
Potential parasite transmission in multi-host networks based on parasite sharing 
  
Short title: Parasite transmission in multi-host networks 
 
Shai Pilosof1 *, Serge Morand2,3,4, Boris R. Krasnov1, Charles L. Nunn5 
 

1 Mitrani Department of Desert Ecology and Albert Katz International School for 
Desert Studies, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University 
of the Negev, Sede Boqer Campus 84990, Midreshet Ben-Gurion, Israel. Tel.: +972-
8-6596841. Fax: +972-8-6596772. 
2 Centre National de la Recherche Scientifique (CNRS), Institut des Sciences de 
l'Evolution de Montpellier (ISEM), Montpellier, France. 
3 Unité de Recherche Animal et Gestion Intégrée des Risques, Centre de Coopération 
Internationale en Recherche Agronomique pour le Développement, Montpellier, 
France.  
4 Centre d'Infectiologie Christophe Mérieux du Laos (CICML), Vientiane, Lao PDR. 
5 Department of Evolutionary Anthropology & Duke Global Health Institute, Duke 
University, Durham NC 27708 
 
* Correspondence: Shai Pilosof, Mitrani Department of Desert Ecology and Albert 
Katz International School for Desert Studies, Jacob Blaustein Institutes for Desert 
Research, Ben-Gurion University of the Negev, Sede Boqer Campus 84990, 
Midreshet Ben-Gurion, Israel. Tel.: +972-8-6596841. Fax: +972-8-6596772. 
E-mail: spilosof@post.bgu.ac.il 
  

1 
 

PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.307v2 | CC-BY 4.0 Open Access | rec: 21 Oct 2014, publ: 21 Oct 2014

P
re
P
rin

ts

mailto:spilosof@post.bgu.ac.il


Abstract 
Epidemiological networks are commonly used to explore dynamics of parasite 
transmission among individuals in a population of a given host species. However, 
many parasites infect multiple host species, and thus multi-host networks may offer a 
better framework for investigating parasite dynamics. We investigated the factors that 
influence parasite sharing – and thus potential transmission pathways – among rodent 
hosts in Southeast Asia. We focused on differences between networks of a single host 
species and networks that involve multiple host species. In host-parasite networks, 
modularity (the extent to which the network is divided to subgroups composed of 
individuals that interact more among themselves than with individuals outside the 
subgroup) was higher in the multi-species than in the single-species networks. This 
suggests that phylogeny affects patterns of parasite sharing, which was confirmed in 
analyses showing that it predicted affiliation of individuals to modules. We then 
constructed “potential transmission networks” based on the host-parasite networks, in 
which edges depict the number of parasites shared between a pair of individuals. The 
centrality of individuals in these networks differed between multi- and single-species 
networks, with species identity and individual characteristics influencing their 
position in the networks. Simulations further revealed that parasite dynamics differed 
between multi- and single-species networks. We conclude that multi-host networks 
based on parasite sharing can provide new insights into the potential for transmission 
among hosts in an ecological community.  In addition, the factors that determine the 
nature of parasite sharing (i.e. structure of the host-parasite network) may impact 
transmission patterns.  
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Introduction 
Parasites play a major role in the lives of animals and humans. In attempts to 
understand the ecological processes leading to infection with a particular parasite, 
ecologists have investigated the factors influencing the interaction between the host 
species and the parasite in question. In recent years, the limitations of this “single-
host-single-parasite” perspective have become apparent due to the wealth of indirect 
effects that parasites and hosts exert on each other within a community, and given the 
recognized importance of understanding cross-species parasite transmission [1–3]. 
Specifically, considering a multi-host-multi-parasite system is necessary because the 
dynamics of a parasite in one species can depend on its dynamics in another [4], and 
because within a host, co-infection can affect the dynamics of the parasites involved 
[5]. 

Network analysis offers a new approach to uncover the complexity underlying 
interactions among multiple hosts and parasites in an ecological community [6]. The 
biological interactions among hosts and parasites are depicted as a bipartite host-
parasite network, in which edges describe infection of hosts by parasites (interactions 
among hosts or among parasites are not allowed). A network approach elucidates how 
properties of the whole network emerge from the properties of its nodes, allowing 
examination of the system at both the node and network levels [7,8]. 

Typically, the units of analysis in host-parasite networks are species rather 
than individuals. However, we lose valuable individual-based information by 
aggregating individual observations into species-averages [9,10]. The loss of 
individual-level information is especially important in disease ecology because 
parasite transmission necessarily occurs at an individual level (individuals are 
infected, rather than species). In addition, within an individual host, co-infection with 
multiple parasites can determine both infection with subsequent parasites and the 
transmissibility of parasites to other individuals [4]. The individual level is also 
important because large variation exists among individuals in characteristics that 
promote parasite transmission. Indeed, disease outbreaks may be promoted by a small 
fraction of individuals who are responsible for the majority of transmission events 
(‘super-spreaders’) [11,12].  

Unlike host-parasite networks, epidemiological networks attempt to 
characterize parasite spread among host individuals of a single species [13–15]. 
Epidemiological networks are unipartite (contain one set of nodes), with edges 
representing contact patterns or some other type of individual-based interaction 
meaningful for transmission of the parasite in question [13]. In studies of a sexually 
transmitted disease, for example, an epidemiological network may represent mating 
patterns among individuals in a social group or population. This approach is 
essentially a single-host species-single-parasite species approach.  

