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Abstract10

Parasite transmission in host communities is a function of ecological11

factors that influence interspecific contacts and contact patterns within12

species. These two levels are studied with different kinds of networks –13

ecological networks and individual contact networks – and the integra-14

tion of these levels is essential for effective understanding of parasite15

transmission. We combined these approaches by creating epidemio-16

logical networks based on parasite sharing from individual-based eco-17

logical host-parasite networks. We compared multi- to single-species18

networks to investigate the drivers of helminth infection in wild individ-19

ual rodents of South-east Asia. Network modularity was higher in the20

multi-species than in the single-species networks. Phylogeny affected21

affiliation of individuals to modules. The importance of individuals dif-22

fered between multi- and single-species networks, with species identity23

and individual traits influencing their position in the networks. Simula-24

tions revealed that a novel parasite spreads more slowly in multi- than25

in single-species networks and that this depended on network struc-26

ture. Although the relative contribution of within- vs. between-species27

transmission rates to disease dynamics is important, using multi-host28

epidemiological networks improves our understanding of parasite dy-29

namics as it further considers interaction structure between individu-30

als.31
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1 Introduction32

Parasites play a major role in the lives of wild animals and humans. In33

attempts to understand the ecological processes leading to infection with a34

particular parasite, ecologists have investigated the factors influencing the35

interaction between the host species and the parasite in question (Fig. 1a).36

In recent years, the limits of the single-host-single-parasite perspective have37

become apparent due to the wealth of indirect effects that parasites and hosts38

exert on one other within a community (Fig. 1b), and given the recognized39

importance of understanding cross-species parasite transmission [1, 2, 3, 4]40

Network analysis is the main approach taken to uncover the complexity41

underlying interactions among multiple hosts and parasites in a community42

[5, 6]. The biological interactions among hosts and parasites are depicted43

as a bipartite network, in which edges describe interactions between two44

disjointed groups of nodes (hosts and parasites) and in which nodes from45

one group (hosts) are allowed to interact only with nodes of the other group46

(parasites) (Fig. 1b). A network approach elucidates how properties of the47

whole network emerge from the properties of its nodes, allowing examination48

of the system at both the node and network levels.49

Typically, the units of analysis in host-parasite networks are species50

rather than individuals. However, by aggregating individual observations51

into species-averages we lose valuable individual-based information [7]. This52

is especially important in disease ecology because parasite transmission nec-53

essarily occurs at an individual level (individuals are infected, rather than54

species). In addition, within an individual host, co-infection with multiple55

parasites can determine both infection with subsequent parasites and the56

transmissibility of parasites to other individuals [8]. The individual level is57

also important because large variation exists among individuals in traits that58

promote parasite transmission. For example, disease outbreaks may be pro-59

moted by a small fraction of well-connected individuals (‘super-spreaders’)60
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which are responsible for the majority of transmission events [9, 10].61

Unlike ecological networks, epidemiological networks characterize para-62

site transmission among host individuals of a single species [11, 12]. Epi-63

demiological networks are unipartite (contain one set of nodes), with edges64

representing contact patterns or some other type of individual-based inter-65

action meaningful for parasite transmission [13]. This approach is essentially66

a single-host-single-parasite approach (Fig. 1c,e). Hence, a great need ex-67

ists to assess whether including interspecific connections in individual-based68

networks is important for epidemiological questions about parasite spread69

in host communities.70

Previous works have highlighted the importance of considering multiple71

hosts and host heterogeneity for studies of parasite transmission [3, 4, 14, 15,72

16] but none has adopted a network approach which considers the structure73

of the epidemiological network. Here, we examine the link between ecolog-74

ical and epidemiological networks by exploring the factors that determine75

host-parasite interactions (ecology) and characterize their dynamics (epi-76

demiology) at the individual level. Building upon existing network analysis77

procedures, we compare multi- versus single-species individual-based net-78

works (Fig. S1). In multi-species networks, heterogeneity exists at two lev-79

els: (i) species-level traits shared by all members of a species in the sampled80

population (e.g. niche breadth, sociality, and abundance) and (ii) individual81

traits associated with variation in parasite acquisition, such as variation in82

age [17], sex [18] or immunocompetence [19]. In contrast, in single-species83

networks heterogeneity is only a consequence of individual traits.84

We tested three hypotheses. First, we hypothesized that the difference in85

sources of heterogeneity translates to structural differences between multi-86

and single-species networks. We examined this hypothesis using modularity,87

which is a network property crucial to the ecology and evolution of hosts88

and parasites [5, 20]. Modular networks are characterized by distinct net-89
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Fig. 1. Theoretical differences between the single host-single parasite (left) and multi
host-multi-parasite (right) approaches. Hosts and parasites are depicted as circles and
squares, respectively, with different colors representing different species. Large and
small circles are host species or individuals, respectively. Networks in (a-d) are bipartite
networks in which an edge represents infection of a host species or individual with a
parasite species. (e) A single-species contact network between individuals of a single
host. (f) A multi-species transmission-potential network obtained by connecting two
individual hosts from the network in (d) if they share at least one parasite species. The
weight of an edge between two individuals is the number of parasites shared (depicted
as edge width).

work substructures (modules) composed of nodes interacting preferentially90

among themselves as compared to nodes of other modules. In ecological91

species-level networks, modules are composed of species similar in traits or92
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phylogenetically related [5, 20]. In individual-based networks, we can expect93

the same phenomenon: the tendency for a pair of individual hosts to occur94

in the same module (i.e. to be infected by similar parasites) should increase95

as trait similarity between them increases. We also expected stronger mod-96

ularity in multi- species networks than in single-species networks because97

individuals of closely related host species will tend to interact with simi-98

lar parasites [21], resulting in modules composed of individuals of the same99

species.100

Second, at the node level, we hypothesized that the factors that affect101

the roles that individuals play in parasite transmission differ between multi-102

