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Leishmaniasis represents an important public health problem in Brazil. The continuous

process of urbanization and expansion of human activities in forest areas impacts natural

habitats, modifying the ecology of some species of Leishmania, as well as its vectors and

reservoirs and, consequently, changes the epidemiological pattern and contribute to the

expansion of American Cutaneous Leishmaniasis (ACL) in Brazil. In epidemiology of ACL,

we highlight Lutzomyia (Nyssomyia) whitmani, the main vector of ACL, transmitting two

dermotropic Leishmania spp.: Leishmania (Viannia) braziliensis and Leishmania (Viannia)

shawi. We used the maximum entropy niche modeling approach (MAXENT) to evaluate the

environmental suitability of L. (N.) whitmani and the transmission of ACL in Brazil, in

addition to designing models for a future scenario of climate change. MAXENT was used

under the "auto-features" mode and the default settings, with 100-fold repetition

(bootstrap). The logistic output was used with higher values in the Habitat Suitability Map,

representing more favorable conditions for the occurrence of L. (N.) whitmani and human

cases of ACL. Two models were developed: Lutzomyia whitmani model (LWM) and

American Cutaneous Leishmaniasis model (ACLM). LWM identified that the species

"prefers" (more appropriate habitat) regions with moderate Annual Precipitation (AP),

between 1,000 - 1,600 mm, intermediate vegetation density (NDVI) values, Mean

Temperature of The Coldest Quarter (MTCQ), between 15°C - 21°C, and Annual Mean

Temperature (AMT), between 19°C - 24°C. ACLM indicates that ACL is strongly associated

with areas of intermediate density vegetation, areas with Annual Precipitation (AP)

between 800 and 1200 mm, MTCQ above 16 ° C and AMT below 23°C. The results obtained

in this study are discussed in terms of epidemiology and surveillance of ACL in future

scenarios in Brazil.
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15 ABSTRACT

16 Leishmaniasis represents an important public health problem in Brazil. The continuous process 

17 of urbanization and expansion of human activities in forest areas impacts natural habitats, 

18 modifying the ecology of some species of Leishmania, as well as its vectors and reservoirs and, 

19 consequently, changes the epidemiological pattern and contribute to the expansion of American 

20 Cutaneous Leishmaniasis (ACL) in Brazil. In epidemiology of ACL, we highlight Lutzomyia 

21 (Nyssomyia) whitmani, the main vector of ACL, transmitting two dermotropic Leishmania spp.: 

22 Leishmania (Viannia) braziliensis and Leishmania (Viannia) shawi. We used the maximum 

23 entropy niche modeling approach (MAXENT) to evaluate the environmental suitability of L. (N.) 

24 whitmani and the transmission of ACL in Brazil, in addition to designing models for a future 

25 scenario of climate change. MAXENT was used under the "auto-features" mode and the default 

26 settings, with 100-fold repetition (bootstrap). The logistic output was used with higher values in 

27 the Habitat Suitability Map, representing more favorable conditions for the occurrence of L. (N.) 

28 whitmani and human cases of ACL. Two models were developed: Lutzomyia whitmani model 

29 (LWM) and American Cutaneous Leishmaniasis model (ACLM). LWM identified that the 

30 species "prefers" (more appropriate habitat) regions with moderate Annual Precipitation (AP), 

31 between 1,000 - 1,600 mm, intermediate vegetation density (NDVI) values, Mean Temperature 

32 of The Coldest Quarter (MTCQ), between 15°C - 21°C, and Annual Mean Temperature (AMT), 

33 between 19°C - 24°C. ACLM indicates that ACL is strongly associated with areas of 

34 intermediate density vegetation, areas with Annual Precipitation (AP) between 800 and 1200 

35 mm, MTCQ above 16 ° C and AMT below 23°C. The results obtained in this study are discussed 

36 in terms of epidemiology and surveillance of ACL in future scenarios in Brazil.

