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Background. Rare or narrowly endemic organisms are difficult to monitor and conserve when their total

distribution and habitat preferences are incompletely known. One method employed in determining

distributions of these organisms is species distribution modeling (SDM).

Methods. Using two species of narrowly endemic burrowing crayfish species as our study organisms, we

sought to ground validate Maxent, a commonly used program to conduct SDMs. We used fine scale (30

m) resolution rasters of pertinent habitat variables collected from historical museum records in 2014. We

then ground validated the Maxent model in 2015 by randomly and equally sampling the output from the

model.

Results. The Maxent models for both species of crayfish showed positive relationships between

predicted relative occurrence rate and crayfish burrow abundance in both a Receiver Operating

Characteristic and generalized linear model approach. The ground validation of Maxent led us to new

populations and range extensions of both species of crayfish.

Discussion. We conclude that Maxent is a suitable tool for the discovery of new populations of narrowly

endemic, rare habitat specialists and our technique may be used for other rare, endemic organisms.
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14 Abstract 

15 Background. Rare or narrowly endemic organisms are difficult to monitor and conserve 

16 when their total distribution and habitat preferences are incompletely known. One method 

17 employed in determining distributions of these organisms is species distribution modeling 

18 (SDM). 

19 Methods. Using two species of narrowly endemic burrowing crayfish species as our 

20 study organisms, we sought to ground validate Maxent, a commonly used program to conduct 

21 SDMs. We used fine scale (30 m) resolution rasters of pertinent habitat variables collected from 

22 historical museum records in 2014. We then ground validated the Maxent model in 2015 by 

23 randomly and equally sampling the output from the model. 

24 Results. The Maxent models for both species of crayfish showed positive relationships 

25 between predicted relative occurrence rate and crayfish burrow abundance in both a Receiver 

26 Operating Characteristic and generalized linear model approach.  The ground validation of 

27 Maxent led us to new populations and range extensions of both species of crayfish. 

28 Discussion. We conclude that Maxent is a suitable tool for the discovery of new 

29 populations of narrowly endemic, rare habitat specialists and our technique may be used for 

30 other rare, endemic organisms.  

31 Introduction

32 Understanding the factors influencing species distributions and habitat selection are 

33 critical to researchers (Baldwin, 2009) because rare species or those with small native ranges 

34 (defined herein as those occurring in a single river drainage or a 1000 sq. km area), are difficult 

35 to monitor and conserve when their total distribution and habitat preferences are not completely 

36 known. These problems can be addressed using species distribution models (SDMs), which are 

37 correlative models using environmental and/or geographic information to explain observed 

38 patterns of species occurrences (Elith & Graham, 2009). SDMs can provide useful information 

39 for exploring and predicting species distributions across the landscape (Elith et al., 2011). 

40 Models estimated from species observations can also be applied to produce measures of habitat 

41 suitability (Franklin, 2013). This information can be useful for detecting unknown populations of 

42 rare, endemic, or threatened species (e.g. Williams et al., 2009; Rebelo & Jones, 2010; Peterman, 

43 Crawford & Kuhns, 2013; Searcy & Shaffer, 2014; Fois et al., 2015). SDMs can also limit search 

44 efforts by selecting suitable sampling areas a priori, leading to a cost-effective and efficient use 

45 of sampling effort (Fois et al., 2015). 
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46 One of the most widely used SDMs in recent years is the program Maxent (Kramer-

47 Schadt et al., 2013). Maxent is a presence-only modeling algorithm using predictor variables 

48 such as climatic and remotely sensed variables (Phillips, Anderson & Schapire, 2006; Phillips & 

49 Dudík, 2008). These data are used to predict the relative occurrence rate (ROR) of a focal species 

50 across a predefined landscape (Fithian & Hastie, 2013). Recent studies focusing on the 

51 performance of Maxent have revealed it to perform well in comparison to other SDMs (Elith et 

52 al., 2006). Maxent also performs well with small sample sizes (Pearson et al., 2007; Wisz et al., 

53 2008), rare species (Williams et al., 2009; Rebelo & Jones, 2010), narrowly endemic species 

54 (Rinnhofer et al., 2012), and when used as a habitat suitability index (Latif et al., 2015). 

55 However, the potential for the inaccurate execution and interpretation of an SDM is well 

56 documented (Baldwin, 2009; Syfert, Smith & Coomes, 2013; Fourcade et al., 2014; Guillera-

57 Arroita, Lahoz-Monfort & Elith, 2014). Specific issues surrounding the interpretation of Maxent 

58 analyses include sampling bias (Phillips & Dudík, 2008; Syfert, Smith & Coomes, 2013; 

59 Fourcade et al., 2014), the lack of techniques to assess model quality (Hijmans, 2012), 

60 overfitting of model predictions (Elith, Kearney & Phillips, 2010; Warren & Seifert, 2011), or 

61 assessment of detection probabilities (Lahoz-Monfort, Guillera-Arroita & Wintle, 2014). 