and single-species networks. This role can be quantified by indices of cen-103

trality where a central node is one that is highly connected to and reachable104

from other nodes. In epidemiological networks, central individuals can be105

considered as super-spreaders [13, 22]. We therefore used node centrality to106

capture a node’s potential to spread parasites relative to other nodes in the107

network. We expected that species identity is a strong factor influencing108

centrality because some host species have been shown to be more central109

than others [23]. We also expected that individuals bearing traits that lead110

to greater parasite-sharing in single-species networks (making them more111

central) will also be more central in multi-species networks.112

Finally, we hypothesized that the ecological differences between multiple-113

and single-species networks affect the dynamics of parasite spread. If multi-114

species ecological networks are more modular than single-species networks,115

then we expect that parasite transmission will be slower in multi-species116

networks because individuals from different species are less connected.117

We examined our hypotheses exploring the structure of, and simulat-118

ing parasite spread in, three networks of rodent individuals that interact119

with several gastrointestinal helminth parasites transmitted via fecal-oral120

pathways.121
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2 Methods122

2.1 Data set123

We used data on 104 individual rodents trapped at three human-disturbed124

localities: Buriram (14◦89’N; 103◦01’E; Thailand), Mondolkiri (12◦12’N;125

106◦89’E; Cambodia) and Sihanouk (10◦71’N; 103◦82’E; Cambodia). Our126

data set was unique as it allowed us to test our hypotheses in three dif-127

ferent communities with similar characteristics and contained information128

on individual traits as well as parasitism. Rodents were parasitized by 13129

taxa of gastrointestinal helminths, five identified to genus level and eight to130

species level but as unique morpho-species. Trapping was conducted during131

the dry season in November 2008 (Sihanouk and Buriram) and November132

2009 (Mondolkiri). Helminths survey for each rodent was conducted fol-133

lowing [24] (see Fig. S1, Table S1 and Supplementary Information SI.1 for134

details on the study system). For each locality, we built one multi-species135

unweighted bipartite ecological network in which individual rodents were136

connected to parasites species (Fig. 1d). We then extracted from that net-137

work smaller single-species networks in which individual hosts belonged to138

the same species (Fig. S1).139

We selected five individual traits potentially associated with variation140

in parasite acquisition: sex, age (adult versus young), immunocompetence,141

body mass and habitat in which an animal was caught (forest, lowland/upland142

agriculture and settlement) because the likelihood of exposure to parasites143

varies with habitat preference. As a proxy for immunocompetence, we used144

the ratio of spleen mass to body mass (RSM), with a larger ratio indicating145

higher immunocompetence [25]. We considered heterogeneity at the rodent146

species level by using either phylogenetic distance between species or a factor147

with species identities as levels.148
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2.2 Network modularity149

We identified modules of rodents that interact with similar parasites with150

an algorithm that finds the maximization of the modularity function M151

[26]. We tested for significance of M by comparing the observed value to152

those derived from 100 random networks constructed with a null model that153

assumed that the probability of drawing an edge between a rodent individual154

and a parasite species is proportional to the susceptibility of the rodent155

to parasites and to the infection potential of the parasite (Supplementary156

Information SI.3).157

We tested the effect of individual traits on the affiliation of individu-158

als to modules (module composition) with logistic multiple regression on159

distance matrices (MRM), following [5]. In the multi-species networks, we160

included an explanatory variable matrix that contained patristic distances161

(sum of phylogenetic branch lengths) as a measure of phylogenetic distance162

between a pair of rodents (Supplementary Information SI.2, SI.4). We used163

PCA-standardised coefficients to avoid effects of different scales of the ex-164

planatory variables [5]. Although we strived for an information-theoretic165

based analysis (as with centrality; see below), a likelihood function is un-166

available for MRM. We thus interpret our results based on p-values and167

MRM coefficients.168

2.3 Network centrality169

A natural extension to the single host approach in epidemiology (Fig. 1e)170

is to build epidemiological networks with individuals belonging to multiple171

species. To achieve this, we projected each of our single- and multi-species172

bipartite ‘ecological’ networks to unipartite ‘epidemiological’ networks by173

connecting two individual hosts in the unipartite network if they shared at174

least one parasite species in the bipartite network [23] (Fig. 1f). The weight175

of an edge between two hosts was set as the number of parasites shared, as in176
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earlier studies [23, 27]. We thus assumed a positive correlation between the177

number of parasites shared by a pair of individuals and the likelihood that a178

novel parasite would infect them both. We refer to the projected networks179

as ‘transmission potential networks’ (TPNs). By transmission potential, we180

mean the likelihood that a given individual will infect another individual,181

relative to other individuals in the network, with predictions based on ob-182

served sharing of parasites. We consider the advantages and limitations of183

assuming epidemiological linkage through parasite sharing in the Discussion.184

We used eigenvalue centrality (EC) to quantify the role of a node in185

terms of promoting parasite transmission. With EC, a node’s importance is186

increased when it has more connections to other nodes that are themselves187

important [28]; EC thus enables quantification of the transmission potential188

of an individual [29]. We examined the effect of individual traits on EC with189

a set of linear models for each of the multi-species TPNs and for single-190

species TPNs with > 10 individuals. Models within a set differed in the191

individual traits they had as explanatory factors and we included species192

identity as a factor in our models for multi-species networks (Table S3). We193

eliminated factors with no variation (e.g. when all individuals were the same194

sex), or with an excess of missing data (i.e. RSM in Mondolkiri). For each195

TPN, we compared models - including a null model with an intercept only –196

using model probabilities (w) based on AIC corrected for small sample size197

(AICc), which gives a measure of the plausibility, on a 0 to 1 scale, that a198

particular model is the best model [30]. We used a measure of coefficient199

importance, calculated as the sum of w across all the models in which the200

coefficient appears to quantify the importance of a trait in determining EC.201

To quantify the effect of the inclusion of several species on the position202

of individuals in the network we correlated the centrality of individuals in a203

particular single-species network with their centrality in the corresponding204

multi-species network using a Pearson correlation for networks with > 5205
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individuals. A positive, high correlation indicates that individuals with a206

more central position in the multi-species network are also more central in207

the single-species network.208

2.4 Simulations209

To link network structure to parasite dynamics and to put our results in an210

applied context, we simulated the spread of a novel parasite across the TPNs211

with a SI (susceptible-infected) epidemiological model in which an individ-212

ual can be either susceptible to the disease or infected and thus infectious.213

Our model assumed that the novel parasite has similar characteristics to the214

parasites shared between the individual hosts, and that population densities215

of the rodent species were equal, although we considered the relative propor-216

tion of species abundances in the community (Supplementary Information217

SI.5).218

At the start of each simulation, one rodent individual was randomly se-219

lected to be infected. In subsequent time steps, the parasite was allowed to220

spread across rodents in the network. The probability of parasite transmis-221

sion from rodent individual i to its neighbour j in the next time step was222

calculated as Pi→j = 1−(1−θ)ωij , where ωij is the edge weight. We assumed223

that a stronger weight leads to an increased infection probability. The pa-224

rameter θ is a fixed infection probability, characteristic to the novel parasite225