37
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38 INTRODUCTION

39 The simplification of biological communities, the fragmentation and loss of habitats 

40 resulting from human occupation modify the parasite/host interactions, which may lead to the 

41 emergence and reemergence of several diseases in animal and human populations (Begon, 

42 Harper & Townsend, 1990).

43 In the last decade, a growing number of studies have investigated the effects of 

44 biodiversity on the risk of disease occurrence, mainly due to the interest in identifying and 

45 evaluating the importance of biodiversity and the environmental services it provides (Loreau et 

46 al., 2001). The influence of diversity on transmission cycles has been described for some 

47 diseases (Van Buskirk & Ostfeld, 1995; Norman et al., 1999; Allan, Keesing & Ostfeld, 2003; 

48 Allan et al., 2009; Telfer et. al., 2005; Vaz et al., 2007). However, little is known about the 

49 ecological mechanisms related to these effects (Keesing, Holt & Ostfeld, 2006). Understanding 

50 the structure and functioning of the ecological processes involved in the dynamics of the 

51 interactions between parasites, hosts and the environment becomes critical in order to 

52 comprehend the relationship between biodiversity and the emergence or reemergence of 

53 zoonoses.

54 Due to the new and complex epidemiological scenarios, Leishmaniasis are considered 

55 reemerging diseases (WHO, 2010) and important public health problems in Brazil. American 

56 Cutaneous Leishmaniasis (ACL) represents an example of zoonosis related to land use and 

57 biodiversity management, both by the severity of the disease and by the direct relationship of 

58 elements and the environmental context (landscape) in its transmission cycle (Fonseca et al., 

59 2014).

60 The circulation of phlebotomine vectors (sandfly) in environments outside the 

61 geographical limits of natural foci is increasing, and leads to modifications in the classic 

62 epidemiological patterns (wild, occupational/leisure, and rural/periurban. For more detail, see 

63 (Brasil, 2013). Such modifications are related to changes in the determinant factors for the 

64 exposure of man to transmission, demographic expansion and the process of urbanization on the 

65 limits of natural foci, as well as the occurrence of forest remnants adjacent to urban areas 

66 (Lainson & Rangel, 2005; WHO, 2010; Brazil, 2013).

67 In this context, we highlight Lutzomyia (Nyssomyia) whitmani, sandfly species registered 

68 in 25, of the 27 Brazilian federative units (Costa et al., 2007) and incriminate it as transmitter of 
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69 two dermotropic leishmaniasis: Leishmania (Viannia) shawi, in the Amazon, and Leishmania 

70 (Viannia) braziliensis, in the North, Northeast, Midwest, Southeast and South Regions (Lainson 

71 & Shaw, 2005; Rangel & Lainson, 2009). The species presents different behavior in different 

72 regions, has a wide geographical distribution, and is adapted to several climates and types of 

73 vegetation cover (Costa et al., 2007; Rangel & Lainson, 2003; Rangel & Lainson, 2009). This 

74 ecological plasticity reflects the occurrence of this species in all epidemiological patterns 

75 described for ACL (Brasil, 2013). Throughout Brazilian territory, according to qualitative 

76 changes related to antrophilia and domesticity, Lainson (1988) suggested that L. (N.) whitmani 

77 represented a complex of cryptic species.

78 The characterization of factors influencing the spatial distribution of the species, in 

79 general, has been an efficient tool for a better understanding of ecological processes. The 

80 Ecological Niche Models (ENM) has been widely used as a tool to describe conditioning factors 

81 and to identify patterns related to environmental suitability for species occurrence (Guisan & 

82 Zimmerman, 2000; Franklin, 2010; Peterson et al., 2011). In recent years, many techniques for 

83 modeling niches and species distributions have been developed and applied extensively in 

84 biogeography, ecology and conservation studies (Guisan & Zimmerman, 2000; Guisan & 

85 Thuiller, 2005; Elith & Leathwick, 2009). The maximum entropy model (Maxent), (Elith et al., 

86 2006) is consistently competitive with the highest performing methods, and is one of the most 

87 common approaches used to determine geographic distribution and ecological features of species 

88 (Elith et. al., 2011; Renner & Warton, 2013; Václavík & Meentemeyer, 2009; Braunisch & 