Previous work has highlighted the importance of considering multiple hosts 
and host heterogeneity in studies of parasite transmission [2,3,16–18]. To date, 
however, this has not been applied in the context of epidemiological networks 
involving multiple species. Most likely, this absence reflects the challenges of 
constructing such networks, which requires simultaneous capture or observation of 
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multiple species in the same time and place [13,19]. We argue that it is important to 
explore multi-host networks, especially for understanding the effects of heterogeneity 
at two levels: (i) population-level characteristics shared by all members of a species in 
the sampled population (e.g. niche breadth, sociality, and abundance) and (ii) 
individual characteristics associated with variation in parasite acquisition, such as 
variation in age [20], sex [21] or immunocompetence [22]. In contrast, in single-
species networks heterogeneity is only a consequence of individual-level 
characteristics.  

 Here, we extend previous studies by investigating multi-host networks using a 
hybrid approach. First, we examine structural heterogeneity driven by individual- and 
population-level characteristics in host-parasite bipartite networks composed of 
individuals of the same and different species. (Fig. 1A,B; Fig. S1). Some of these 
characteristics, such as sex, may represent contact parameters in a typical 
epidemiological network. 

Second, we examine structural heterogeneity and parasite dynamics in 
unipartite “transmission-potential networks” (TPN) based on parasite sharing. Our 
general approach is to project the bipartite host-parasite networks to unipartite 
networks by connecting two host individuals if they share at least one parasite species 
(Fig. 1C,D) [23,24]. Although using networks based on parasite sharing can yield 
important insights into the relationship between network structure and possible 
transmission patterns [23,24], a complete picture of the system requires an analysis of 
both the host-parasite and the (projected) transmission networks, because the structure 
of the latter is a direct result of the structure of the former. In addition, the effect of 
the inclusion of multiple hosts in such networks on parasite dynamics has not been 
investigated. 

We used data on Southeast Asian rodents and their gastrointestinal helminth 
parasites (Tables S1, S2). To assess the value of including multiple species, we 
compared multi- versus single-species individual-based networks (Fig. 1) to test two 
hypotheses. First, we hypothesized that the difference in individual- and population-
level sources of heterogeneity translates to structural differences between multi- and 
single-species networks. We examined this hypothesis using modularity, which is a 
network property crucial to the ecology and evolution of hosts and parasites [25–27]. 
Generally speaking, modular networks (either unipartite or bipartite) are characterized 
by distinct network subgroups (modules) composed of nodes interacting preferentially 
among themselves than with other nodes in the network. In host-parasite networks 
constructed at the species level, modules may be composed of host species more 
closely related phylogenetically [25,26], partly because closely related species are 
closer in characteristics that determine compatibility between hosts and parasites. In 
individual-based networks, we expect the same phenomenon: the tendency for a pair 
of individual hosts to occur in the same module (i.e. to be infected by similar 
parasites) should increase with phylogenetic proximity and as similarity in 
characteristics between individuals increases.  

Second, at the node level, we hypothesized that the factors that affect the roles 
that individuals play in potential parasite transmission differ between multi- and 
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single-species networks. This role can be quantified by indices of centrality where a 
central node is one that is highly connected to and reachable from other nodes. In 
epidemiology, central individuals can be considered as super-spreaders [13,28], and 
the same may be true in transmission networks based on parasite sharing. We 
therefore used node centrality to capture a node's potential to spread parasites relative 
to other nodes in the network. We expected that species identity is a strong factor 
influencing centrality because some host species have been shown to be more central 
than others [29,30]. 

Finally, to link network structure to parasite dynamics and to put our results in 
an applied context, we simulated the spread of a novel parasite in the transmission-
potential networks. 
 
Results 
 
Data set 
We used data on 104 individual rodents from six species and their helminths parasites 
from three human-disturbed localities: Buriram (14°89’N; 103°01’E; Thailand), 
Mondolkiri (12°12’N; 106°89’ E; Cambodia) and Sihanouk (10°71’N; 103°82’E; 
Cambodia). Our data set was unique as it allowed us to test our hypotheses in three 
different communities with similar characteristics and contained information on 
individual- and population-level characteristics as well as parasitism. Rodents were 
parasitized by 13 taxa of gastro-intestinal helminths, identified to species level (see 
Supporting Information S1, Tables S1 and S2 and Fig. S1 for details on the study 
system). For each locality, we built one multi-species unweighted (the values of the 
edges were 1 when an interaction occurred or 0 otherwise) bipartite host-parasite 
network in which edges depicted infection of rodent individuals by parasites (Fig. 
1A). We then extracted from that network smaller single-species networks in which 
individual hosts belonged to the same species (Fig. 1B). 

We selected five individual characteristics potentially associated with 
variation in parasite acquisition: sex, age (adult versus young), immunocompetence, 
body mass and habitat in which an animal was caught (forest, lowland/upland 
agriculture and settlement) because the likelihood of exposure to particular parasites 
varies with habitat. As a proxy for immunocompetence, we used the ratio of spleen 
mass to body mass (RSM), with a larger ratio indicating higher immunocompetence 
[31]. We considered heterogeneity at the rodent species level by using either 
phylogenetic distance between species or a factor with species identities as levels. 
 