62 Researchers have sought to solve the aforementioned issues by reducing sampling bias through 

63 spatial filtering (Boria et al., 2014), assessing model quality with a null model approach (Raes & 

64 Ter Steege, 2007), utilizing the R package ENMeval (Muscarella et al., 2014) to balance 

65 goodness-of-fit and model complexity, and collecting data informative about imperfect 

66 detectability (Lahoz-Monfort, Guillera-Arroita & Wintle, 2014). The utility of Maxent has also 

67 been burdened with issues of model validation (Hijmans, 2012). Most model validation methods 

68 involve subsets of the input data with the predictions generated by the models (Rebelo & Jones, 

69 2010). Historically, validation of Maxent predictions has lacked an independent assessment of 

70 model performance (Greaves, Mathieu & Seddon, 2006), such as a novel set of presence 

71 locations. Recent studies have found ground validation of Maxent has been a suitable method to 

72 determine the accuracy of predictions (Stirling et al., 2016). The need for independent validation 

73 is especially important for rare species exhibiting a wider knowledge gap in distribution than 

74 more common species (Rebelo & Jones, 2010). For example, North American primary 

75 burrowing crayfishes are a poorly understood and understudied taxon for which SDMs could 
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76 provide novel insight into distributions and habitat relationships and thus provide an excellent 

77 case study for validation of SDMs.

78 North America has the highest diversity of crayfishes worldwide (Taylor et al., 2007). 

79 Within North America, 22% of the species listed as endangered or threatened in a conservation 

80 review of crayfishes were primary burrowing crayfishes (Taylor et al., 2007). It is hypothesized 

81 all crayfishes have the ability to construct refugia by way of burrowing down into the soil or 

82 substrate (Hobbs Jr., 1981; Berrill & Chenoworth, 1982). Primary burrowing crayfishes differ 

83 from stream dwelling crayfishes in their life history traits, they spend most of their life cycle 

84 underground, leaving their burrows only to forage and find a mate (Hobbs Jr., 1981). This 

85 difference in life history traits allow primary burrowing crayfish to persist in areas that are not 

86 connected to above-ground sources of water. This persistence allows primary burrowing crayfish 

87 to use habitats such as seeps, perched wetlands, and even roadside ditches. 

88 Amongst the three types of burrowers, the least is known regarding the natural history of 

89 primary burrowing crayfishes (Taylor et al., 2007; Moore, DiStefano & Larson, 2013) due to the 

90 challenges in sampling these largely fossorial animals (Larson & Olden, 2010). However, the 

91 narrowly endemic nature of North American crayfishes is well documented (Page, 1985; Taylor 

92 et al., 2007; Simmons & Fraley, 2010; Morehouse & Tobler, 2013). Primary burrowing 

93 crayfishes in Arkansas are no exception (Robison et al., 2008). Of the 12 species of primary 

94 burrowers in Arkansas (Fallicambarus dissitus, F. fodiens, F. gilpini, F. harpi, F. jeanae, F. 

95 petilicarpus, F. strawni, Procambarus curdi, P. liberorum, P. parasimulans, P. regalis, and P. 

96 reimeri) six (50%) are known from only one ecoregion. The limited geographic distribution of 

97 any taxa makes them more vulnerable to localized extirpation. Because these animals occur at 

98 such a constrained geographic scale, it is important to understand and document their existing 

99 distribution to manage and preserve current populations.

100 The rarity of and difficulties surrounding the collection of natural history information, 

101 specifically habitat suitability, make primary burrowing crayfishes ideal candidates for SDMs. 

102 To test the ability of Maxent to predict the distribution of suitable habitat for two narrowly 

103 endemic habitat specialists, we constructed SDMs for Fallicambarus harpi and Procambarus 

104 reimeri and validated the models using sampling data collected after completion of each SDM. 

105 These species are vulnerable to population declines and are currently recorded under the 
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106 Endangered (P. reimeri) and Vulnerable (F. harpi) conservation status categories (Taylor et al., 

107 2007) based on modifications to or reductions of habitat in their already restricted ranges. Both 

108 crayfishes are endemic to the Ouachita Mountains Ecoregion (OME; Woods et al., 2004), which 

109 is characterized by remnant pine-bluestem (Pinus-Schizachyrium) communities and silty loam 

110 soil (Hlass, Fisher & Turton, 1998). We used these two narrowly endemic species to reinforce 

111 the performance of Maxent with small sample sizes and rare species along with addressing 

112 problems associated with Maxent to maximize the accuracy of our predictions. We also sought to 

113 investigate the use of Maxent to identify suitable habitat and locate new occurrences of both 

114 species of crayfish.

115 Materials and Methods

116 Presence data and environmental variables

117 To determine habitat requirements of F. harpi and P. reimeri, we queried natural history 

118 museums or databases (Illinois Natural History Survey Crustacean Collection, the National 

119 Museum of Natural History Smithsonian Institution, and the Arkansas Department of Natural 

120 Heritage) for historic locations of both species, and a subset of those locations were visited in 

121 2014 (Rhoden, Taylor & Peterman, 2016). We sampled only those sites with confirmed 

122 presences in the past 20 years that were not based on obvious misidentifications occurring well 

123 outside of the known range of each species known in 2014 and were able to be located given 

124 historical information associated with respective collection events. At each location, we 

125 measured habitat variables hypothesized to determine burrow placement: percent tree canopy 

126 cover, percent herbaceous ground cover, stem density, the number of burrows, presence of 

127 standing water at the site, remotely sensed variables and the presence or absence of hydrophilic 

128 sedges. We found canopy cover and the presence of hydrophilic sedges were the most important 

129 factors in predicting crayfish abundance (Rhoden, Taylor & Peterman, 2016). 