in the host species to which the parasite is spreading [27]. We set θ = 0.02 in226

the single-species TPNs. The exact value of θ is irrelevant since we observe227

the system from a relative point of view (single vs. multi-species TPNs)228

and our sensitivity analysis showed that the results remained qualitatively229

similar for different values of θ.230

Previous studies have shown that in homogeneously-mixed systems the231

ability of parasites to spread in multi-host (versus single-host) species de-232

pends on the relative contribution of within-species transmission to cross-233
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species transmission [1, 3, 14]. In addition, a common assumption of multi-234

host models is that within-species transmission is lower than between-species235

transmission. We acknowledged these issues in our model: In the multi-236

species TPNs, we set θ = 0.02 × (1 − βmk), where βmk is the Jaccard index237

of shared parasites between species m and k [21, 31], assuming that the238

infection probability of individuals of different species was linearly propor-239

tional to the number of parasites shared by the host species [21]. Because240

βmk ranges between 0 and 1, infection probability was at a maximum of241

0.02 for individuals from species with completely overlapping parasite com-242

munities (same species) and 0 for individuals from species with no shared243

parasites. Our model thus allowed us to account for parasite sharing both244

at the individual and the species levels and took phylogeny into account245

because closely related species tend to share more parasites [21, 31]. To246

separate the effect of network structure from that of differential infection247

probability, we also repeated these analyses with a fixed θ = 0.02 in the248

multi-species networks, simulating a constant infection probability for all249

species.250

The time steps required to infect all individuals in the network was251

used as a measure of parasite spread efficiency that we defined as time252

to global infection (TGI), sensu [27]. To eliminate the effects of network253

size and connectance when comparing TGI between a multi-species TPN254

and a single-species TPN within the same locality, we created 100 multi-255

and single-species sub-TPNs of equal size and connectance derived from the256

original TPNs within a locality (Supplementary Information SI.5). We ran257

the algorithm 100 times per sub-TPN and used the average value of each258

sub-TPN (TGI) to obtain a distribution of 100 TGI values corresponding to259

100 sub-TPNs. We then visually compared the distributions (density plots)260

of single- and multi-species sub-TPNs. We expected a difference in infection261

patterns (shape and position of distributions) between multi-species TPNs262
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and each of the single-species TPNs due to the greater individual heterogene-263

ity in the multi-species networks and the heterogeneity in θ in individuals264

from different species.265

2.5 Statistical analyses266

Analyses were done within the R environment (version 3.0; [32]) with aid267

of the ‘bipartite’ package (version 2.00; [33]). We calculated EC with the268

evcent function from the igraph package (version 0.6-3; [34]). Multi-model269

inference was done with package MuMIn in R [35]. Modularity analyses270

were done with software bipartmod [26] and MRM analysis in MatLab.271

3 Results272

3.1 Network modularity in ecological networks273

For ecological networks with > 10 nodes, all but one single-species network274

(Bandicota savilei in Buriram) were significantly modular (Table 1). The275

three multi-species networks were evenly fragmented with 4 modules in each276

but modularity (M) of the multi-species networks of Buriram and Sihanouk277

was ≈ 1.8 times stronger than in Mondolkiri. Modularity was higher in the278

multi-species than in the single-species networks in Buriram and Sihanouk,279

but not in Mondolkiri (Table 1). Differences in M between multi- and single-280

species networks were generally not a result of differences between network281

size or connectance (Supplementary Information SI.3).282

The phylogenetic distance between individuals was a significant predictor283

of affiliation to modules in Buriram and Sihanouk (but not in Mondolkiri):284

the closer two individuals were phylogenetically, the more likely that they285

occurred in the same module (Fig. 2a,c). Individual traits like habitat286

and body mass were also significant predictors of the affiliation of individ-287

uals to modules in the multi-species networks of Buriram (Fig. 2a) and288
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Table 1. Information on multi- and single-host bipartite networks. Parasite rich-
ness is the number of helminth taxa infecting an individual rodent. C – Network
connectance – is the number of realized interactions divided by the number of possible
ones. Statistical significance of modularity: ∗P < 0.05; ∗ ∗ P < 0.01; ∗ ∗ ∗P < 0.001.

# Individuals
# Helminth Parasite richness

C
M

taxa (range, mean±SD) (# modules)

BURIRAM
Multi-species 27 10 1-3, 1.63±0.63 16.30% 0.53 (4) ***
Bandicota savilei 15 7 1-3, 1.93±0.59 27.60% 0.24 (5)
Mus cervicolor 6 4 1-2, 1.33±0.52 33.30%
Rattus exulans 6 3 1-2, 1.17±0.41 38.90%
MONDOLKIRI
Multi-species 37 8 1-4, 1.95±0.85 24.30% 0.29 (4) ***
Bandicota savilei 23 7 1-4, 2.13±0.87 30.40% 0.24 (3) *
Rattus tanezumi 14 6 1-3, 1.64±0.74 27.40% 0.33 (3) *
SIHANOUK
Multi-species 40 6 1-3, 1.32±0.57 22.10% 0.54 (4) ***
Rattus argentiventer 5 3 1-3, 1.8±0.84 60%
Rattus exulans 11 3 1-3, 1.45±0.69 48.50% 0.25 (3) **
Rattus norvegicus 9 2 1, 1±0 50%
Rattus tanezumi 15 6 1-2, 1.27±0.46 21.10% 0.52 (4) ***

Sihanouk (Fig. 2c). When considering only single-species networks, none of289

the individual traits that we proposed was a significant predictor of module290

affiliation (except sex in B. savilei in Mondolkiri). Looking more closely291

at the standardized coefficients, a large difference between the coefficient of292

the multi-species network and that of a single-species network indicates that293

the effect of the trait on the probability that two individuals will co-occur294

in the same module changes upon inclusion of other species. In Sihanouk,295

for example, the effect of immunocompetence was stronger when considering296

only Rattus exulans than when considering all species. In contrast, sex had297

a relatively constant effect when considering all species and for each species298

in particular (Fig. 2c).299

3.2 Network centrality in epidemiological networks300

Results of model selection (Table S3) indicated that species identity was a301

strong determinant of the position of individuals in the multi-species TPNs302

in Buriram and Sihanouk, and to a lesser extent in Mondolkiri (Fig. 2d-f).303

Thus, individuals of particular species were consistently more central (we304

used eigenvalue centrality). We found differences among the multi-species305

networks in the importance of traits. For example, in Buriram the body mass306
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Fig. 2. Differences between multi- and single-species networks in traits that deter-
mine co-occurrence in modules and centrality of individuals (rows) for three localities
(columns). (a-c) The PCA-standardized coefficients of a multiple-regression on matrices
(MRM) procedure. (d-f) The importance of coefficients calculated from a multi-model
inference procedure as the sum of model weights across all the models in which the co-
efficient appears (see Table S3). In (a-c) phylogeny is the taxonomic distance between
two individuals and in (d-f) it is a factor depicting rodent species. BM body mass;
RSM relative spleen mass to body mass (see Materials and Methods for details). Note
that: (1) in Buriram the single-species network was not analyzed because it was not
statistically significantly modular; (2) RSM was not included in the analyses in Mon-
dolkiri due to an excess of missing cases; (3) Statistical significance is relevant only for
(a-c).

