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10 Abstract

1 Parasite transmission in host communities is a function of ecological
12 factors that influence interspecific contacts and contact patterns within
13 species. These two levels are studied with different kinds of networks —
14 ecological networks and individual contact networks — and the integra-
15 tion of these levels is essential for effective understanding of parasite
16 transmission. We combined these approaches by creating epidemio-
17 logical networks based on parasite sharing from individual-based eco-
18 logical host-parasite networks. We compared multi- to single-species
19 networks to investigate the drivers of helminth infection in wild individ-
20 ual rodents of South-east Asia. Network modularity was higher in the
21 multi-species than in the single-species networks. Phylogeny affected
2 affiliation of individuals to modules. The importance of individuals dif-
23 fered between multi- and single-species networks, with species identity
24 and individual traits influencing their position in the networks. Simula-
25 tions revealed that a novel parasite spreads more slowly in multi- than
26 in single-species networks and that this depended on network struc-
27 ture. Although the relative contribution of within- vs. between-species
28 transmission rates to disease dynamics is important, using multi-host
29 epidemiological networks improves our understanding of parasite dy-
30 namics as it further considers interaction structure between individu-
31 als.

*spilosof@post.bgu.ac.il
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» 1 Introduction

33 Parasites play a major role in the lives of wild animals and humans. In
¢ attempts to understand the ecological processes leading to infection with a
35 particular parasite, ecologists have investigated the factors influencing the
36 interaction between the host species and the parasite in question (Fig. la).
37 In recent years, the limits of the single-host-single-parasite perspective have
33 become apparent due to the wealth of indirect effects that parasites and hosts
30 exert on one other within a community (Fig. 1b), and given the recognized
s importance of understanding cross-species parasite transmission [1, 2, 3, 4]
a1 Network analysis is the main approach taken to uncover the complexity
22 underlying interactions among multiple hosts and parasites in a community
53[5, 6]. The biological interactions among hosts and parasites are depicted
s as a bipartite network, in which edges describe interactions between two
s disjointed groups of nodes (hosts and parasites) and in which nodes from
s one group (hosts) are allowed to interact only with nodes of the other group
a7 (parasites) (Fig. 1b). A network approach elucidates how properties of the
a5 whole network emerge from the properties of its nodes, allowing examination
a0 of the system at both the node and network levels.

50 Typically, the units of analysis in host-parasite networks are species
s1 rather than individuals. However, by aggregating individual observations
2 into species-averages we lose valuable individual-based information [7]. This
53 is especially important in disease ecology because parasite transmission nec-
s« essarily occurs at an individual level (individuals are infected, rather than
ss  species). In addition, within an individual host, co-infection with multiple
s6 parasites can determine both infection with subsequent parasites and the
s7  transmissibility of parasites to other individuals [8]. The individual level is
s also important because large variation exists among individuals in traits that
50 promote parasite transmission. For example, disease outbreaks may be pro-

s moted by a small fraction of well-connected individuals (‘super-spreaders’)
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61 which are responsible for the majority of transmission events [9, 10].

62 Unlike ecological networks, epidemiological networks characterize para-
63 site transmission among host individuals of a single species [11, 12]. Epi-
s« demiological networks are unipartite (contain one set of nodes), with edges
65 representing contact patterns or some other type of individual-based inter-
6 action meaningful for parasite transmission [13]. This approach is essentially
7 a single-host-single-parasite approach (Fig. lc,e). Hence, a great need ex-
68 1ists to assess whether including interspecific connections in individual-based
60 networks is important for epidemiological questions about parasite spread
70 in host communities.