130 The presence locations used for the Maxent analysis, based on the field surveys of 2014, 

131 consisted of 58 locations for F. harpi (of which 56 were used for the SDM analysis) and 53 

132 locations for P. reimeri (of which 50 were used for the SDM analysis). To minimize spatial 

133 autocorrelation, a subset of the original presence data was used. All duplicate presence locations 

134 falling within the same cell of a 30 m resolution raster were removed before the SDM analysis. 
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135 The selected presence locations used for the SDM analysis were near (<90 m) primary, 

136 secondary, and tertiary roadways. The environmental variables used for the SDM analysis 

137 consisted of canopy cover, elevation, distance to nearest waterbody, compound topographic 

138 index value (CTI), and solar radiation value (Table 1). These habitat variables reflect habitat 

139 characteristics associated with F. harpi (Robison & Crump, 2004) and P. reimeri (Robison, 

140 2008), and other primary burrowing crayfish species (Hobbs Jr., 1981; Welch & Eversole, 2006; 

141 Loughman, Simon & Welsh, 2012).  Canopy cover was estimated using a United States Forest 

142 Service percent canopy raster (National Land Cover Database 2011; 30 m). Elevation was 

143 estimated using a United States Geological Survey digital elevation map (DEM; 10 m). Distance 

144 to nearest water body was estimated by constructing a raster of the Euclidean distance from all 

145 permanent waterbodies. Compound topographic index values were determined using the 

146 Geomorphometry and Gradient Metrics (version a1.0; Evans et al., 2010) toolbox; this metric is 

147 a representation of surface wetness across the landscape (Evans et al., 2010). CTI is a steady 

148 state wetness index, where a larger CTI value represents areas topographically suitable for water 

149 accumulation. We measured solar radiation by calculating the watt-hour/m2 of the delineated 

150 sampling area using the Area Solar Radiation tool in ArcMap (Table 1). These values were 

151 calculated using digital elevation maps (National Elevation Dataset http://ned.usgs.gov/ accessed 

152 07/21/2014) and surface water maps (National Hydrography Dataset 

153 http://nhd.usgs.gov/index.html accessed 07/21/2014). The entire OME was used as a delineation 

154 for both species of crayfish in the SDM analysis. Each surface was resampled to a common 

155 resolution of 30 m to match the resolution of the canopy surface.

156 Table 1. Environmental Variables.

157 Description, origin, resolution, general statistics, and units of environmental variables used in the 

158 Maxent analysis of two primary burrowing crayfish species (Fallicambarus harpi and 

159 Procambarus reimeri) in western Arkansas.

Variable Description Source Resolution Min/max(unit) µ (sd)

Canopy 

cover

Percent tree 

canopy cover

National Land 

Cover Database 

2011 USFS

30 m
0/100

(% cover)
52.23(448)

Elevation

Digital 

elevation model 

of the study site

USGS National 

Elevation Dataset
10 m

50.50/818.96 

(m)
229(100.85)

Distance to 

nearest 

waterbody

Euclidean 

distance to 

nearest 

ESRI Spatial 

Analyst Tools; 

National 

10 m
0/1740.26

(m)
187.48(161.04)
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permanent 

waterbody 

across the study 

site

Hydrology Dataset 

composed of 

stream segments of 

study site

Compound 

topographic 

index

A function of 

slope and the 

upstream 

contributing 

area per unit 

width 

orthogonal to 

the flow 

direction (Evans 

et al., 2010)

ArcGIS 

Geomorphometry 

and Gradient 

Metrics Toolbox 

2.0 (Evans et. al., 

2010); National 

Elevation Dataset

10 m
2.67/27.58

(index value)
7.58(1.94)

Solar 

radiation

Incoming solar 

radiation value 

(watt hours per 

m2) based on 

direct and 

diffuse 

insolation from 

the unobstructed 

sky directions

ESRI Spatial 

Analyst Tools; 

National Elevation 

Dataset

10 m
3542.41/64134 

(watthours/m2)
5955.14(116.01)

160

161 Maxent analysis

162 We created species-specific distribution models using Maxent (version 3.3k; Phillips, 

163 Anderson & Schapire, 2006). For each species, we generated 2500 random background points 

164 within 10 km2 polygons that were situated around the historic museum localities for which we 

165 confirmed species presence in the field in 2014. This approach follows Peterman et al. 2013 and 

166 was implemented to reduce model bias described by Phillips 2008. We fit a full model for each 

167 species, and used the ENMeval package (Muscarella et al., 2014) in program R (R 3.1.1; R 

168 Development Core Team, 2014) to tune the Maxent model parameter settings minimizing the 

169 SDM model AICc. ENMeval automatically executes Maxent across a range of settings and 

170 outputs evaluation metrics to aid in identifying settings balancing model fit and predictive ability 

171 (Muscarella et al., 2014). Using jackknife and the standard settings, this analysis suggested the F. 