Network modularity in host-parasite networks 
In the host-parasite networks (Fig. 1A,B), we identified modules composed of rodents 
(rather than rodents and parasites) that interact with similar parasites with a simulated 
annealing algorithm that finds the maximization of the modularity function M (see 
[32,33] for a detailed explanation). To ensure that the observed modularity is a true 
biological pattern rather than a result of a random process, we tested for significance 
of M by comparing the observed value to those derived from 1000 random networks 
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constructed with a probabilistic null model [7,34] that assumed that the probability of 
drawing an edge between a rodent individual and a parasite species is proportional to 
the susceptibility of the rodent to parasites (i.e. it considers the number of parasites 
infecting the individual) and to the infection potential of the parasite (i.e. it considers 
the number of individuals infected by the parasite). 

For host-parasite networks with >10 nodes, all but one single-species network 
(Bandicota savilei in Buriram) were significantly modular (Table 1). The three multi-
species networks were evenly fragmented with four modules in each but modularity 
(M) of the multi-species networks of Buriram and Sihanouk was ≈1.8 times stronger 
than in Mondolkiri. Modularity was higher in the multi-species than in the single-
species networks in Buriram and Sihanouk, but not in Mondolkiri (Table 1). 
Differences in M between multi- and single-species networks were generally not a 
result of differences between network size or connectance (the proportion of realized 
interactions out of all possible ones.) (Supporting Information S2). 

After determining the modular structure of the networks, we tested the effect 
of individual- and population-level characteristics on the affiliation of individuals to 
modules (module composition) with a logistic multiple regression on distance 
matrices (MRM), following [26] (Fig. S2). The phylogenetic distance between 
individuals was a significant predictor of affiliation to modules in Buriram and 
Sihanouk (but not in Mondolkiri): the closer two individuals were phylogenetically, 
the more likely that they occurred in the same module (Fig. 2A,C). Other 
characteristics like habitat and body mass were also significant predictors of the 
affiliation of individuals to modules in the multi-species networks of Buriram (Fig. 
2A) and Sihanouk (Fig. 2C). The importance of individual-level characteristics 
became even more evident when we pre-determined module composition by 
taxonomy. In that analysis, the value of M was much lower than when obtained 
through simulated annealing (Table 1). 

When considering only single-species networks, none of the characteristics 
that we proposed was a significant predictor of module affiliation (except sex in B. 
savilei and body mass in R. tanezumi in Mondolkiri). Looking more closely at the 
standardized coefficients, a large difference between the coefficient of the multi-
species network and that of a single-species network indicates that the effect of the 
characteristic on the probability that two individuals will co-occur in the same module 
changes upon inclusion of other species. In Mondolkiri, for example, the effect of sex 
was stronger when considering only B. savilei than when considering all species (Fig. 
2B). In contrast, in Sihanouk sex had a relatively constant effect when considering all 
species and for each species in particular (Fig. 2C). 

 
Network centrality in transmission networks 
To examine the factors that affect the roles that individuals play in potential parasite 
transmission, we projected each of our single- and multi-species bipartite host-parasite 
networks to unipartite TPNs by connecting two individual hosts in the unipartite 
network if they shared at least one parasite species in the bipartite network (Fig. 1). In 
our parasite-sharing transmission networks, the meaning of an edge is not equivalent 
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to networks constructed based on contact patterns. Whereas contact networks 
represent potential for transmission based on co-occurrence in space and time, we 
follow others [23,24] by assuming that edges in our transmission networks depict the 
potential for transmission between a pair of individuals of the same or different host 
species based on ecological and physiological characteristics that promote parasite 
sharing. By transmission potential, we mean the likelihood that a given individual will 
infect another individual, relative to other individuals in the network, based on 
observed parasite sharing. Thus, connected individuals form part of the same 
transmission chain [24]. 

We calculated edge weights using the Jaccard index, which is a measure of 
beta diversity [35], assuming a positive relationship between the similarity in parasite 
infections shared by a pair of individuals and the likelihood that a novel parasite 
would infect them both. Thus, an edge received its minimum value of 0 when the pair 
of individuals did not share any parasite and its maximum value of 1 when the pair of 
individuals were parasitized by the exact same species. 

 We used eigenvalue centrality (EC) to quantify the role of a node in terms of 
promoting parasite transmission. With EC, a node's importance is increased when it 
has more connections to other nodes that are themselves important [8]; EC thus 
enables quantification of the transmission potential of an individual [15,36]. We 
examined the effect of individual- and species-level characteristics on EC with a set of 
linear models for each of the multi-species TPNs and for single-species TPNs with 
>10 individuals. Results of this model selection indicated that species identity was a 
strong determinant of the position of individuals in the multi-species TPN in Buriram 
but less so in Mondolkiri. In Sihanouk, species identity did not predict centrality at all 
(Fig. 2D-F; see Table S3 for details on model selection). This indicated that the effect 
of species identity on centrality is strongly network-dependent. We found differences 
among the multi-species networks in the importance of characteristics (Fig. 2D-F). 
For example, in Sihanouk the body mass of individuals was an important predictor of 
centrality whereas in Mondolkiri sex was important. As with modularity, we found 
inconsistencies between the multi- and single- species networks in the importance of 
individual-level characteristics that affect centrality within a locality. For example, in 
Mondolkiri, sex was an important predictor of centrality in the multi-species network 
and in the single-species network of B. savilei but not in that of Rattus tanezumi. In 
contrast, age was a poor predictor of centrality in the multi-species network but a 
strong one for B. savilei (Fig. 2E). 