of individuals was an important predictor of centrality whereas in Mondolkiri307

age was important (Fig. 2d-f). As with modularity, we found inconsistencies308

between the multi- and single- species networks in the importance of traits309

that affect centrality within a locality. For example, in Mondolkiri, age was310
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an important predictor of centrality in the multi-species network and in the311

single-species network of B. savilei but not in that of Rattus tanezumi. In312

contrast, body mass was a poor predictor of centrality in the multi-species313

network and in both single-species networks (Fig. 2e).314

The position of specific individuals in the single-species networks in re-315

lation to their respective multi-species networks was maintained for some316

host species but not for others as indicated by a correlation between the317

centrality of individuals in a particular single-species network and their cen-318

trality in the corresponding multi-species network (Fig. S2). For example,319

individuals of Rattus norvegicus in Sihanouk, which were very central in the320

multi-species network (high centrality), were peripheral (low centrality) in321

the single-species network, as indicated by a negative correlation coefficient322

(Fig. S2).323

3.3 Parasite transmission dynamics324

When controlling for network size and connectance, the density plots differed325

greatly between the single- and multi-sub-TPNs (with differential θ, the326

infection probability) in all five comparisons made: B. savilei in Buriram,327

B. savilei and R. tanezumi in Mondolkiri, and R. exulans and R. tanezumi328

in Sihanouk (Fig. 3). Specifically, the proportion of simulations with faster329

parasite spread (lower TGI; see Methods) was greater in the single-species330

sub-TPNs. When not considering differential infection probability (i.e. fixed331

θ), the spread of the parasite became similar to that of the single-species332

network in Sihanouk (Fig. 3d,e), but not in Buriram and Mondolkiri (Fig.333

3a-c).334
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Fig. 3. Density plots depicting the distribution of time to global infection for
transmission-potential networks (TPN) of equal size and connectance under three con-
ditions: single-species, multi-species with θ varying among species (see Materials and
Methods for details) and multi-species with fixed θ = 0.02. Each panel describes com-
parison of single-species network in a certain locality: (a) Bandicota savilei in Buriram;
(b) and (c) B. savilei and Rattus tanezumi in Mondolkiri, respectively; (d) and (e) R.
exulans and R. tanezumi in Sihanouk, respectively. Plots skewed to the left indicate a
faster infection and plot height is indicative of the probability that global infection oc-
curs at a certain pace. Lack of overlap between the single-species and the multi-species
plots means that the inclusion of other species changes the velocity of parasite spread.

4 Discussion335

A primary aim of disease ecology is to understand host-parasite interactions336

and parasite spread in a particular environment [36]. At the species level,337

studies of host-parasite networks have provided insights into parasite shar-338

ing and the inter-dependence among hosts in the parasites that infect them339

15

PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.307v1 | CC-BY 4.0 Open Access | received: 27 Mar 2014, published: 27 Mar 2014

P
re
P
rin

ts



[6, 23]. At the individual level, epidemiological network models have shed340

light on the dynamics of parasite spread among individuals within a host341

species (reviewed in [13]). Here, we integrated individual- and species-level342

network approaches. We found that a combined approach improves our un-343

derstanding of host-parasite interactions and dynamics in host communities.344

By examining indices common to network ecology and using a simulation345

model, we offer a tractable framework to investigate the impact of multi-346

ple species in individual-based host-parasite networks. Below, we discuss347

our results in the light of the connection between ecology and epidemiology,348

we consider the assumptions and limitations of our study, and we identify349

avenues for future research.350

4.1 Single-species vs multi-species networks351

We found that the structure of bipartite individual-based ecological networks352

differed between multi- and single-species networks, partially supporting353

our first hypothesis that predicted stronger modularity in multi-species net-354

works. This indicates that species-related traits – such as diet – shape the355

structure of individual-based ecological networks. Individual heterogeneity356

in some traits – such as body mass – had similar effects in both multi-and357

single-species networks, while other traits had different effects in the different358

networks such as habitat. When scaling up from individual to species-level359

networks, this may affect the structure of the species-level network [7]. In360

addition, differences between localities point to the context-dependence of361

the network itself.362

At the node level, the difference between single- and multi-species net-363

works was more striking, indicating that the role individuals played in par-364

asite transmission was a function of both sources of heterogeneity. Previous365

studies have emphasized the importance of transmission heterogeneity and366

the identification of super-spreaders [10, 22]. In our study and others, char-367
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acteristics of super-spreaders were also identified [37]. Our results suggest368

that another source of heterogeneity involves differences among species. In369

support, individuals that were more central in the single-species networks370

were generally also more central in the multi-species networks.371

4.2 Parasite dynamics in multi-host systems372

Host heterogeneity is known to be important for parasite infectiousness373

[4, 15, 16, 38]. For example, the introduction of Grey squirrels infected374

with parapoxvirus caused a severe decline in a diseae-free population of Red375

squirrels in England [2]. Recently, Streicker et al. [16] have identified major376

sources of heterogeneity among host species (host abundance, infection rates377

and egg-shedding rates) which can help identify key host species for parasite378

transmission. Similarly, there were also previous efforts to understand par-379

asite dynamics in multi-host systems, and these indicated that the ability380

of parasites to spread in multi-host systems depend on the relative contri-381

bution of within-species to cross-species transmission [1, 3, 14]. Therefore,382

dynamics is affected by both individual- and species-level sources of hetero-383

geneity. However, current multi-host models of parasite dynamics assume384

a homogeneously-mixed population. Here, we made a first attempt to in-385

clude multiple host species in an epidemiological network model based on386

ecological observations of host-parasite interactions.387

Our simulations clearly showed that in networks of the same size and con-388

nectance, a parasite (potentially) spreads faster in single-species networks,389

supporting our prediction. This result was not only due to the relative con-390

tribution of within-species vs. cross-species transmission but also due to391

network structure because it was maintained in two of the three sites (Buri-392

ram and Mondolkiri), even when assuming that the parasite has an identical393

infection probability in different species. Studies that consider transmission394

only within a single species, as is common in current network models (e.g.395

17

PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.307v1 | CC-BY 4.0 Open Access | received: 27 Mar 2014, published: 27 Mar 2014