172 harpi model should be fit with a betamultiplier of 2.5 and linear, quadratic, and hinge features, 

173 and the P. reimeri model should be fit with a betamultiplier of 1.5 and linear, quadratic, and 

174 hinge features to provide the most parsimonious fit to our data. We then re-ran each species9 
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175 model using the refined regularization multiplier and feature classes to increase the rigor in 

176 building and evaluating the distribution model for each species based on presence only data.

177 We assessed the performance of the tuned models using the null model approach of Raes 

178 and ter Steege (2007) with package ENMtools (Warren, Glor & Turelli, 2010). We generated 

179 two groups of 999 random data sets containing 56 and 50 samples, which correspond to the 

180 number of presence locations used for F. harpi and P. reimeri (respectively) in the initial model. 

181 These points were drawn without replacement from the OME delineation used in the initial 

182 model. Both model Area Under the Curve (AUC) values were compared to the 95th percentile of 

183 the null AUC frequency distribution.  

184 The final Maxent models were calculated with the maximum number of iterations set to 

185 5000 and the analysis of variable importance was measured by jackknife and response curves. 

186 The form of replication used was bootstrap. These settings, the refined regularization multiplier 

187 and feature classes, and the recommended default values were used for our final Maxent model 

188 runs. Due to the endemic nature of both species and the small amount of presence locations in 

189 the initial model, we did not include a bias file or spatial filtering.               

190 Field sampling and validation 

191 The refined Maxent models (one for each species) were used to select 80 semi-random 

192 sampling sites for each species within the OME. These sites were semi-random because we 

193 restricted our sampling to areas of public access (roadside ditches). We sampled thirteen counties 

194 encompassing the known range of both species of primary burrowing crayfish: from east to west, 

195 those counties were Pulaski, Saline, Perry, Garland, Hot Spring, Clark, Yell, Montgomery, Pike, 

196 Scott, Howard, Polk, and Sevier (Fig 1). The Maxent output for both species was discretized into 

197 four categories based on the relative occurrence rate (ROR; Fithian and Hastie, 2013). The 

198 Maxent output is considered a relative occurrence rate because the presence data are proportional 

199 but not equal to occurrence. The first category ranged from an ROR of 0 to the lowest presence 

200 threshold (LPT =minimum training presence threshold of Maxent software; Wisz et al., 2008) of 

201 each species. The LPT is the smallest logistic value associated with one of the observed species 

202 localities.  The second class ranged from the LPT to 50% of the maximum ROR of each species. 

203 The third category ranged from 50% of the maximum ROR to 75% of the maximum ROR of 
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204 each species. The fourth category ranged from 75% of the maximum ROR to the maximum ROR 

205 of each species. 

206

207 Figure 1: Sampling Sites. Map depicting the location of sites sampled in western Arkansas in the 

208 spring of 2015 based on the predictions from a Maxent analysis of two primary burrowing 

209 crayfish species (Fallicambarus harpi and Procambarus reimeri).
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211 The final Maxent model outputs for both species were placed into the described 

212 categories in ArcMap. The projection of the Maxent model onto the environmental variables was 

213 converted into polygons in ArcMap, which represented each category. Any polygon representing 

214 a single pixel or island (one 30 m x 30 m area in original output raster) was removed. All 

215 category polygons were then overlaid with a layer representing public right of ways and other 

216 public areas (state parks, natural areas, etc.). 

217 We generated 40 random points in each category polygon using the final polygon layer. 

218 All points within each category polygon had a spatial buffer of 2 km and were checked before 

219 sampling to ensure accessibility.  If a point was inaccessible in the field, the next closest 

220 accessible point within the respected category was chosen and sampled. To assess the accuracy 

221 of the Maxent predictions, we calculated the receiver operating characteristic (ROC) and the 

222 AUC for the average ROR of occupied transects vs. the average ROR of unoccupied transects 

223 (Fawcett, 2006) with the pROC package in program R (Robin et al., 2011). A ROC graph is a 

224 technique for visualizing, organizing and selecting classifiers based on their performance 

225 (Fawcett, 2006), and displays the performance of a binary classification method 

226 (presence/absence) with a continuous (Maxent prediction) ordinal output (Robin et al., 2011). 

227 Furthermore, the ROC plot shows the sensitivity (proportion of correctly classified positive 

228 observations) and specificity (the proportion of correctly classified negative observations) as the 

229 output threshold is moved over the range of all possible values (Robin et al., 2011). 

230 To assess how the number of burrows encountered on a transect related to habitat 

231 variables and ROR, we fit zero-inflated (package:pscl; Zeileis, Kleiber, and Jackman, 2008) and 

232 negative binomial generalized linear models (package:MASS; Venables and Ripley, 2002) for F. 