The position of specific individuals in the single-species networks in relation 
to their respective multi-species networks was maintained for some host species but 
not for others as indicated by a correlation between the centrality of individuals in a 
particular single-species network and their centrality in the corresponding multi-
species network (Fig. 3). For example, individuals of Rattus norvegicus in Sihanouk, 
which were very central in the multi-species network (high centrality), were 
peripheral (low centrality) in the single-species network, as indicated by a negative 
correlation coefficient. 
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Parasite transmission dynamics 
To link network structure to parasite dynamics and to put our results in an applied 
context, we simulated the spread of a novel parasite across the TPNs with a SI 
(susceptible-infected) epidemiological model in which an individual can be either 
susceptible to the parasite or infected and thus infectious. A SI model is particularly 
suitable for helminths because rodents usually carry the helminthic infection 
throughout their lives or at least for very long periods. Our model assumed that the 
novel parasite has similar characteristics to the parasites shared between the individual 
hosts, and that population densities of the rodent species were equal, although we 
considered the relative proportion of species abundances in the community 
(Supporting Information S3).  

The probability of parasite transmission from rodent individual i to its 
neighbor j in the next time step was calculated as 1 (1 ) ijw

i jP θ→ = − − , where wij is the 

edge weight assuming that a stronger weight leads to an increased infection 
probability [33]. The parameter θ is a fixed infection probability, characteristic to the 
novel parasite in the host species to which the parasite is spreading [33]. In the multi-
species TPNs, we set 0.02 (1 )mkθ β= ⋅ − , where βmk is the Jaccard index of shared 
parasites between species m and k [37,38], assuming that the infection probability of 
individuals of different species was linearly proportional to the number of parasites 
shared by the host species [37]. Thus, our model considered the relative contribution 
of within-species transmission to cross-species transmission and the common 
assumption of multi-host models that within-species transmission is greater than 
between-species transmission [1,2,16]. The time steps required to infect all 
individuals in the network was used as a measure of parasite spread efficiency that we 
defined as time to global infection (TGI), sensu [33]. Our final response variable was 
the average value of TGI ( ) obtained from simulations of 250 sub-TPNs which 
controlled for the size and connectance of the compared networks. 

Overall we made five comparisons of a single-species to a multi-species TPN: 
B. savilei in Buriram, B. savilei and R. tanezumi in Mondolkiri, and R. exulans and R. 
tanezumi in Sihanouk, controlling for network size and connectance (Fig. 4). In each 
of these comparisons, we had three density plots, describing the distribution, 
corresponding to single- and multi-sub-TPNs with or without differential θ, the 
infection probability. The density plots significantly differed among each other in all 
five comparisons made: (Kolmogorv-Smirnov test, P < 0.0001 in all cases). 
Specifically, the proportion of simulations with faster parasite spread (lower ), 
indicated by the height of the density plots was always greater in the single-species 
than in the multi-species sub-TPNs. This emphasized the differences in parasite 
dynamics between single- and multi-species networks. Yet, this was not surprising 
since the density plots originated from different infection processes (differences in θ). 

Looking more closely, In Buriram and Sihanouk (Fig. 4A,D,E) infection 
occurred at a slower pace in the multi-species than in the single-species TPNs when 
infection probability differed among species (θ was not fixed), as indicated by large 

TGI

TGI

TGI
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deviation of the median . This deviation was much lower when infection 
probability was equal for all species (i.e. fixed θ) (Fig. 4F). Continuing this line of 
evidence for Buriram and Sihanouk, dynamics were considerably different between 
single-species and multi-species TPNs with differential infection probability, as 
indicted by a very low overlap index. The similarity in dynamics increased, but still 
remained <50%, when infection probability was fixed (Insets in Fig. 4A,D,E). This 
indicated that differences in network structure between single- and multi-species 
networks played an important role in determining dynamics. In contrast, in 
Mondolkiri, the deviation from the median was not high (Figure 4F) and the overlap 
in the plots between the single and multi-species scenarios was similar regardless of a 
fixed infection probability (Fig 4B,C). These differences between the localities 
indicated that dynamics, just as modularity and centrality, are context- (and therefore 
network-) dependent. 

For the multi-species scenario, a large overlap between the density plots of the 
fixed/non-fixed θ indicates a small effect of species composition on dynamics. This 
was evident in Mondolkiri (but not in Buriram and Sihanouk), with an overlap of 
almost 75%, emanating from the fact that B. savilei and R. tanezumi, the only two 
species present in Mondolkiri, are closely related and thus inter-specific difference 
had little influence on θ. In Buriram and Sihanouk there were more species, which 
were also more distant, creating larger differences in θ expressed as a lower overlap. 

 
Discussion 
A primary aim of disease ecology is to understand host-parasite interactions and 
parasite spread in a particular environment [39]. Using network analysis based on 
parasite sharing we find that these two processes are intertwined. In addition, our 
single- versus multi-species comparisons show that considering heterogeneity at both 
the individual and the species levels gives a more complete view of the system. Our 
data and associated results represent just one example of projecting networks based on 
parasite sharing; results for other systems may differ. Thus, we devote much of what 
follows to consider the broader advantages, assumptions and limitations of using 
parasite sharing as a method for constructing multi-species networks. 
 
Single-species versus multi-species networks 
We found that the structure of bipartite individual-based host-parasite networks 
differed between multi- and single-species networks, partially supporting our first 
hypothesis that predicted stronger modularity in multi-species networks. This 
indicates that species-level characteristics shape the structure of individual-based 
host-parasite networks. Individual heterogeneity in some characteristics had similar 
effects in both multi-and single-species networks, while other characteristics had 
different effects in the different networks. When scaling up from individual to 
species-level networks, this may affect the structure of the species-level network [9]. 
In addition, differences between localities point to the context-dependence of the 
network itself.  