P
re
P
rin

ts



[39, 40]), may thus be overestimating the velocity of parasite spread, in line396

with previous studies that demonstrated a decreased infection probability397

with increasing species richness under certain conditions [15, 38]. However,398

this aspect should be further investigated because incorporation of several399

host species may have several effects on the system, depending on the par-400

ticular dynamics of the pathogen in each of the species [15] and species traits401

related to their potential to encourage transmission [16].402

Interestingly, the process of infection was context-dependent: While in403

Sihanouk assuming a constant infection probability (θ) for all species made404

parasite transmission velocity equal in single- and multi-species networks,405

in Mondolkiri the distributions of the multi-species networks greatly over-406

lapped regardless of that assumption. This indicated that different networks407

may be affected by different processes: in Sihanouk individuals of different408

species shared parasites to a large degree, and thus a constant infection409

probability essentially transformed the multi-species network to a single-410

species one. Furthermore, there was a striking similarity in the shape of the411

curves between species within a locality in Mondolkiri and Sihanouk, indi-412

cating that network structure is probably more important than the species413

involved in the process of infection.414

It is equally important to consider the parasite’s perspective. For in-415

stance, the transmission potential of a parasite may differ across host species.416

Likewise, parasite virulence may be very high in one host species but low in417

another [4]. This may affect the dynamics of between-species transmission418

for different parasites. In multi-host systems in general [4], and networks419

in particular, a parasite may spread mostly among nodes of a single host420

species in the network regardless of their connectivity to nodes of other421

species. Yet, high connectivity between individuals of particular species in422

the network increases the likelihood of transmission to other host species.423

Such considerations can be incorporated into the multi-host network model424
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by changing the parameters of cross-species transmission rates.425

4.3 The use of transmission-potential networks426

Using network models to study parasite dynamics in multi-host systems is427

advantageous because individuals of different species may not be homoge-428

neously mixed as previously assumed (e.g. [2, 3]). We captured this effect429

by using parasite sharing as a predictor of parasite spread on our TPNs. At430

the interspecific host level parasites may be shared through processes oc-431

curring at different time scales: cross-species transmission (ecological time432

scales) and co-inheritance (evolutionary time scales). However, the mech-433

anisms underlying parasite sharing at the host level are irrelevant for our434

TPNs because once two individuals of different species do share at least one435

parasite it is clear that they posses similar physiological (e.g. immune re-436

sponse) and ecological (e.g. diet and habitat preferences) traits that would437

most likely allow them to share a novel one.438

One limitation of our approach is that for a widespread parasite, in-439

dividuals may be connected on the TPN yet have no actual contact. A440

second limitation is that TPNs do not represent true individual contacts.441

However, a recent study by VanderWaal et al. [12] showed that a net-442

work based on shared Escherichia coli strains matched a network of social443

contacts in giraffes (Giraffa caelopardalis). This finding supports the as-444

sumption in our study that shared parasites reflect transmission pathways.445

However, this study was conducted on one host species. Thus, comparisons446

between a TPN and a true contact network are needed to further validate447

our approach. For multiple species, we are not aware of any data set that448

includes both individual contacts and parasite survey, but such data can be449

obtained. For example, spillover is possible between primate species shar-450

ing a physical space [41]. Following primate groups to document potential451

transmission edges (e.g. shared space, common food), while simultaneously452
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collecting their faeces for a parasite survey would enable construction of a453

multiple-species network based on shared space use and a TPN.454

When working at the individual level, several criteria must be satisfied.455

First, data collection should occur over a rather narrow time window and456

limited geographical space, depending on the animal’s life history and the457

goal of capturing individual heterogeneity. For example, data aggregated458

over a reproductive and a non-reproductive season may lead to biased results459

because parasitism and social contacts may be affected by reproduction [37].460

Second, capture probability should be equal among species, an assumption461

that in practice is difficult to achieve (although can sometimes be corrected462

statistically). Finally, transmission mode of parasites included in the eco-463

logical network should be taken into account. For instance, a TPN derived464

from an ecological network in which parasites are sexually-transmitted is465

likely to differ from one based on environmental transmission.466

The method chosen for quantifying edge weights can also affect the re-467

sults. Here, we assumed a linear proportion between the number of parasite468

species shared and parasite transmission potential. Other quantitative meth-469

ods, such as those based on similarity indices (e.g. Jaccard), could also be470

applied. For many of these issues, computer simulations can be usefully ap-471

plied to investigate options for constructing TPNs from patterns of parasite472

sharing.473

4.4 Applicability and future directions474

From a modelling perspective, applying other structural indices will un-475

doubtedly provide new insights into individual-based multi-species networks.476

For example, the degree of specialization of individuals and parasite species477

in the host-parasite network can be measured [42]. On the epidemiological478

side, extensions of our SI model could allow for recovery or an exposed but479

non-infectious period. From a disease control perspective, understanding480

20

PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.307v1 | CC-BY 4.0 Open Access | received: 27 Mar 2014, published: 27 Mar 2014