233 harpi and P. reimeri, respectively. Zero-inflated models were fit for both species, however 

234 model selection suggested that the negative binomial was a better fit for the P. reimeri data. The 

235 response variable was the number of burrows in each transect for the F. harpi and P. reimeri 

236 models. We modeled excess zeros in F. harpi data by including <sedge= as a predictor in the 

237 zero-inflation logit model (Table 2). The sedge variable indicated the number of quadrats in a 

238 transect that contained sedges. Sedge was modeled in this manner due to its significant 

239 relationship with the presence of both crayfish species across the landscape (see Rhoden, Taylor, 

240 & Peterman 2016), as well as our inability to accurately identify sites with sedges from spatial 
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241 GIS data. The predictor variables for both analyses were based on averages of habitat data 

242 collected at each transect during the search of burrows in each quadrat (Table 2). 

243  We assessed model convergence and fit and then adjusted the optimization algorithm as 

244 needed. The full candidate model set is shown in Table 3. We compared candidate models with 

245 Akaike Information Criterion corrected for small sample sizes (AICc; Akaike 1974) with the 

246 package MuMIn (Barton 2014) by means of model selection and averaging described by 

247 Burnham and Anderson (2002) and Luckacs et al. (2009). 

248 Field sampling occurred in March and April of 2015, the period of peak activity for both 

249 F. harpi and P. reimeri (Robison & Crump, 2004; Robison, 2008). Field sampling was 

250 conducted under funding agency Scientific Collection Permit number 030620151. At each 

251 sampling point, one 50-m linear transect was searched for the presence of burrows in six 1-m2 

252 quadrats placed at 10 m intervals along each transect. Within a sampling polygon, the area 

253 surrounding the transect was also thoroughly searched for burrows. If burrows were present 

254 along the transect, quadrat, or within the vicinity of the transect, animals were captured with 

255 hand excavation by using a hand shovel to slowly dig around the burrow entrance and inserting 

256 one9s arm into the burrow feeling for the crayfish. This method was chosen over other methods 

257 due to the success rate and limited amount of time spent at each burrow location (Ridge et al., 

258 2008). 

259 Table 2. Model Variables 

260 Variables and their descriptions for generalized linear model analysis of two primary burrowing 

261 crayfishes in Arkansas (Fallicambarus harpi and Procambarus reimeri). Quadrats were 1 m2 and 

262 transects were 50 m in length.

Variable Description 

Sedge Presence of hydrophilic sedge in transect (binary: yes/no)

Herb % herbaceous ground cover measured in each quadrat, averaged across each 

transect 

Solar Incoming solar radiation value (watt-hour/m2) averaged across each transect 

location based on direct and diffuse insolation from the unobstructed sky 

directions (ArcGIS, Environmental System Research Institute, Redlands, 

California)  

Water_dist Euclidean distance to nearest waterbody calculated at central point (25 m) of each 

transect location (National Hydrography Dataset; 

http://nhd.usgs.gov/index.html)
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CTI Average compound topographic index value calculated for each transect location 

(Evans et al. 2010)

Soil1, 

Soil2

Transformed soil composition (% sand, silt, clay) value calculated for each soil 

sample averaged across each transect (van den Boogaart et al. 2014)

Mxnt Average relative occurrence rate (ROR) calculated for each transect 

263

264

265 Table 3. Candidate Models 

266 Candidate models in the generalized linear model analysis for Fallicambarus harpi and 

267 Procambarus reimeri in Arkansas. The response variable used in each model was burrow 

268 abundance/presence in each 50 m transect. See Table 2 for variable names. 

Model name: Variables

Mod 1(global) herb + solar + water_dist + cti + soil1 + soil2 + mxnt

Mod 2 mxnt+ soil2

Mod 3 soil2 + soil1

Mod 4 solar + water_dist

Mod 5 cti + mxnt

Mod 6 herb + water_dist + cti

Mod 7 mxnt

Mod 8 mxnt + soil1

269

270 Results

271 Maxent analysis

272 The AUC converged to 0.959 and 0.976 for the final F. harpi and P. reimeri models, 

273 respectively. The model for F. harpi converged after 520 iterations and the model for P. reimeri 

274 converged after 420 iterations. Both models were significantly better than the random AUC 

275 estimations from the null models (p<0.01).  Of the parameters included in the model, canopy 

276 cover was the variable with the highest percent contribution for both species (48.8% and 47.2% 

277 F. harpi and P. reimeri, respectively; Table 4). Both species showed a steady decline in the 

278 probability of presence as canopy cover increased. The variable with the highest gain when used 

279 in isolation was elevation for both species (Table 4). An elevation between 150 m and 200 m was 

280 most suitable for F. harpi and between 300 m and 350 m was most suitable for P. reimeri. The 

281 concentration of the highest ROR was centered around the presence locations for both species 
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282 (Fig 2). The LPT was 0.07 for F. harpi and 0.26 for P. reimeri. In the F. harpi model, 10% of the 

283 area in the OME was predicted to be above the LPT. In the P. reimeri model, 2% of the OME 

284 was predicted to be above the LPT (Table 5).