TGI
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At the node level, the difference between single- and multi-species networks 
was more striking, indicating the potential role that individuals play in parasite 
transmission is a function of both sources of heterogeneity. Previous studies have 
emphasized the importance of transmission heterogeneity and the identification of 
super-spreaders [12,28]. Our results suggest that another source of heterogeneity 
involves differences among species. In support, individuals that were more central in 
the single-species networks were generally also more central in the multi-species 
networks.  
 
Parasite dynamics in multi-host systems 
Host heterogeneity is known to be important for parasite infectiousness [17,18]. For 
example, the introduction of grey squirrels (Sciurus carolinensis)) infected with 
parapoxvirus caused a severe decline in a disease-free population of red squirrels 
(Sciurus vulgaris) in England [40]. Previous efforts to understand parasite dynamics 
in multi-host systems indicated that the ability of parasites to spread in multi-host 
systems depends on the relative contribution of within-species to cross-species 
transmission [1,2,16]. Therefore, dynamics is affected by both individual- and 
species-level sources of heterogeneity. However, current multi-host models of parasite 
dynamics assume a homogeneously-mixed population. Here, we made a first attempt 
to quantify dynamics in a multiple host species transmission network model based on 
parasite sharing. This is a natural next step to the study of VanderWaal et al. [24], 
which identified individuals and species that are key to transmission in such networks 
but did not examine transmission per se.  

Our simulations clearly showed that in networks of the same size and 
connectance, the dynamics of parasite transmission differs between single-species and 
multi-host networks. This result was not only due to the relative contribution of 
within-species vs. cross-species transmission but also due to network structure 
because it was maintained even when assuming that the parasite infects different 
species with the same infection strength. Studies that consider transmission only 
within a single species, as is common in current network models, may thus incorrectly 
estimate the dynamics of parasite spread, in line with previous studies that 
demonstrated a dependence of infection probability upon species richness in the 
community under certain conditions [17,41]. This aspect provides a rich area for 
future studies of wildlife networks because incorporation of several host species may 
have several effects on the system, depending on the particular dynamics of the 
pathogen in each of the species [17] and species characteristics related to their 
potential to encourage transmission [18]. 

Interestingly, the process of infection was context-dependent, indicating that 
different networks may be affected by different processes even when having similar 
species composition. Therefore, a host species which may be central for disease 
transmission in one site may be less important in a different site, depending on the 
ecological context and species community. This finding is crucial for designing 
adequate control plans. 
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The use of transmission-potential networks 
Using network models to study parasite dynamics in multi-host systems is 
advantageous because individuals of different species may not be homogeneously 
mixed, as is commonly assumed (e.g. [2,40]). This effect can be captured by using 
parasite sharing as a predictor for parasite spread in TPNs. At the interspecific host 
level, parasites may be shared through processes occurring at different time scales: 
cross-species transmission (ecological time scales) and co-inheritance (evolutionary 
time scales). On the other hand, it can be argued that the mechanisms underlying 
parasite sharing at the host level may be irrelevant for TPNs because once two 
individuals of different species share at least one parasite, it is clear that they possess 
similar physiological (e.g. immune response) and ecological (e.g. diet and habitat 
preferences) characteristics that would most likely allow them to share a novel one. 
 Collecting data adequate for constructing multi-host networks in which edges 
are observed contact patterns is in the vast majority of cases difficult. Indeed, to date 
no study has constructed such networks. Using parasite sharing as an alternative 
method is thus advantageous. One limitation of this approach is that the inclusion of 
different parasites may result in different TPNs. However, this is equivalent to 
obtaining contact networks with different structure by using different methods (e.g. 
capture-recapture vs. radio-tracking; [19]). Ideally, the most complete set of parasites 
should be included in the analysis. A second limitation is that connections between 
individuals that share a widespread parasite may be over-represented but such an 
effect can be easily tested for by repeating analyzes with and without the parasite. A 
third limitation is that TPNs may not represent true individual contacts. However, a 
recent study by VanderWaal et al. [23] showed that a network based on shared E. coli 
strains co-varied with a network of social contacts in giraffes (Giraffa 
camelopardalis). This finding supports the assumption in our study (and in their later 
study on multi-host networks [24]) that transmission pathways based on shared 
parasites can reflect transmission pathways based on social contacts. Yet, empirical 
comparisons between a TPN and a true contact network are needed to further validate 
this assumption. We are not aware of any data set that includes both individual 
contacts and a parasite survey in multiple species, but such data could be collected. 
For example, parasite sharing is possible between primate species sharing a physical 
space [42]. Following primate groups to document potential transmission edges (e.g. 
shared space, common food), while simultaneously collecting their feces for a parasite 
survey would enable construction of a multiple-species network based on shared 
space use and a TPN. 

When working with networks based on parasite sharing, several considerations 
are important. First, data collection should occur over a rather narrow time window 
and limited geographical space, depending on the species’ life history and the goal of 
capturing individual heterogeneity. Second, capture probability should be equal 
among species – an assumption that in practice is difficult to achieve – but can be 
controlled for statistically. Finally, transmission mode of parasites included in the 
host-parasite network should be taken into account. For instance, a TPN derived from 
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a host-parasite network in which parasites are sexually-transmitted is likely to differ 
from one based on environmental transmission. 

