column to generate estimates of the KM and Vmax 

while the first row of data is used to produce a linear estimate of the initial Ki value.  C) 

The initial kinetic values are inserted into a table which contains the parameters utilized 

in the fitting of each equation covered by the template.  The table also contains the Sum 
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of Squared Residuals (RSS), Relative Standard Error (RSE) and the Bayesian 

information criterion (BIC) for assessing the fit of the model based on the provided 

parameters.  Additionally, a box plot of the residuals is provided to offer a visual 

representation of the error associated with the fitting of each equation to the data. 

 

Figure 4. Global fitting of the Biotek’s application note data (Held, 2007) to multiple 

inhibitory equations.  A) In addition to producing global minimal fitting values based on 

the RSS, the modifier template also produces a visualization of the fitting of each 

inhibitory model with correlation plots of the experimental and calculated values, double 

reciprocal Lineweaver-Burk plots, direct plots of the reaction rate versus the substrate 

and Dixon plots.  Shown are the global fits of the B) Non-competitive C) Competitive D) 

Uncompetitive E) Mixed Non-competitive and F) The modifier equation to the data. 

 

Figure 5.  Global fitting of the E. characias aqueous leave extract reported as a mixed-

non-competitive inhibitor of tyrosinase (Pintus et al., 2015).  A) Fitting suggests the 

modifier and mixed non-competitive equations model the data significantly better than 

the other equations.  Shown are the global fits of the B) Mixed Non-competitive and C) 

The modifier equation to the data.    

 

Figure 6.  Global fitting of the E. characias ethanolic leave extract reported as a 

competitive inhibitor of tyrosinase (Pintus et al., 2015).  A) Fitting suggests the modifier 

and mixed non-competitive equations model the data better than the other equations.  
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Shown are the global fits of the B) Non-competitive C) Competitive D) Mixed Non-

competitive and E) The modifier equation to the data. 

 

Figure 7.  Global fitting of the data presented in Whiteleys’ article on partial competitive 

inhibition (Whiteley, 1997) to A) the modifier equation and the classical inhibitory 

equations, and B) the modifier equation and the partial inhibitory equations. 

 

Figure 8.  Global fitting of the partial non-competitive data presented in Whiteleys’ 

article on partial and complete non-competitive inhibition (Whiteley, 1999) to A) the 

modifier equation and the classical inhibitory equations, and B) the modifier equation 

and the partial inhibitory equations.  Global fitting of the non-competitive data presented 

in Whiteleys’ article to C) the modifier equation and the classical inhibitory equations, 

and D) the modifier equation and the partial inhibitory equations. 

 

Figure 9.  Global fitting of the data presented in Whiteleys’ article on partial 

uncompetitive inhibition (Whiteley, 2000) to A) the modifier equation and the classical 

inhibitory equations, and B) the modifier equation and the partial inhibitory equations. 
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Table captions 

Table 1.  Comparison of experimental data fitting between equations 

RSS values related to the global fitting of the literature datasets (S4-S6, S8-S18) with 

the equations in the templates (Eq 5-8, 13-17).  For each literature dataset, the reported 

mode of inhibition is listed in the left-hand column and is circled in the table.  The ability 

of each model to fit the datasets have been color-coded such that superior fits appear in 

green with the text of minimum RSS values appearing in red.   

 

Table 2.  Comparison of simulated data fitting between equations 

RSS values related to the global fitting of the simulated datasets (S19-28) with the 

equations in the templates (Eq 5-8, 13-17).  The RSS value of the equations used to 

generate the dataset has been omitted.  The ability of each model to fit the datasets 

have been color-coded such that superior fits appear in green with the text of minimum 

RSS values appearing in red.   
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Non-competitive  3.10E+02 5.84E+01 8.55E-10 2.08E-28 1.19E-28 1.54E-05 8.60E+02 4.44E-08 

Competitive 9.59E+01  2.25E+02 1.91E-07 1.33E-03 9.52E+01 2.26E-06 3.27E+02 1.57E-01 

Uncompetitive 2.17E+01 4.16E+02  6.14E-07 6.13E-08 2.17E+01 4.16E+02 6.82E+02 1.46E-07 

Mixed Non-competitive 8.21E+01 1.24E+00 2.08E+02  7.23E-08 8.15E+01 9.78E-04 3.40E+02 2.12E-04 

Modifier equation (activation) 6.29E+02 6.29E+02 6.29E+02 6.29E+02  6.29E+02 4.72E+04 2.88E+02 1.81E-06 
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