89 Suchant, 2010; Rebelo & Jones, 2010; Rodríguez-Soto et. al., 2011).

90 Peterson and Shaw (2003) modeled three sandfly vector species (L. (N.) whitmani, L. 

91 (Nyssomyia) intermedia and L. migonei) for South America, and identified an increase in areas of 

92 climate suitability for the year 2050. According to the models, L. (N.) whitmani presented the 

93 greatest areas of dispersion. The purpose of the present; study was to evaluate the environmental 

94 suitability and project future scenarios (via ENM), for L. (N.) whitmani and for the ACL in 

95 Brazil, in face of global climate change.

96 MATERIALS AND METHODS

97 Occurrence data
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98 For data related to the occurrence of the disease, we used municipalities with records of 

99 endemic areas for ACL (N = 1882, of which 1506 were used for modeling and 376 for additional 

100 accuracy test). For L. (N.) whitmani occurrence, the municipalities with confirmed record of 

101 vector (N = 992, of which 794 were used for modeling and 198 for additional accuracy test) were 

102 considered in L. (N.) whitmani model. 

103 This set of occurrence data was extracted from previously published data (online 

104 databases, PubMed, http://www.ncbi.nlm.nih.gov/pubmed; ISI Web of Knowledge, 

105 http://apps.webofknowledge.com and SCOPUS, Http://www.scopus.com, CAPES). We also 

106 collected unpublished records from the Health Departments of Brazil and from major Brazilian 

107 sandfly collections (Centro de Pesquisas Rene Rachou - FIOCRUZ, Instituto Evandro Chagas - 

108 IEC and Faculdade de Saude Publica—USP).

109 Environmental descriptors

110  Ten environmental variables (0.04° of spatial resolution, ~ 5 km) were used, eight of 

111 which were WorldClim (Hijmans et al., 2005) climatic variables, as well as data on altitude and 

112 vegetation indices, all displayed in Table 1. The adopted variables are commonly used in species 

113 distribution predictions, and consist of easily usable ecological information.

114 For the projection to the environmental conditions of the future (2050), we used two 

115 Representative Concentration Pathways (RCPs) of HadGEM2-ESGeneral Circulation Model: 

116 RCP 4.5 and RCP 8.5 greenhouse gas concentration trajectories adopted by the IPCC for its fifth 

117 Assessment Report (AR5) in 2014 (IPCC, 2013). These were selected to represent contrasting 

118 scenarios in projections for climate change. RCP 4.5 represents a relatively optimistic scenario 

119 and assumes that the radiative forcing of greenhouse gas stabilizes shortly after 2100, and RCP 

120 8.5, more pessimistic, radiative forcing keeps rising after 2100.

121 Ecological Niche Models

122 We used the maximum entropy niche modelling approach, as implemented in the 

123 MAXENT software (version 3.3.3k), to evaluate the environmental suitability for L. (N.) 

124 whitmani and occurrence of ACL in Brazil, as well as to model projections for future climate 

125 change scenarios. The method considers the requirement of the species based on presence and on 

126 the set of environmental variables (Phillips, Anderson & Schapire, 2006), providing 

127 environmental variable response curves which indicate how each variable affects the predicted 
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128 distribution (Phillips & Dudík, 2008). MAXENT has been shown to be robust for ENM 

129 construction from presence-only data (Elith et. al., 2006), and to describe of the ecological and 

130 spatial relationships between species and environmental conditions.

131 MAXENT was applied under the ‘auto-features’ mode and the default settings, with 100-

132 fold replicates generated by bootstrap (Phillips & Dudík, 2008). The logistic output was used 

133 (habitat suitability on a scale of 0–1), with higher values in the Habitat Suitability Map (HSM) 

134 representing more favorable conditions for the occurrence of the L. (N.) whitmani or ACL. Two 

135 models were developed: i) the Lutzomyia whitmani model (LWM), and ii) American Cutaneous 

136 Leishmaniasis model (ACLM). Both models were developed using 10 environmental variables 

137 and 80% of occurrence data for training and 20% for test.

138 In order to infer the effect of climate change on the distribution of L. (N.) whitmani and 

139 ACL, each model was projected using both scenarios, RCP 4.5 and RCP8.5. For these 

140 projections, the NDVI environmental variable was removed.