The method chosen for quantifying edge weights can also affect the results. 
For example, VanderWaal et al. [24] created a transmission network of individuals 
belonging to different ungulate species by connecting a pair of individuals if they 
shared at least one genetically-determined subtype of Escherichia coli. Their networks 
were unweighted – the values of the edges were either 0 (no subtypes shared) or 1 (at 
least 1 subtype shared) – and thus important information was lost in the projection 
from the host-subtype to the transmission network (e.g. the number of subtypes shared 
between individuals). Here, we used quantitative TPNs constructed with one measure 
of beta diversity (Jaccard index), but other indices are also available [35]. For many of 
these issues, computer simulations can be usefully applied to investigate options for 
constructing TPNs from patterns of parasite sharing. 
 
Applicability and future directions 
To date, only a single study has considered a multi-host transmission network, which 
was also based on parasite sharing via projection (although not explicitly stated) [24]. 
Here, we show that exploring the original host-parasite network step is crucial to if we 
wish to understand the processes underlying the TPN, and we take a first step to 
understand parasite dynamics in multi-host networks. Further, we identify several 
future directions that can lead to a better understanding of multi-host networks. 

From a modeling perspective, applying other structural indices besides 
modularity will undoubtedly provide new insights into individual-based multi-species 
networks. For example, the degree of specialization of individuals and parasite species 
in the host-parasite network can be measured [43]. From an epidemiological 
perspective, extensions of the SI model could allow for recovery or an exposed but 
non-infectious period. 

From a disease control perspective, understanding individual-based multi-
species networks is essential because it provides a way to model the spread of 
parasites or pathogens that can switch hosts. Insights from individual-based multi-
species models may thus aid disease control efforts by identifying both individuals 
and species that require greater control, making the efforts more effective [28]. 
Furthermore, in systems where individual data has already been collected, such as in 
many parasite surveys (e.g. [44]), TPNs provide an immediate and cost-effective 
method to preliminarily understand the role of multiple species and individual 
heterogeneity in disease transmission. 
 
Conclusion 
The use of transmission networks based on parasite sharing can be an advantageous 
method to understand parasite dynamics in a multi-host context. However, ecological 
factors that determine the nature of sharing (i.e. structure of the host-parasite network) 
and the analytical method of network projections should not be overlooked because 
they can greatly affect the results. By analyzing both host-parasite and transmission 
networks, insights can be gained from these two perspectives alike for a complete 
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picture of the infection process. In this way novel insights into how parasites are 
transmitted within a community or assemblage can be gained, thereby opening a new 
avenue of research at the interface between ecology and epidemiology. 
 
Materials and Methods 
 
Network modularity 
The simulated annealing algorithm we used identifies modules composed solely of 
host individuals based on their shared interactions with parasites by maximizing the 
modularity function M [32,33]. The function M, intended specifically for bipartite 
networks, approximates its maximum value of 1 when (i) all host individuals infected 
by a given parasite species belong to a single module and (ii) the probability of two 
randomly picked host individuals being infected by the same parasite species is low 
[32,33]. 
 
Multiple regression on distance matrices 
We tested the effect of individual- and population-level characteristics on the 
affiliation of individuals to modules (module composition) with a logistic multiple 
regression on distance matrices (MRM), following [26]. A visual description of the 
method is given in Fig. S2. In each distance matrix in the regression rows and 
columns depicted rodent individuals and thus matrix cells depicted pairwise 
differences between individuals. Because pairwise differences are symmetric, only the 
lower half of the matrix was used. We defined the response matrix R as a binary 
distance matrix where Rij received a value of 1 if rodents i and j occurred in the same 
module and 0 otherwise. Each of the explanatory matrices described pairwise 
differences between individuals in a certain characteristic (e.g. body mass, sex, etc). 
For continuous characteristics, the difference was calculated as an absolute difference; 
for a discrete characteristics, 1 was assigned if the two individuals had the same value 
(e.g. both were males), and 0 if they differed in the characteristic. In the multi-species 
networks, we included a continuous explanatory variable matrix that contained 
patristic distances (sum of phylogenetic branch lengths) as a measure of phylogenetic 
distance between a pair of rodents. The output of the analysis is similar to that of a 
‘classic’ logistic regression and includes a list of coefficients and their statistical 
significance (see [45,46] for details on how statistical significance is calculated in 
MRM). 

We only analyzed networks with >10 individuals and omitted RSM from 
analyses in Mondokiri because data were missing for seven individuals. We 
standardized the continuous explanatory variables by converting them to z-scores 
before performing the MRM to avoid effects of different scales. This allowed for a 
comparison of the relative importance of the predictors [26]. Although we strived for 
an information-theoretic based analysis (as with centrality; see below), a likelihood 
function is unavailable for MRM. We thus interpret our results based on coefficient 
values and statistical significance. 
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In addition to the MRM analysis, we also examined the importance of species 
identity in determining modular structure by calculating M (see formula in [32]) in 
networks that were partitioned into modules composed of individuals of the same 
species. If species identity is the only, or main, factor affecting module composition 
we expect the value of M to be close to that obtained through simulated annealing. 

 
Network centrality 
We projected each of our single- and multi-species bipartite host-parasite networks to 
unipartite TPNs by connecting two individual hosts in the unipartite network if they 
shared at least one parasite species in the bipartite network (Fig. 1). Network 
projection is commonly used in studies of ecological networks in general and in 
studies of host-parasites in particular, [29,30,33,47]. Here, our motivation for 
projecting the host-parasite networks was to create unipartite networks compatible 
with unipartite epidemiological networks, but that contain multiple hosts. This 
approach allows for (i) a theoretical comparison with studies of epidemiological 
networks using single-species networks; (ii) applying similar analytical approaches 
(e.g. centrality) as in those studies and (iii) modeling parasite transmission across 
individuals of different hosts. 