71 Previous works have highlighted the importance of considering multiple
72 hosts and host heterogeneity for studies of parasite transmission [3, 4, 14, 15,
73 16] but none has adopted a network approach which considers the structure
74 of the epidemiological network. Here, we examine the link between ecolog-
75 ical and epidemiological networks by exploring the factors that determine
76 host-parasite interactions (ecology) and characterize their dynamics (epi-
77 demiology) at the individual level. Building upon existing network analysis
78 procedures, we compare multi- versus single-species individual-based net-
70 works (Fig. S1). In multi-species networks, heterogeneity exists at two lev-
so els: (i) species-level traits shared by all members of a species in the sampled
s1  population (e.g. niche breadth, sociality, and abundance) and (ii) individual
82 traits associated with variation in parasite acquisition, such as variation in
&3 age [17], sex [18] or immunocompetence [19]. In contrast, in single-species
s« networks heterogeneity is only a consequence of individual traits.

85 We tested three hypotheses. First, we hypothesized that the difference in
s sources of heterogeneity translates to structural differences between multi-
&7 and single-species networks. We examined this hypothesis using modularity,
88 which is a network property crucial to the ecology and evolution of hosts

so and parasites [5, 20]. Modular networks are characterized by distinct net-
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Fig. 1. Theoretical differences between the single host-single parasite (left) and multi
host-multi-parasite (right) approaches. Hosts and parasites are depicted as circles and
squares, respectively, with different colors representing different species. Large and
small circles are host species or individuals, respectively. Networks in (a-d) are bipartite
networks in which an edge represents infection of a host species or individual with a
parasite species. (e) A single-species contact network between individuals of a single
host. (f) A multi-species transmission-potential network obtained by connecting two
individual hosts from the network in (d) if they share at least one parasite species. The
weight of an edge between two individuals is the number of parasites shared (depicted
as edge width).

o work substructures (modules) composed of nodes interacting preferentially
o1 among themselves as compared to nodes of other modules. In ecological

92 species-level networks, modules are composed of species similar in traits or

PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.307v1 | CC-BY 4.0 Open Access | received: 27 Mar 2014, published: 27 Mar 2014




o3 phylogenetically related [5, 20]. In individual-based networks, we can expect
94 the same phenomenon: the tendency for a pair of individual hosts to occur
s in the same module (i.e. to be infected by similar parasites) should increase
96 as trait similarity between them increases. We also expected stronger mod-
o7 ularity in multi- species networks than in single-species networks because
98 individuals of closely related host species will tend to interact with simi-
o lar parasites [21], resulting in modules composed of individuals of the same
100 Species.

101 Second, at the node level, we hypothesized that the factors that affect
102 the roles that individuals play in parasite transmission differ between multi-
103 and single-species networks. This role can be quantified by indices of cen-
104 trality where a central node is one that is highly connected to and reachable
105 from other nodes. In epidemiological networks, central individuals can be
106 considered as super-spreaders [13, 22]. We therefore used node centrality to
107 capture a node’s potential to spread parasites relative to other nodes in the
108 network. We expected that species identity is a strong factor influencing
100 centrality because some host species have been shown to be more central
uo than others [23]. We also expected that individuals bearing traits that lead
m  to greater parasite-sharing in single-species networks (making them more
12 central) will also be more central in multi-species networks.

113 Finally, we hypothesized that the ecological differences between multiple-
us and single-species networks affect the dynamics of parasite spread. If multi-
15 species ecological networks are more modular than single-species networks,
16 then we expect that parasite transmission will be slower in multi-species
17 networks because individuals from different species are less connected.

118 We examined our hypotheses exploring the structure of, and simulat-
1o ing parasite spread in, three networks of rodent individuals that interact
120 with several gastrointestinal helminth parasites transmitted via fecal-oral

11 pathways.
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2 2 Met hO dS

123 2.1 Data set

124  We used data on 104 individual rodents trapped at three human-disturbed
125 localities: Buriram (14°89’N; 103°01’E; Thailand), Mondolkiri (12°12’N;
126 106°89’E; Cambodia) and Sihanouk (10°71’N; 103°82’E; Cambodia). Our
127 data set was unique as it allowed us to test our hypotheses in three dif-
128 ferent communities with similar characteristics and contained information
120 on individual traits as well as parasitism. Rodents were parasitized by 13
130 taxa of gastrointestinal helminths, five identified to genus level and eight to
131 species level but as unique morpho-species. Trapping was conducted during
122 the dry season in November 2008 (Sihanouk and Buriram) and November
133 2009 (Mondolkiri). Helminths survey for each rodent was conducted fol-
134 lowing [24] (see Fig. S1, Table S1 and Supplementary Information SI.1 for
135 details on the study system). For each locality, we built one multi-species
136 unweighted bipartite ecological network in which individual rodents were
137 connected to parasites species (Fig. 1d). We then extracted from that net-
138 work smaller single-species networks in which individual hosts belonged to
139 the same species (Fig. S1).