285 Table 4: Maxent Results. 

286 Percent contribution and permutation importance of each environmental variable analyzed in the 

287 final Maxent models for two primary burrowing crayfish species (Fallicambarus harpi and 

288 Procambarus reimeri) in western Arkansas. 

Fallicambarus harpi

Variable Percent contribution Permutation importance

Canopy 48.8 15.7

Elevation 37.9 56.3

CTI 7.6 2

Solar 4 25.4

Distance to nearest waterbody 1.8 0.6

Procambarus reimeri

Variable Percent contribution Permutation importance

Canopy 47.2 27.5

Elevation 39.8 41.9

Distance to nearest waterbody 7.1 16.8

CTI 5.5 9

Solar 0.4 4.9

289

290

291 Table 5: Ground Validation Statistics.

292 (A) Threshold values (relative occurrence rate; ROR), land area (ha), and percentage of Ouachita 

293 Mountains Ecoregion (OME) of each relative occurrence category; and (B) number of presence 

294 and absence quadrats, average canopy cover (%) of quadrats sampled in each relative occurrence 

295 category, and percentage of quadrats in each relative occurrence category with sedges present 

296 from the field sampling based on Maxent models for two primary burrowing crayfish species 

297 (Fallicambarus harpi and Procambarus reimeri) in western Arkansas.

A.

Species Category 1 Category 2 Category 3 Category 4

Thresholds (ROR)

Fallicambarus harpi 0.00 3 0.07 0.07 3 0.44 0.44 3 0.66 0.66 3 0.88

Procambarus reimeri 0.00 3 0.26 0.26 3 0.42 0.42 3 0.64 0.64 3 0.85

Land area (ha)

Fallicambarus harpi 1374105 143139 21894 4996

Procambarus reimeri 1515441 15209 9756 3728
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Percentage of OME

Fallicambarus harpi 89 9 1 <1

Procambarus reimeri 98 1 1 <1

B.

Variable Category 1 Category 2 Category 3 Category 4

Fallicambarus harpi

Present 0 0 5 14

Absent 121 120 115 105

Average Canopy Cover 34 26 16 7

Percent Quad w/ Sedge 27 73 44 46

Procambarus reimeri

Present 0 12 14 15

Absent 122 106 106 105

Average Canopy Cover 38 18 19 15

Percent Quad w/ Sedge 51 55 63 45

298    

299

300 Figure 2: Projection of Maxent Results. Projection of the Maxent models for (A) Procambarus 

301 reimeri and (B) Fallicambarus harpi onto the environmental variables (Table 1) used for 

302 analysis in western Arkansas. The total shaded area represents the Ouachita Mountains 

303 Ecoregion (OME). Cooler colors show areas with better predicted conditions (relative occurrence 

304 rates [ROR]).   
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305

306

307 Field sampling and validation 

308 All sites were sampled in the right of way of primary, secondary, and tertiary roadways 

309 (Fig 3). Most (89% for F. harpi and 98% for P. reimeri) of the land area in the OME was in the 

310 first (lowest ROR) category (Table 5).  No individuals of either species were caught in areas 

311 predicted below the LPT (category 1). Most (74%) of the presence locations for F. harpi were in 

312 category 4 (Table 5). The presence locations for P. reimeri were more evenly distributed 

313 between categories 2, 3, and 4 (Table 5). Fallicambarus harpi was captured in 19 of 480 

314 quadrats within 5 of the 80 transects surveyed for the species. Procambarus reimeri was 

315 captured in 41 of 480 quadrats within 15 of the 80 transects surveyed for the species. We counted 
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316 70 burrows each for F. harpi and P. reimeri. The updated range of F. harpi extends 2.8 km to the 

317 north and 2 km to the south of its historical range while the updated range of P. reimeri extends 

318 51.6 km to the east, 12.1 km to the south, and 19.2 km to the west of its historical range. Thus, 

319 the total range for both species was approximately 265 km2 for F. harpi and 1467 km2 for P. 

320 reimeri using a minimum convex polygon approach in ArcGIS encompassing all known capture 

321 localities from both years and historic museum data.   

322 Figure 3: Map of Ground Validation. 

323 Map representing the sampling scheme based on the predictions from a Maxent analysis of two 

324 primary burrowing crayfish species (Fallicambarus harpi and Procambarus reimeri) in western 

325 Arkansas in the spring of 2015. Each color represents a relative occurrence category upon which 

326 the field validation sampling procedure was based. The black lines in the lower graphic depict 

327 50-m transects used to assess presence or absence of the target species at each site. The linear, 

328 focused colors in the bottom graphic represent the accessible polygons in which the transect 

329 sampling was carried out.
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330

331 The AUC for the F. harpi field validation was 78.67 (63.29-94.04). The AUC for the P. 

332 reimeri field validation was 69.54 (56.16 3 82.92). The threshold values (prediction with the 

333 highest specificity and sensitivity) were 0.48 and 0.29 for F. harpi and P. reimeri, respectively. 

334 In both the F. harpi and P. reimeri models, the variable of ROR (Mxnt; Table 3) was in the top 

335 (AICc f4) models and was shown to have a positive relationship with the abundance of crayfish 

336 burrows in each transect (Table 6). Sedge was an important predictor of excess zeros in our F. 