In projected networks, it is common to set the weight of an edge between two 
nodes as the number of nodes from the other set they share (e.g. [30]). However, this 
method may bias the results by the total number of parasites. Instead, we used the 
Jaccard dissimilarity index, calculated as a/(a+b+c), where a is the number of 
parasites infecting both host individuals, and b and c are the number of parasites 
infecting either host individuals. The value of the index scales positively with increase 
in a [35]. 

We examined the effect of individual- and population-level characteristics on 
EC with a set of linear models for each of the multi-species TPNs and for single-
species TPNs with >10 individuals. Models within a set differed in the characteristics 
(i.e. sex, age, etc.) they had as explanatory factors, and we included species identity as 
a factor in our models for multi-species networks (Table S3). We eliminated factors 
with no variation (e.g. when all individuals belonged to the same sex), or with an 
excess of missing data (i.e. RSM in Mondolkiri). For each TPN, we compared models 
– including a null model with an intercept only – using model probabilities w based on 
AIC corrected for small sample size (AICc), which gives a measure of the plausibility, 
on a 0 to 1 scale, that a particular model is the best model [48]. We used a measure of 
coefficient importance, calculated as the sum of w across all the models in which the 
coefficient appears, to quantify the importance of a characteristic in determining EC. 

To quantify the effect of the inclusion of several species on the position of 
individuals in the network we correlated the centrality of individuals in a particular 
single-species network with their centrality in the corresponding multi-species 
network using a Pearson correlation for networks with >5 individuals. A positive 
correlation indicates that individuals with a more central position in the multi-species 
network are also more central in the single-species network. 
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Transmission in multi-host networks 
At the start of each simulation, one rodent individual was randomly selected to be 
infected. In subsequent time steps, the parasite was allowed to spread across rodents 
in the network. The probability of parasite transmission from rodent individual i to its 
neighbor j in the next time step was calculated as 1 (1 ) ijw

i jP θ→ = − − , where wij is the 

edge weight assuming that a stronger weight leads to an increased infection 
probability [33]. The parameter θ is a fixed infection probability, characteristic to the 
novel parasite in the host species to which the parasite is spreading [33]. We set 

0.02θ =  in the single-species TPNs. We emphasize that the exact value of θ is 
unlikely to affect our conclusions because we observe the system from a relative point 
of view (single vs. multi-species TPNs). Our preliminary sensitivity analysis indeed 
showed that the results remained qualitatively similar for different values of θ. 

In the multi-species TPNs, we set 0.02 (1 )mkθ β= ⋅ − , where βmk is the Jaccard 
index of shared parasites between species m and k [37,38], assuming that the infection 
probability of individuals of different species was linearly proportional to the number 
of parasites shared by the host species [37]. Because βmk ranges between 0 and 1, 
infection probability was at a maximum of 0.02 (the value of θ) for individuals from 
species with completely overlapping parasite communities (same species) and 0 for 
individuals from species with no shared parasites. Our model thus allowed us to 
account for parasite sharing both at the individual and the species levels and took 
phylogeny into account because closely related species tend to share more parasites 
[37,38]. To separate the effect of network structure from that of differential infection 
probability, we also repeated these analyses with a fixed value of 0.02θ =  in the 
multi-species networks, simulating a constant infection probability among all species. 

The time steps required to infect all individuals in the network was used as a 
measure of parasite spread efficiency that we defined as time to global infection 
(TGI), sensu [33]. To eliminate the effects of network size and connectance when 
comparing TGI between a multi-species TPN and a single-species TPN within the 
same locality, we created 250 multi- and single-species sub-TPNs of equal size and 
connectance derived from the original TPNs within a locality (Supporting Information 
S3). We ran the algorithm 250 times per sub-TPN, totaling to 62,500 simulations, and 
used the average value of each sub-TPN ( ) to obtain a distribution of 250  
values corresponding to 250 sub-TPNs. 

We then compared the distributions (density plots) of single- and multi-species 
sub-TPNs using a Kolmogorov-Smirnov test. However, the test only indicates if the 
TGI values originate from the same distribution. It does not pin-point in which way 
the distributions are different neither does it quantify their degree of similarity. Hence, 
we also calculated the deviation of the median of the distributions of the multi-species 
density plots from the median of the single-species density plot as ssm MMM ~/)~~( −  

where mM~  is the median of the density plot of simulations run with fixed or non-

fixed theta and mM~ is the median of the single-species plot. We preferred the median 

TGI TGI
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over the mean due to the skewed shape of the distributions (Fig. 4). A large and 
positive deviation of the median points to a slower rate of infection in the multi-
species TPNs. In addition, to quantify the degree of similarity between the 
distributions we calculated the integral of the area common to two plots as an index of 
overlap. The index gets its maximum value of 1 when the two distributions are 
identical and its minimum value of 0 when the distributions are completely 
segregated. We expected a difference in infection patterns (shape and position of 
distributions) between multi-species TPNs and each of the single-species TPNs due to 
the greater individual heterogeneity in the multi-species networks and the 
heterogeneity in θ in individuals from different species. 
 