141 We assessed the accuracy of each model using the AUC (area under the receiver 

142 operating characteristic [ROC] curve). Additionally, we used an independent set of 127 and 376 

143 actual occurrence records, for L. (N.) whitmani and ACL human cases, respectively (randomly 

144 selected from total points and not used in the generation of models), to evaluate the predictive 

145 capacity of the models. The predicted suitability of the models was extracted for each test point, 

146 and the average suitability was used to evaluate model accuracy.

147 For L. (N.) whitmani and ACL potential distribution binary maps (suitable/unsuitable) 

148 were applied the Minimum Training Presence (MTP) as a threshold value for models, because it 

149 is the most conservative threshold, identifying the minimum predicted area possible while still 

150 maintaining a zero omission rate for both training and test data.

151 For comparative purposes, the images resulting from each model (with continuous values 

152 from 0 to 1) were reclassified into five environmental suitability zones: (1) Unsuitable Zone 

153 (UNSZ; value pixel suitability < Minimum Training Presence, MTP), (2) Low Suitability Zone 

154 (LSZ, value pixel suitability between MTP value and 0.25), (3) Intermediate Suitability Zone 

155 (ISZ, value pixel suitability between 0.25 and 0.50), (4) High Suitability Zone (HSZ, value pixel 

156 suitability 0.50 and 0.75), and (5) a Very High Suitability Zone (VHSZ, value pixel suitability 

157 >0.75).

158 Model Comparison
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159 The generated models ACLM and LWM were compared using Fuzzy for continuous 

160 maps, and Kappa index for categorical maps (suitable/unsuitable) using Map Comparison Kit 

161 v.3.2, software developed by the Netherlands Environmental Assessment Agency (Visser & Nijs, 

162 2006; Hagen, 2002; Hagen-Zanker, Straatman  & Uljee, 2005). Both indices express the pixel 

163 similarity for a value between 0 (fully distinct) and 1 (fully identical).

164 Additionally we used Olson et al.'s (2001) delineation of the terrestrial “Ecoregions of the 

165 World'' and the Brazilian biomes (IBGE) as base map to better demonstrate the comparison 

166 between generated.

167
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168 RESULTS

169 With an average AUC of 0.77 (SD = 0.004; 100-fold replicates), the ACLM achieved a 

170 satisfactory model fit and the modeled distribution performed better than random. The predictive 

171 capacity of ACLM, evaluated by the average suitability test of 0.53 (SD = 0.12) in each test 

172 point, indicates that the model achieved high accuracy. This average value corresponds to the 

173 High Suitability Zone for ACL. Based on the Minimum Training Presence (MTP = 0.07) cutoff 

174 criteria (MTP = 0.07), the ACLM identified many of the regions of Brazil appropriate for the 

175 occurrence of ACLM (Figure1), covering 82.3% of the Brazilian territory. The LWM model 

176 showed similar performance, mean AUC of 0.82 (SD = 0.006; 100-fold replicates) and average 

177 suitability test of 0.54 (SD = 0.15), indicating satisfactory predictive capacity of both models 

178 (Figure 1), covering 83.4% of the Brazilian territory.

179 The vegetation density index (NDVI) was the variable with the highest gain in the model, 

180 when it was omitted or used alone, the significance of the ACLM model decreased. The response 

181 curves for EV of this model indicate that ACL are strongly associated with intermediate density 

182 vegetation areas, zones with Annual Precipitation (AP) between 800 to 1200 mm, Mean 

183 Temperature of Coldest Quarter (MTCQ) above 16°C, and Annual Mean Temperature (AMT) 

184 lower than 23°C (suitability of occurrence > 0.5) (Figure 2A; 3A).