337 harpi data (Table 7). As the number quadrats in a transect containing sedges increased, the 

338 likelihood of an excess zero decreased. 
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339 Table 6. Candidate generalized linear model results.

340 Model name, number of model parameters (K), Akaike9s Information Criterion adjusted for 

341 small sample size (AICc), difference in AICc (�AICc), Akaike cumulative weights (wc), and log 

342 liklihood (LL) for models from a suite of variables modeled with a generalized linear model 

343 analysis for 2 primary burrowing crayfish species, Fallicambarus harpi (n = 80 transects) and 

344 Procambarus reimeri (n = 80 transects) in Arkansas. See Tables 2 and 3 for a description of each 

345 model and the variables included. Models marked with * represent inclusion of ROR parameter 

346 (mxnt).

347

348

349 Table 7. Parameter estimates of generalized linear model analysis.

350 Conditional model-averaged parameter estimates of the full candidate models (Table 6) for two 

351 primary burrowing crayfishes species (Fallicambarus harpi and Procambarus reimeri) in 

352 Arkansas. See Table 2 for a description of the variables included. 

Species and variable Model-averaged estimate (SE) p > 'z'
Fallicambarus harpi

Herb -0.75 (1.55) 0.63

Solar 1.45 (5.14) 0.78

Water_dist -1.93 (1.75) 0.23

CTI -0.98 (0.38) 0.01

Soil1 -5.77 (5.43) 0.29

Model K AICc �AICc wc LL

Fallicambarus harpi

Mod 5* 6 65.5 0 0.69 -26.19

Mod 1* 11 68.9 3.35 0.82 -21.50

Mod 6 7 69.3 3.78 0.92 -26.88

Mod 8* 6 71.1 5.6 0.96 -29

Mod 7* 5 71.9 6.4 0.99 -30.6

Mod 2* 6 74.3 8.8 1 -30.6

Mod 3 6 77.1 11.5 1 -32.0

Mod 4 6 80.8 15.3 1 -33.8

Procambarus reimeri

Mod 7* 3 137.7 0 0.40 -65.68

Mod 4 4 139.3 1.67 0.57 -65.41

Mod 2* 4 139.8 2.12 0.71 -65.63

Mod 5* 4 139.8 2.17 0.85 -65.66

Mod 8* 4 139.9 2.22 0.98 -65.68

Mod 3 4 144.2 6.56 1 -67.85

Mod 6 5 145.5 7.84 1 -67.35

Mod 1* 9 150.5 12.86 1 -64.99
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Soil2 2.08 (1.68) 0.21

mxnt 3.96 (1.70) 0.02

Sedge (zero-infl) -0.50 (0.30) 0.10

Count Intercept -1.16 (2.38) 0.63

Zero-infl Intercept 3.51 (1.28) 0.01

Procambarus reimeri

Solar 1.70 (0.69) 0.02

Water_dist 0.11 (0.47) 0.80

Cti 0.11 (0.50) 0.82

Soil1 -0.07 (0.55) 0.90

Soil2 -0.16 (0.56) 0.78

mxnt 1.25 (0.49) 0.01

Intercept -0.61 (0.47) 0.20

353

354 Discussion

355 We demonstrate that Maxent is a useful tool to predict new occurrences and the 

356 distribution of suitable habitats for two narrowly endemic, rare species with unique natural 

357 histories that span both terrestrial and aquatic life styles. Our models were successful in directing 

358 us to new populations of both species. We used a suite of functions to assess model fit and 

359 safeguard against potential pitfalls associated with the Maxent program (Phillips & Dudík, 2008; 

360 Warren & Seifert, 2011; Elith et al., 2011; Hijmans, 2012; Lahoz-Monfort, Guillera-Arroita & 

361 Wintle, 2014). We also used biologically relevant habitat information at a constrained 

362 geographic scale to increase the accuracy of our predictions (Guisan & Thuiller, 2005). These 

363 habitat variables and the scale at which we delineated them were a result of previous field 

364 sampling and analysis of habitat preference of both species (Rhoden, Taylor & Peterman, 2016), 

365 which revealed both crayfish to be microhabitat specialists; using open, low-herbaceous 

366 microhabitats. We validated the models through a stratified sampling of our Maxent model 

367 predictions based on the LPT and the maximum ROR. We then equally sampled each category 

368 across the entire OME. Both models performed well in the ROC analysis and subsequent 

369 generalized linear models. The ROR was shown to be positively associated with the number of 

370 burrows in a transect (represented as <mxnt= in Table 7) during the generalized linear models for 

371 each species. This analysis revealed that regions with higher estimated ROR not only are more 

372 likely to be occupied, but will harbor more individuals. This validation resulted in an expansion 
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373 of both species9 known ranges and the discovery of new populations. The models performed well 

374 by directing sampling efforts to treeless areas on the landscape that tended to have greater 

375 predicted probabilities of occurrence. However, the models did a poor job of identifying the wet, 

376 low-herbaceous microhabitats most frequently associated with occurrence in the field and 

377 previous studies (Robison & Crump, 2004; Robison, 2008; Rhoden, Taylor & Peterman, 2016). 