P
re
P
rin

ts



multi-species networksis essential because it provides a way to model spread481

across individuals of parasites or pathogens that can switch hosts. Insights482

from individual-based multi-species models may aid disease control efforts483

by identifying both individuals and species that require a tighter control,484

making the efforts more effective [22]. Furthermore, in systems where in-485

dividual data has already been collected, such as in many parasite surveys486

(e.g. [43]), TPNs provide an immediate and low-cost method to understand487

individual heterogeneity and multiple species in disease transmission. Over-488

all, TPNs provide a prediction for routes of disease spread, which is based489

on parasite sharing and can be investigated for additional parasites or over490

time.491

Some previous studies have looked at mutualistic networks, limited to492

a single species [44, 45, 46, 47]. The main conclusion of these studies was493

that the individual level provides new insights to how mutualistic networks494

operate. Our view is more focused towards parasite transmission yet our495

conclusion is similar: by downscaling to the individual level, we can gain496

new insights into the ecological mechanisms that underlie host-parasite in-497

teractions. From an epidemiological perspective, our method provides an498

indication of transmission pathways, with differences in parasite dynamics499

between single and multi-species networks. We therefore advocate the use of500

multiple species in individual-based ecological and epidemiological networks501

due to potential effects on parasite transmission.502

In conclusion, the greatest advantage of our approach is that insights503

can be gained from ecological and epidemiological perspectives alike for a504

complete picture of the infection process. In this way, we provide novel505

insights into how disease is transmitted within a community or assemblage,506

thereby opening a new avenue of research in the interface between ecology507

and epidemiology.508
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[33] Dormann CF, Fründ J, Blüthgen N, Gruber B (2009) Indices, graphs620

and null models: analyzing bipartite ecological networks. The Open621

Ecology Journal 2: 7–24.622

26

PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.307v1 | CC-BY 4.0 Open Access | received: 27 Mar 2014, published: 27 Mar 2014

P
re
P
rin

ts

http://www.amazon.com/Networks-Introduction-Mark-Newman/dp/0199206651 http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780199206650.001.0001/acprof-9780199206650
http://www.amazon.com/Networks-Introduction-Mark-Newman/dp/0199206651 http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780199206650.001.0001/acprof-9780199206650
http://www.amazon.com/Networks-Introduction-Mark-Newman/dp/0199206651 http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780199206650.001.0001/acprof-9780199206650
http://www.amazon.com/Networks-Introduction-Mark-Newman/dp/0199206651 http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780199206650.001.0001/acprof-9780199206650
http://www.amazon.com/Networks-Introduction-Mark-Newman/dp/0199206651 http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780199206650.001.0001/acprof-9780199206650
http://www.amazon.com/Networks-Introduction-Mark-Newman/dp/0199206651 http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780199206650.001.0001/acprof-9780199206650
http://www.amazon.com/Networks-Introduction-Mark-Newman/dp/0199206651 http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780199206650.001.0001/acprof-9780199206650
http://www.r-project.org


[34] Csardi G, Nepusz T (2006) The igraph software package for complex623

network research. InterJournal CX: 1695.624

[35] Barton K (2013) MuMIn: Multi-model inference. URL http://cran.625

r-project.org/package=MuMIn.626

Key: Barton2013627

Annotation: R package version 1.9.0628

[36] Kilpatrick AM, Altizer S (2012) Disease ecology. Nature Education629

Knowledge 3: 55.630

[37] Rushmore J, Caillaud D, Matamba L, Stumpf RM, Borgatti SP, et al.631

(2013) Social network analysis of wild chimpanzees provides insights632

for predicting infectious disease risk. Journal of Animal Ecology : doi:633

10.1111/1365–2656.12088.634

[38] LoGiudice K, Ostfeld RS, Schmidt KA, Keesing F (2003) The ecology of635

infectious disease: effects of host diversity and community composition636

on Lyme disease risk. Proceedings of the National Academy of Sciences637

of the United States of America 100: 567–571.638

[39] Perkins SE, Cagnacci F, Stradiotto A, Arnoldi D, Hudson PJ (2009)639

Comparison of social networks derived from ecological data: implica-640

tions for inferring infectious disease dynamics. Journal of Animal Ecol-641

ogy 78: 1015–1022.642

[40] Bull CM, Godfrey SS, Gordon DM (2012) Social networks and the643

spread of Salmonella in a sleepy lizard population. Molecular ecology644

21: 4386–4392.645

[41] Walsh P, Breuer T, Sanz C, Morgan D, Doran-sheehy D (2007) Po-646

tential for Ebola transmission between gorilla and chimpanzee social647

groups. The American Naturalist 169.648

27

PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.307v1 | CC-BY 4.0 Open Access | received: 27 Mar 2014, published: 27 Mar 2014

P
re
P
rin

ts

http://cran.r-project.org/package=MuMIn
http://cran.r-project.org/package=MuMIn
http://cran.r-project.org/package=MuMIn


[42] Poisot T, Canard E, Mouquet N, Hochberg ME (2012) A comparative649

study of ecological specialization estimators. Methods in Ecology and650

Evolution : no–no.651
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SI Supplementary Information688

Supplementary Figures689

Fig. S1. Networks at the three localities. The leftmost network at each locality
is the multi-species network. In each network helminth taxa (upper nodes) are in red
and their ID numbers correspond to Table S1. Lower nodes are individual rodents, and
their color represents their species. Width of rectangles is proportional to the number of
individuals infected by a parasite (higher rectangles) or the number of parasite species
an individual is infected by (lower rectangles). Inset: a map of the general region of
the capture localities. Bipartite graphs were made using package ‘bipartite’ in the R
environment.
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Significant

Non-significant

Statistical
significance

B. savilei R. tanezumi R. exulans R. argentiventer R. norvegicus M. cervicolor

r = 0.13

Mondolkiri

Sihanouk

Buriram

Fig. S2. Coefficients of Pearson correlation between the rescaled eigenvalue
centrality of individuals of a particular species in the single-species network and
in the multi-species network. Inset: an example for Rattus tanezumi in Sihanouk.
Note that in the inset data points represent individuals, with some overlapping data
points (i.e. individuals with identical centrality values).
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SI.1 Study system and data set690

We used data from the Community Ecology of Rodents and their Parasites691

(CERoPath) project. An extensive description of the field and laboratory692

methodology (including helminths surveys) applied in the project can be693

found in refs. [24, 48, 49] and in the CERoPath website (www.ceropath.org).694

Briefly, rodents were trapped at three human-disturbed localities: Buriram695

(14◦89’N; 103◦01’E; Thailand), Mondolkiri (12◦12’N; 106◦89’E; Cambodia)696

and Sihanouk (10◦71’N; 103◦82’E; Cambodia) (Fig. S1). Trapping was697

conducted during the dry season in November 2008 (Sihanouk and Buriram)698

and November 2009 (Mondolkiri). At each locality, 30 lines of ten traps,699

distanced 1 to 5 km from one other were set over four days. The traps were700

evenly distributed among four habitat types: forest (natural forest and tree701

plantations); non-flooded upland (shrub, orchards and upland agriculture);702

lowland flooded areas (rice paddies); and peridomestic locations (houses and703

immediate surrounding areas).704

Trapped rodents were euthanized and dissected. The stomach, small705

intestine and large intestine were separated and examined for helminth in-706

fection under a stereo-microscope. The collected helminths were preserved707

in 70% alcohol and identified according to general helminth identification708

keys as referenced in [24, 49]. All work with animals was approved by709

the French National Research Agency, project ANR 07 BDIV 012. Ani-710

mals were treated in accordance with the guidelines of the American So-711

ciety of Mammalogists and with the European Union legislation (Directive712

86/609/EEC). Each trapping session was validated by the national, regional713

and local health authorities, and including the oral agreement of local land714

owners. Approval notices for trapping and investigating rodents were given715

by the Ethical Committee of Mahidol University, Bangkok, Thailand, num-716

ber 0517.1116/661 based on the validation of the rodents trapping book717

protocols of CERoPath.718

32

PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.307v1 | CC-BY 4.0 Open Access | received: 27 Mar 2014, published: 27 Mar 2014