185 Lutzomyia (Nyssomyia) whitmani was identified by the LWM model as a species that 

186 occurs "prefers" (more suitable habitat) in regions with relative moderate rainfall (AP between 

187 1000 - 1600 mm), intermediate density vegetation values (NDVI), and regions with MTCQ 

188 between 15° - 22°C and AMT between 19° - 24°C (Figure 2B; 3A). These characteristics are in 

189 accordance with previous analysis discussing the distribution of this sandfly vector in Brazilian 

190 biomes, occurring in high frequency in Southern Brazil, Amazonian region, Caatinga and 

191 Pantanal biomes showing low suitability and unsuitable areas (based on MTP = 0.06) in the 

192 LWM.

193 Figure 1 shows the future predicted distributions for ACL and L. (N.) whitmani in 2050, 

194 under both the RCP 4.5 and RCP 8.5 (HadGEM2-ES model) for future climate scenarios. For 

195 ACL model these two projections differ moderately from current scenario (Fuzzy of 0.58 and 

196 0.59, for RCP 4.5 and RCP 8.5 respectively) and are very similar to each other (Fuzzy of 0.75). 

197 Similar results were found in the projections for L. (N.) whitmani (Figure 1), but with greater 
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198 similarity (Fuzzy of 0.74 and 0.64, for current model versus RCP 4.5 and RCP 8.5 respectively, 

199 and Fuzzy of 0.77 between future climate scenarios).

200 Comparisons between the models for ACL and L. (N.) whitmani indicate high similarity. 

201 Fuzzy of 0.77, between current models, and 0.77 and 0.78, for RCP 4.5 and RCP 8.5 scenarios, 

202 respectively.

203 All the projections presented gain in area in the coverage of the Brazilian territory. L. (N.) 

204 whitmani increases by 5% in the RCP 4.5 scenario and in 7.6% in the RCP 8.5 scenario. For 

205 ACL the area gain values were relatively higher (12.3% and 15.5% area gain, RCP 4.5 and RCP 

206 8.5 respectively).

207 Suitable areas (above MTP cutoff values) for L. (N.) whitmani are more extensive than 

208 those suitable for ACL. Suitability areas for L. (N.) whitmani covers 7,113,644.7 km² of 

209 Brazilian territory, 1.2% more than the suitability for ACL (7,025,688.6 km²). In future 

210 projections, this behavior is repeated, but with higher gain values in the suitable area for this 

211 vector (8.8% and 9.1%, RCP 4.5 and RCP 8.5 respectively).

212 Figure 4 shows the Most Dissimilar variables (MoD) between current and future climate 

213 scenarios. The MoD for a point P is the variable with respect to which P has the smallest value 

214 of similarity - i.e., the variable driving the dissimilarity result (Elith et al., 2010). For ACL and L. 

215 (N.) whitmani the Mean Temperature of Warmest Quarter (MTWAQ), Mean Temperature of 

216 Coldest Quarter (MTCQ) and Annual Mean Temperature (AMT) were the drivers of 

217 current/future dissimilarity.

218 DISCUSSION

219 Lutzomyia (Nyssomyia) whitmani has the ability to "adapt" to environmental changes, 

220 new ecological niches, tolerating and overcoming the effects of changes that constantly occur in 

221 natural environments (Peterson & Shaw, 2003; Rebelo et. al., 2009). According to Peterson & 

222 Shaw (2003), L. (N.) whitmani, L. (N.) intermedia and L. migonei, phlebotomines vectors of 

223 ACL widely distributed in South America, in the year 2050 will have their climatic suitability 

224 areas increased. These species are expanding to different areas of the continent, and Peterson & 

225 Shaw, (2003) identified the southern direction as the most evident for L. (N.) whitmani. Our 

226 results corroborate this study. However, when using data from the most recent occurrence of L. 

227 (N.) whitmani, we show that it is predicted to expand even in the current model.
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228 Therefore, the future projections of the LWM model indicate a larger area of expansion 

229 of climatic suitability for L. (N.) whitmani for the northern region of Brazil, and reinforces the 

230 trend of expansion towards the South, as described by Peterson & Shaw (2003). Other vectors of 

231 ACL e present projections of future displacements towards higher latitudes, as observed in 

232 sandflies from Central and North America (González et al., 2010; Moo-Llanes et al., 2013). 