140 We selected five individual traits potentially associated with variation
11 in parasite acquisition: sex, age (adult versus young), immunocompetence,
142 body mass and habitat in which an animal was caught (forest, lowland /upland
13 agriculture and settlement) because the likelihood of exposure to parasites
ua  varies with habitat preference. As a proxy for immunocompetence, we used
us  the ratio of spleen mass to body mass (RSM), with a larger ratio indicating
1s higher immunocompetence [25]. We considered heterogeneity at the rodent
147 species level by using either phylogenetic distance between species or a factor

s with species identities as levels.
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uw 2.2 Network modularity

150 We identified modules of rodents that interact with similar parasites with
151 an algorithm that finds the maximization of the modularity function M
122 [26]. We tested for significance of M by comparing the observed value to
153 those derived from 100 random networks constructed with a null model that
154 assumed that the probability of drawing an edge between a rodent individual
155 and a parasite species is proportional to the susceptibility of the rodent
156 to parasites and to the infection potential of the parasite (Supplementary
157 Information SI.3).

158 We tested the effect of individual traits on the affiliation of individu-
159 als to modules (module composition) with logistic multiple regression on
160 distance matrices (MRM), following [5]. In the multi-species networks, we
161 included an explanatory variable matrix that contained patristic distances
12 (sum of phylogenetic branch lengths) as a measure of phylogenetic distance
163 between a pair of rodents (Supplementary Information SI.2; SI.4). We used
16 PCA-standardised coefficients to avoid effects of different scales of the ex-
165 planatory variables [5]. Although we strived for an information-theoretic
166 based analysis (as with centrality; see below), a likelihood function is un-
167 available for MRM. We thus interpret our results based on p-values and

168 MRM coefficients.

o 2.3 Network centrality

170 A natural extension to the single host approach in epidemiology (Fig. le)
171 is to build epidemiological networks with individuals belonging to multiple
12 species. To achieve this, we projected each of our single- and multi-species
173 bipartite ‘ecological’ networks to unipartite ‘epidemiological’ networks by
174 connecting two individual hosts in the unipartite network if they shared at
175 least one parasite species in the bipartite network [23] (Fig. 1f). The weight

176 of an edge between two hosts was set as the number of parasites shared, as in
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177 earlier studies [23, 27]. We thus assumed a positive correlation between the
178 number of parasites shared by a pair of individuals and the likelihood that a
179 novel parasite would infect them both. We refer to the projected networks
10 as ‘transmission potential networks’ (TPNs). By transmission potential, we
181 mean the likelihood that a given individual will infect another individual,
182 relative to other individuals in the network, with predictions based on ob-
183 served sharing of parasites. We consider the advantages and limitations of
18¢  assuming epidemiological linkage through parasite sharing in the Discussion.
185 We used eigenvalue centrality (EC) to quantify the role of a node in
186 terms of promoting parasite transmission. With EC, a node’s importance is
157 increased when it has more connections to other nodes that are themselves
188 important [28]; EC thus enables quantification of the transmission potential
19 of an individual [29]. We examined the effect of individual traits on EC with
w0 a set of linear models for each of the multi-species TPNs and for single-
101 species TPNs with > 10 individuals. Models within a set differed in the
102 individual traits they had as explanatory factors and we included species
103 identity as a factor in our models for multi-species networks (Table S3). We
104 eliminated factors with no variation (e.g. when all individuals were the same
105 sex), or with an excess of missing data (i.e. RSM in Mondolkiri). For each
196 TPN, we compared models - including a null model with an intercept only —
17 using model probabilities (w) based on AIC corrected for small sample size
s (AICc), which gives a measure of the plausibility, on a 0 to 1 scale, that a
199 particular model is the best model [30]. We used a measure of coefficient
200 importance, calculated as the sum of w across all the models in which the
201 coefficient appears to quantify the importance of a trait in determining EC.
202 To quantify the effect of the inclusion of several species on the position
203 of individuals in the network we correlated the centrality of individuals in a
204 particular single-species network with their centrality in the corresponding