P
re
P
rin

ts

www.ceropath.org


Across the three localities, the three multi-species networks had 27-40 in-719

dividuals from 2-4 rodent species infected by 6-10 helminth taxa. The single-720

species networks had 5-23 individuals infected by 2-7 helminths. Helminth721

richness (number of helminth taxa infecting an individual rodent) ranged722

between 1 and 4. When averaged across individuals within each network,723

mean helminth richness ranged between 1 and 2.13. The prevalence of each724

helminth in each rodent species is indicated in Table S2. Network con-725

nectance was higher in the single-species compared to the multi-species net-726

works within each locality in most cases (Table 1).727

Table S1. Information on helminth taxa used in this study. Data are from [49] and
Palmeirim et al. (unpublished). B Buriram; M Mondolkiri; S Sihanouk. Helminths in
the table are gastrointestinal parasites transmitted via fecal-oral pathways. We included
helminths with direct mode of transmission because our preliminary work indicated that
removing those helminths did not change our results, but decreased the viability of the
analysis due to low parasite richness. ID corresponds to that in Fig. S1

ID Species Locality Group Transmission Vector Zoonotic

1 Aonchotheca sp B Nematoda Direct
2 Capillaria sp 1 M Nematoda Direct
3 Echinostoma malayanum M Trematoda Indirect Snail +
4 Eucoleus sp M,B Nematoda Direct
5 Ganguleterakis spumosa M,S Nematoda Indirect Arthropod
6 Gongylonema neoplasticum S,B Nematoda Indirect Arthropod
7 Hymenolepis diminuta M,S,B Cestoda Indirect Arthropod +
8 Notocotylus sp B Trematoda Indirect Snail
9 Physaloptera ngoci M,S,B Nematoda Indirect Arthropod
10 Protospiura siamensis B Nematoda Indirect Arthropod
11 Raillietina sp. M,S,B Cestoda Indirect Arthropod +
12 Rodentolepis nana B Cestoda Indirect Arthropod
13 Syphacia muris M,S,B Nematoda Direct

Table S2. Prevalence of helminths in rodent species in the three localities.
Bs–Bandicota savilei ; Mc–Mus cervicolor ; Re–Rattus exulans; Rn–Rattus norvegicus;
Rt–Rattus tanezumi. Empty cells indicate that the helminth taxa did not occur in the
locality.

Buriram Mondolkiri Sihanouk

Bs Mc Re Bs Rt Ra Re Rn Rt
Aonchotheca sp 0.067 0 0
Capillaria sp 1 0 0.29
Echinostoma malayanum 0.04 0.07
Eucoleus sp 0.067 0.333 0 0.57 0
Ganguleterakis spumosa 0.17 0 0.2 0 0 0.4
Gongylonema neoplasticum 0 0.167 0 0 0.45 0 0.07
Hymenolepis diminuta 0 0 0.667 0.26 0.21 0 0.64 0.44 0.07
Notocotylus sp 0.067 0 0
Physaloptera ngoci 0.200 0 0 0.17 0.07 0.8 0 0 0.2
Protospiura siamensis 0.067 0.167 0.333
Raillietina sp 0.867 0 0 0.52 0.71 0 0 0.56 0.27
Rodentolepis nana 0 0.667 0
Syphacia muris 0.600 0 0.167 0.39 0.29 0.8 0.36 0 0.27
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SI.2 phylogenetic tree construction728

We built a phylogenetic tree (Fig. S3) based on molecular data of the729

cytochrome b mitochondrial gene. We compiled cytochrome b sequences730

from the NCBI gene bank and used a maximum likelihood analysis with the731

GTR+G+I substitution model of molecular evolution with the aid of the732

function phymltest in the R package ape [50]. To ensure that our results733

were not affected by the way we constructed the tree, we re-ran analyzes734

with a tree from [51], but that did not include Mus cervicolor. The results735

were qualitatively the same.736

Mus cervicolor

Rattus norvegicus

Rattus exulans

Bandicota savilei

Rattus argentiventer

Rattus tanezumi

Fig. S3. Phylogenetic tree. Colours match those of Fig. S1.

SI.3 Analysis of network modularity737

In the ecological networks, we identified modules of rodents that interact738

with similar parasites with an algorithm that finds the maximization of the739

modularity function M [26]. We tested for significance of M by comparing740

the observed value to those derived from 100 random networks generated741

with the probabilistic model used by [52, 53]. This null model suited our742

study system because it assumes that the probability of drawing an edge743

between a rodent individual and a parasite species is proportional to the744

susceptibility of the rodent to parasites (i.e. it considers the number of par-745
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asites infecting the individual) and to the infection potential of the parasite746

(i.e. it considers the number of individuals infected by the parasite).747

The value of the modularity function M may be affected by network size748

or connectance. In our case, in each locality, the multi-species network was749

larger than each of the single-species networks and its connectance was lower750

(see Table 1 for exact number of individuals). To ensure that M of the multi-751

species network (Mm) was not affected by network size or connectance, we752

sub-sampled each of the multi-species networks 100 times as follows. In each753

of the 100 iterations we randomly chose n individuals, where n corresponds754

to the number of individuals in a single-species network to which comparison755

was made. We held the proportion of species constant. For example, in the756

original multi-species network in Mondolkiri, Bandicota savilei accounted757

for 62% of the individuals (23 of 37) and Rattus tanezumi for 38%. These758

proportions were kept for each sub-network.759

Connectance of the sub-network was equalized to that of the single-760

species network by randomly removing edges from the sub-network. It was761

impossible to set the number of parasites equal to the original multi-species762

network because removal of individuals entailed removal of parasites. How-763

ever, only sub-networks with at least six parasites were considered.764

Under these conditions, we made four comparisons: B. savilei in Buri-765

ram; B. savilei and R. tanezumi in Mondolkiri; and R. tanezumi in Si-766

hanouk. We then calculated M for each of the 100 sub-networks in each767

comparison to produce a distribution of 100 values of M per locality. We768

examined where in the distribution Mm falls. If Mm does not fall beyond769

the 2.5% or 97.5% extremes, then our conclusions hold (i.e. a two-tailed770

permutation test). Below are the four histograms, with a red arrow indicat-771

ing Mm. Only in Buriram was Mm affected by network size/connectance,772

but this can be discarded since the single-species network of B. savilei in773

Buriram was not significantly modular (see Table 1 in Main Text).774
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M (sub-networks)