233 Phlebotomus ariasi showed increased abundance at higher latitudes in Central Spain. According 

234 to the authors, the species would be migrating to these areas in order to compensate for the 

235 increase in temperatures in the region (Gálvez et al., 2010). Carvalho et al., (2015) describes an 

236 expansion of Lutzomyia (Nyssomyia) flaviscutellata to the south and southeast of Brazil in the 

237 face of future climatic scenarios. Therefore, one can infer that the area of overlap between these 

238 vectors (L. (Nyssomyia) flaviscutellata and L. (N.) whitmani) will be larger and more evident in 

239 the future. Similarly, greater overlap between L. (N.) whitmani and L. neivai is expected for the 

240 southern region, compared to future climate projections.

241 The results point to the predicted expansion of L. (N.) whitmani in the northern region, 

242 especially the State of Amazonas: although future projections show that the Amazon region will 

243 become drier, as a consequence of the increase in intensity and duration of the dry season 

244 (Joetzjer et al., 2013), L. (N.) whitmani remains present in the region and will have a more 

245 extensive climatic suitability area in the future. Considering the extensive latitudinal range of 

246 Brazil, regional climates play an important role in the definition of species distribution. 

247 According to Carvalho, Rangel &Vale (2016), most projections of climate change endorse that 

248 vectors of diseases will find good climatic conditions for their geographic expansion in the 

249 higher latitudes during the coming decades.

250 In relation to the epidemiology of ACL in Brazil, the disease expansion process is related 

251 to environmental changes with new human cases being registered in areas of recent 

252 deforestation, mining, hydroelectric plant construction and population settlements (Brazil, 2013; 

253 Rangel & Lainson, 2009). These changes in the transmission pattern favor the dispersion of wild 

254 animals and sandflies mainly to the peridomestic environment, where new transmission cycles 

255 can be established close to houses (Brazil, 2013). In this case, L. (N.) whitmani and L. (N.) 

256 flaviscutellata would be particularly good examples of species, in different epidemiological 

257 situations (Rangel et al., 2014). This relationship is identified in the ACLM model by the strong 
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258 relation of the most suitable areas for ACL with areas of intermediate vegetation cover density. 

259 Therefore, the most conserved Amazonian areas are identified as unsuitable.

260 Future projections for ACL indicate an expansion to northwestern Brazil. This is more 

261 evident in the RCP 8.5 scenario, which is more pessimistic in relation to policies to control the 

262 emission of greenhouse gases, adding 15.5% to the total area of occurrence of the disease. The 

263 lack of future scenarios of the change in density and/or vegetation cover, in the way of those that 

264 exist for climatic data, made it impossible to quantify the role of changes in forest cover in future 

265 forecasts. However, the known and progressive environmental degradation, associated with 

266 future climate predictions that indicate that the Amazon region will tend to become more suitable 

267 climatically for both ACL and L. (N.) whitmani, design a scenario of higher risk of cases of 

268 disease.

269 The larger distribution predicted in the models for L. (N.) whitmani in regard to ACL 

270 epidemiology, is possibly related to the sole presence of the vector not being deterministic for the 

271 disease. Other factors influence pathogen transmission as well as the development of the disease. 

272 However, the little difference between the areas identified as adequate for L. (N.) whitmani and 

273 ACL, associated with the high similarities between the models reinforce the geographical 

274 importance of this vector in the transmission of ACL.

275 CONCLUSION

276 Regardless of whether it is a complex of cryptic species or not (Lainson, 1988), it is a fact 

277 that L. (N.) whitmani has a wide geographic distribution, occurs in all five Brazilian regions, and 

278 is an important ACL vector in Brazil. In this context, and in view of the geographic expansion 

279 projected for the future, the models reinforce the importance of L. (N.) whitmani spatialization in 

280 the transmission of ACL in Brazil, and confirm that this ACL vector is well established in the 

281 Brazilian territory and will most likely maintain this behavior in the expected climate change.

282 Although climate change scenarios show that Amazon region will become gradually drier 

283 (Joetzjer et al., 2013), the presented results indicate that L. (N.) whitmani will remain present in 

284 the region and should expand its area of climate suitability in the future.