378 The habitat attributes of sites in which animals were present consisted of treeless, wet, 

379 low-herbaceous microhabitats. The average canopy cover for the categories above the LPT 

380 (category 2, 3, and 4) was 17% for both species. Quadrats where we detected our focal crayfish 

381 species had an average canopy cover of 5%. Hydrophilic sedges were present in over 90% of the 

382 quadrats having F. harpi and P. reimeri but were present in less than half of the quadrats 

383 predicted above the LPT (categories 2, 3, and 4). The sites recorded as being above the LPT 

384 (categories 2, 3, and 4) not having the target species were treeless for the most part, but those 

385 sites did not exhibit a moist microhabitat. The Maxent models thus did not capture the perched 

386 water table observed across the landscape associated with other primary burrowing crayfishes 

387 (Welch, Eversole & Riley, 2007). It is likely the model did not capture these moist, low 

388 herbaceous habitats due to the spatial resolution and variables chosen for the Maxent analysis 

389 (canopy cover, CTI, elevation, solar radiation, and distance to nearest waterbody). Future studies 

390 could incorporate remotely sensed data to better identify these unique habitats.

391 The use of the LPT to determine the threshold between the probability of presence or 

392 absence at any given predicted output location (Pearson et al., 2007) is well documented 

393 (Rinnhofer et al., 2012; Boria et al., 2014; Fois et al., 2015). We successfully used this value in 

394 our field validation techniques: no animal was captured in an area predicted below the LPT 

395 (Table 3). The land area above the LPT for the F. harpi model comprised 10% of the OME and 

396 2% for the P. reimeri model in Arkansas. The ROC analysis identified threshold values of 0.48 

397 and 0.29 for the F. harpi and P. reimeri models, respectively, which optimized the sensitivity 

398 (100 for both F. harpi and P. reimeri) and specificity (58.7 and 38.5 for F. harpi and P. reimeri, 

399 respectively) of our model (Robin et al., 2011). These values are far more conservative than the 

400 LPT and are based on the field validation results from both species. Using these threshold 

401 metrics, the area predicted as suitable habitat for F. harpi and P. reimeri is less than 1% of the 
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402 OME. We recommend the use of this threshold based on the ROC analysis for a more fine-tuned 

403 sampling effort for high-quality habitat for both species in the future.   

404 Our SDMs used fine-scale (30 m) rasters of biological variables relevant to our two study 

405 species (canopy cover, CTI, solar radiation, elevation, and distance to waterbody). In the past, it 

406 has been common to use coarse (g1 km) climatic data to construct models (e.g. Peterson, 2001; 

407 Welch, Eversole & Riley, 2007; Chunco et al., 2013). The use of coarse-scale habitat variables in 

408 Maxent has been addressed in previous studies (Araújo & Guisan, 2006; Jiménez-Alfaro, Draper 

409 & Nogués-Bravo, 2012). Others using fine-scale inputs have found new populations of other rare 

410 species such as the discovery of new breeding ponds for a salamander species in east central 

411 Illinois (Ambystoma jeffersonianum; Peterman, Crawford & Kuhns, 2013). Using fine-scale 

412 spatial surfaces of specific habitat variables for narrowly endemic habitat specialists was more 

413 appropriate than the more general approach of coarse-scale climatic data due to the resolution 

414 one gains with specific habitat information and fine-scale inputs. This fine-scale resolution was 

415 necessary to capture elements of the microhabitat the crayfishes prefer by differentiating between 

416 suitable and unsuitable habitat within anthropogenically altered habitat situated in natural 

417 landscapes (e.g. roadside ditches). However, we note that the specific surfaces or resolution in 

418 our study still failed to completely capture essential habitat features or indicators of preferred 

419 habitat, such as sedges. 

420 Conservation efforts for rare species benefit by narrowing the knowledge gap in 

421 distribution information, adding localities for monitoring persistence in roadside ditches, and 

422 providing habitat preference information. Our study shows Maxent was an appropriate tool to 

423 analyze habitat suitability and discover populations of narrowly endemic, rare species. Our 

424 method of reinvestigating museum localities, verifying species persistence, and collecting habitat 

425 data from verified locations added precision to the presence locations we used for analysis. Our 

426 initial surveys also added valuable information regarding the habitat preferences of both F. harpi 

427 and P. reimeri, which in turn guided the selection of our habitat variables for both models. Our 

428 concentrated search efforts resulted in the discovery of five new populations of F. harpi and 16 

429 new populations of P. reimeri and known range expansions of approximately 91 km2 and 1404 

430 km2, respectively.  

431 Conclusion 
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432 Recent studies have found ground validation of Maxent has been a suitable method to 

433 determine the accuracy of predictions (Stirling et al., 2016). Our study supports this conclusion 

434 and offers a unique method, incorporating historic museum localities to inform an SDM of 

435 pertinent habitat variables and validating the localities before conducting the SDM. We have also 

436 shown Maxent works well with narrowly endemic, rare habitat specialists and fine scale (30 m) 

437 raster inputs. Constructing models followed by ground validation has added valuable habitat 

438 information to two spatially restricted, understudied species and illustrates the potential 

439 effectiveness of such a strategy for other rare habitat specialists. 
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