Code and data 
Analyses were performed using R (version 3.1.1; [49]) within the Linux environment 
with aid of the ‘bipartite’ package (version 2.04; [50]). We calculated EC with the 
‘evcent’ function from the igraph package (version 0.7.1; [51]). Multi-model 
inference was done with package MuMIn (version 1.10.5) in R [52]. Modularity 
analyses were done with software bipartmod (http://seeslab.info/downloads/bipartite-
modularity/). MRM analysis was done with a modified version of the ‘MRM’ 
function from the ‘ecodist’ package (version 1.2.9) in R [53]. We provide the R code 
and data in Supporting Data S1-S4. 
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Figure 1. Network types used in this study. Host individuals and parasite species 
are depicted as circles and squares, respectively, with different colors representing 
different host species and parasites are represented by numbered red boxes. Networks 
in A and B are bipartite networks in which an edge represents infection of a host 
individual with a parasite species. Examples of modules composed of host individuals 
are depicted by dashed rectangles. Networks in C and D are transmission-potential 
networks created by connecting two individual hosts from the networks in A or B, 
respectively, if they share at least one parasite species. The weight of an edge between 
two individuals is the similarity (beta-diversity) in parasites infecting a pair of 
individuals, calculated with the Jaccard index (the thicker the edge, the more similar). 
The size of the nodes is relative to their position in the network, calculated with 
eigenvalue centrality (larger means more central). 
 
  

21 
 

PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.307v2 | CC-BY 4.0 Open Access | rec: 21 Oct 2014, publ: 21 Oct 2014

P
re
P
rin

ts



 
Figure 2. Differences between multi- and single-species networks. Differences are 
in characteristics that determine co-occurrence in modules and centrality of 
individuals (rows) for three localities (columns). (A-C) The z-score-standardized 
coefficients of a multiple-regression on matrices procedure. (D-F) The importance of 
coefficients calculated from a multi-model inference procedure as the sum of model 
weights across all the models in which the coefficient appears (see Table S3). In A-C 
‘phylogeny’ is the taxonomic distance between two individuals. In D-F ‘species’ is a 
factor depicting rodent species identity. BM body mass; RSM relative spleen mass to 
body mass. Note that: (i) in Buriram the single-species network was not analyzed 
because it was not statistically significantly modular; (ii) RSM was not included in the 
analyses in Mondolkiri due to an excess of missing cases; (iii) Statistical significance 
is relevant only for A-C.  
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Figure 3. Centrality in single- versus multi-species networks. Data points depict 
Pearson correlation coefficients between the rescaled eigenvalue centrality of 
individuals of a particular species in the single-species network and in the multi-
species network. Inset: an example for Rattus tanezumi in Sihanouk. Note that in the 
inset data points represent individuals, with some overlapping data points (i.e. 
individuals with identical centrality values). 
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Figure 4. Density plots depicting the distribution of time to global infection for 
transmission-potential networks (TPNs). TPNs were of equal size and connectance 
under three conditions: single-species, multi-species with θ (infection probability) 
varying among species and multi-species with fixed θ=0.02. Each panel describes a 
comparison of a given single-species network to multi-species networks in a given 
locality: (A) Bandicota savilei in Buriram; (B) and (C) B. savilei and Rattus tanezumi 
in Mondolkiri, respectively; (D) and (E) R. exulans and R. tanezumi in Sihanouk, 
respectively. Plots skewed to the left indicate a faster infection and curve height is 
indicative of the probability that global infection occurs at a certain pace. Insets in A-
E show the overlap between two curves (depicted by the colored circle above the bar) 
calculated as the integral of the area common to both curves. (F) The deviation in 
median of the multi-species networks with fixed (blue circles) or non-fixed (yellow 
circles) from the median of the single-species network. The deviation was calculated 
for each of the panels A-E. Small overlap and a greater deviation of the median 
between the single-species and the multi-species plots means that the inclusion of 
other species changes the velocity of parasite spread.  
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Table 1. Information on multi- and single-host bipartite networks. Parasite 
richness is the number of helminth taxa infecting an individual rodent. 
 
 # 

Individuals 
# 

Helminth 
taxa 

Parasite richness 
(range, mean ± 

SD) 

C M 
(Number of 

modules) 
BURIRAM      
Multi-species 27 10 1-3, 1.63±0.63 16.3% MSA = 0.53 (4) *** 

MT = 0.22 
Bandicota savilei 15 7 1-3, 1.93±0.59 27.6% 0.24 (5) 
Mus cervicolor 6 4 1-2, 1.33±0.52 33.3%  
Rattus exulans 6 3 1-2, 1.17±0.41 38.9%  
MONDOLKIRI      
Multi-species 37 8 1-4, 1.95±0.85 24.3% MSA = 0.29 (4) *** 

MT = 0.06 
Bandicota savilei 23 7 1-4, 2.13±0.87 30.4% 0.24 (3) * 
Rattus tanezumi 14 6 1-3, 1.64±0.74 27.4% 0.33 (3) * 
SIHANOUK      
Multi-species 40 6 1-3, 1.32±0.57 22.1% MSA = 0.54 (4) *** 

MT = 0.26 
Rattus 
argentiventer 

5 3 1-3, 1.8±0.84 60%  

Rattus exulans 11 3 1-3, 1.45±0.69 48.5% 0.25 (3) ** 
Rattus norvegicus 9 2 1, 1±0 50%  
Rattus tanezumi 15 6 1-2, 1.27±0.46 21.1% 0.52 (4) *** 
MSA – modularity obtained through simulated annealing; MT – modularity obtained by 
pre-determining module composition by taxonomy (one module per species); C – 
Network connectance – is the number of realized interactions divided by the number 
of possible ones. Statistical significance of modularity: * P < 0.05; ** P < 0.01; *** P 
< 0.001. 
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