F
re

qu
en

cy
Bandicota savilei in Buriram Bandicota savilei in Mondolkiri

Rattus tanezumi in Mondolkiri Rattus tanezumi in Sihanouk

Fig. S4. Comparisons of modularity values M for multi-species networks with the same
size and connectance as single-speceis networks.

SI.4 Effect of individual traits on modularity775

We tested the effect of individual traits on module composition with logistic776

multiple regression on distance matrices [54]), following [5]. Briefly, we777

defined the response matrix R as a binary adjacency matrix where Rij778

received a value of 1 if rodents i and j occurred in the same module and 0779

otherwise. Each of the explanatory matrices described pairwise differences780

between individuals in a certain trait. For continuous traits, the difference781

was calculated as an absolute difference; for a discrete trait, 1 was assigned782

if the two individuals had the same trait value (e.g. both were males), and783

0 if they differed in the trait. In the multi-species networks, we included784

an explanatory variable matrix that contained patristic distances (sum of785
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phylogenetic branch lengths) as a measure of phylogenetic distance between786

a pair of rodents. We only analysed networks with > 10 individuals and787

omitted RSM from analyses in Mondokiri because data were missing for788

seven individuals.789

SI.5 Construction of sub-TPNs790

Our goal was to compare TGI between a multi-species TPN and a single-791

species TPN (with > 10 individuals) within the same locality. It is inappro-792

priate, however, to compare networks of different sizes and connectance (i.e.793

the number of realized interactions divided by the number of possible ones).794

To control for different size and connectance while comparing multi-species795

TPNs to their respective single-species TPNs (within the same locality) we796

built 100 multi-species sub-TPNs by randomly sampling the original one to797

match the number of individuals of the single-species TPN. We kept the798

proportion of individuals of different species in the sub-TPN equal to that799

of the original multi-species TPN. For example, in the original multi-species800

network in Mondolkiri, Bandicota savilei accounted for 62% of the individ-801

uals (23 of 37) and Rattus tanezumi for 38%. These proportions were kept802

at each of the 100 sub-networks.803

We also kept the connectance of the sub-TPNs constant to that of the804

original TPN. The connectance of the single-species TPN was always higher805

than that of the multi-species TPN (Table 1 in Main Text). Therefore,806

we built 100 single-species sub-TPNs by randomly removing edges from807

the original one to adjust for the connectance of the original multi-species808

network. The result was a set of 100 multi-species sub-TPNs and a set809

of 100 single-species sub-TPNs of equal size and connectance. For each810

of these 200 sub-TPNs we generated a distribution of 100 TGI values by811

randomly selecting individuals as starting points. We used the distribution812

of 100 mean TGI values (averaged for each sub-TPN) to examine differences813
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between the single- and multi-species TPNs.814
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Table S3. Comparison of models used for multi-model inference. Models were obtained
with a backwards stepwise regression starting from the global model and are ranked
from the most to the least supported according to corrected Akaike information criteria
(AICc). The global models contained all possible variables. Variables with missing cases
(e.g. RSM in Mondokiri) or with no variation (e.g. when all individuals belonged to one
sex) were excluded. ∆AICc – difference in AICc between the current and best model;
wi – model probabilities. Species – host species; BM – body mass; RSM – relative
spleen mass to body mass (see Methods for details); EC – eigenvalue centrality; G –
global model.

Rank Model structure ∆AICc wi

Buriram multi-species

1 EC Species + BM 0 0.62

2 EC Species + BM + RSM 1.651 0.27

3 EC Species + BM + RSM + Sex 4.078 0.08

4 EC Species + BM + RSM + Sex + Age 7.887 0.01

5G EC Species + BM + RSM + Sex + Age + Habitat 7.887 0.01

6 (Null) 29.644 0

Buriram Bandicota savilei

1 (Null) 0 0.49

2 EC BM 0.272 0.42

3 EC BM + Sex 3.511 0.08

4G EC BM + Sex + Age 8.176 0.01

Mondolkiri multi-species

1 EC Species + Age 0 0.4

2 EC Species + Sex + Age 0.2 0.36

3 (Null) 2.146 0.14

4 EC Species + BM + Sex + Age 2.843 0.1

5G EC Species + BM + Habitat + Sex + Age 10.407 0

Mondolkiri Bandicota savilei

1 EC Age 0 0.61

2 EC Sex + Age 2.399 0.18

3 (Null) 2.621 0.17

4 EC BM + Sex + Age 5.586 0.04

5G EC BM + Habitat + Sex + Age 10.211 0

Mondolkiri Rattus tanezumi

1 (Null) 0 0.7

Continued on next page
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Table S3 – continued from previous page

Rank Model structure ∆AICc wi

2 EC Age 2.174 0.24

3 EC BM + Age 4.768 0.06

4 EC BM + Habitat + Age 9.658 0.01

5G EC BM + Habitat + Sex + Age 16.144 0

Sihanouk multi-species

1 EC Species 0 0.63

2 EC Species + RSM 1.84 0.25

3 EC Species + RSM + Sex 4.348 0.07

4 (Null) 6.197 0.03

5 EC Species + BM + RSM + Sex 7.496 0.02

6 EC Species + BM + RSM + Sex + Age 10.88 0

7G EC Species + BM + RSM + Habitat + Sex + Age 15.052 0

Sihanouk Rattus exulans

1 (Null) 0 0.74

2 EC BM 2.254 0.24

3 EC BM + RSM 6.731 0.03

4G EC BM + RSM + Sex 14.034 0

Sihanouk Rattus tanezumi

1 (Null) 0 0.76

2 EC Sex 2.533 0.21

3 EC BM + Sex 6.423 0.03

4 EC BM + RSM + Sex 11.743 0

5G EC BM + RSM + Sex + Habitat 28.103 0

815
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