285 The models were able to identify that continuous process of environmental degradation 

286 favors the establishment of L. (N.) whitmani and the occurrence of ACL. Future projections of 

287 ACL models indicate the ongoing process of disease expansion in the face of the predicted 

288 climatic changes and reinforce the broad geographical expanse of the disease. In this view and 
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289 associated with the new epidemiological patterns resulting from the drastic environmental 

290 changes (coupled with the presence of highly adapted vectors, reservoirs, and parasites) the 

291 epidemiological scenario for ACL indicates a continuous increasing of human cases.

292 Several evidences have suggested that epidemiology of vector-borne diseases are 

293 dependent on global climate changes (Gálvez et al., 2010; Gálvez et al., 2011; González et al., 

294 2010). Policies for monitoring / controlling neglected diseases, such as leishmaniasis, should be 

295 aligned with agendas committed to assessing climate, besides environmental changes (WHO, 

296 2011)

297 Considering that changes in the climate can impact the ecoepidemiology of leishmaniasis 

298 (WHO, 2010), the results discussed here should be  assessed  in  vector surveillance actions, 

299 contributing to the promotion of health in risk areas for ACL associated to L. (N.) whitmani , 

300 projected for future scenarios in Brazil.
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Table 1(on next page)

Environmental Variables (EV)

Environmental Variables (EV) used to model the potential distribution of Lutzomyia (N.)

whitmani and American Cutaneous Leishmaniasis in Brazil. All variables were resampled from

original resolution to 0.04° (~5km), using the average value of all involved pixels, where the

source pixels are covered by the target pixel.
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1

Environmental Variable (EV) Acronym
WorldClim 

Acronym
Source

Annual Mean Temperature AMT BIO1

Mean Temperature of Wettest Quarter MTWEQ BIO8

Mean Temperature of Driest Quarter MTDQ BIO9

Mean Temperature of Warmest Quarter MTWAQ BIO10

Mean Temperature of Coldest Quarter MTCQ BIO11

Annual Precipitation AP BIO12

Precipitation of Wettest Quarter PWQ BIO16

Precipitation of Driest Quarter PDQ BIO17

WorldClim 

(Hijmans et al.,2005)

Altitude - Digital Elevation Model ALT --

Shuttle Radar Topography 

Mission 

(http://www2.jpl.nasa.gov/srt

m/)

MODIS Normalized Difference 

Vegetation Index (NDVI)-32 day 

composites-Oct/15 - Nov/15/2004. Date 

of the composite represents well the 

contrast between forest and open 

formations.

NDVI --

Global Land Cover Facility 

(GLCF) 

(http://www.landcover.org/dat

a/modis/)

2
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Figure 1

American Cutaneous Leishmaniasis (ACL) and Lutzomyia (N.) whitmani (LW) Models

Environmental suitability for American Cutaneous Leishmaniasis (ACL) and Lutzomyia (N.)

whitmani (LW) in Brazil. Current conditions and future climate projections
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Figure 2

Response-curves of the variables in the American Cutaneous Leishmaniasis Model

(ACLM), and Lutzomyia (N.) whitmani Model (LWM)

Response-curves of the variables in the (A) American Cutaneous Leishmaniasis Model

(ACLM), and (B) Lutzomyia (N.) whitmani Model (LWM). Normalized Difference Vegetation

Index (NDVI), Annual Precipitation (AP – BIO12), Mean Temperature of Coldest Quarter (MTCQ

– BIO11), Annual Mean Temperature (AMT – BIO1). These curves show how each

environmental variable affects the MAXENT prediction when all environmental variables are

used to build the model
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Figure 3

Jackknife test results of individual environmental variable importance in the

development of the MAXENT models

Jackknife test results of individual environmental variable importance in the development of

the MAXENT models relative to all environmental variables (red bar), for each predictor

variable alone (blue bars), and the drop in training gain when the variable is removed from

the full model (lighter blue bars). A) American Cutaneous Leishmaniasis Model (ACLM) and B)

Lutzomyia (N.) whitmani Model (LWM) jackknife test results
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Figure 4

The most dissimilar variables (MoD) between current and future climate scenarios

The most dissimilar variables (MoD) between current and future climate scenarios - i.e., the

variable driving the dissimilarity result
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