205 multi-species network using a Pearson correlation for networks with > 5
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206 individuals. A positive, high correlation indicates that individuals with a
207 more central position in the multi-species network are also more central in

208 the single-species network.

w00 2.4 Simulations

210 To link network structure to parasite dynamics and to put our results in an
a1 applied context, we simulated the spread of a novel parasite across the TPNs
212 with a SI (susceptible-infected) epidemiological model in which an individ-
213 ual can be either susceptible to the disease or infected and thus infectious.
214 Our model assumed that the novel parasite has similar characteristics to the
215 parasites shared between the individual hosts, and that population densities
216 of the rodent species were equal, although we considered the relative propor-
217 tion of species abundances in the community (Supplementary Information
218 SL.G).

219 At the start of each simulation, one rodent individual was randomly se-
20 lected to be infected. In subsequent time steps, the parasite was allowed to
21 spread across rodents in the network. The probability of parasite transmis-
222 sion from rodent individual ¢ to its neighbour j in the next time step was
23 calculated as P;_,; = 1—(1—60)“¥, where w;; is the edge weight. We assumed
24 that a stronger weight leads to an increased infection probability. The pa-
25 rameter 6 is a fixed infection probability, characteristic to the novel parasite
226 in the host species to which the parasite is spreading [27]. We set § = 0.02 in
27 the single-species TPNs. The exact value of 0 is irrelevant since we observe
28 the system from a relative point of view (single vs. multi-species TPNs)
»9 and our sensitivity analysis showed that the results remained qualitatively
230 similar for different values of 6.

231 Previous studies have shown that in homogeneously-mixed systems the
232 ability of parasites to spread in multi-host (versus single-host) species de-

233 pends on the relative contribution of within-species transmission to cross-
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234 species transmission [1, 3, 14]. In addition, a common assumption of multi-
235 host models is that within-species transmission is lower than between-species
236 transmission. We acknowledged these issues in our model: In the multi-
237 species TPNs, we set § = 0.02 X (1 — Buk), where [,k is the Jaccard index
238 of shared parasites between species m and k [21, 31|, assuming that the
230 infection probability of individuals of different species was linearly propor-
20 tional to the number of parasites shared by the host species [21]. Because
21 Bk ranges between 0 and 1, infection probability was at a maximum of
22 0.02 for individuals from species with completely overlapping parasite com-
243 munities (same species) and 0 for individuals from species with no shared
24 parasites. Our model thus allowed us to account for parasite sharing both
25 at the individual and the species levels and took phylogeny into account
26 because closely related species tend to share more parasites [21, 31]. To
27 separate the effect of network structure from that of differential infection
g probability, we also repeated these analyses with a fixed § = 0.02 in the
200 multi-species networks, simulating a constant infection probability for all
250 Species.

251 The time steps required to infect all individuals in the network was
22 used as a measure of parasite spread efficiency that we defined as time
253 to global infection (TGI), sensu [27]. To eliminate the effects of network
254 size and connectance when comparing TGI between a multi-species TPN
25 and a single-species TPN within the same locality, we created 100 multi-
256 and single-species sub-TPNs of equal size and connectance derived from the
257 original TPNs within a locality (Supplementary Information SI.5). We ran
258 the algorithm 100 times per sub-TPN and used the average value of each
250 sub-TPN (T'GI) to obtain a distribution of 100 TGT values corresponding to
20 100 sub-TPNs. We then visually compared the distributions (density plots)
261 of single- and multi-species sub-TPNs. We expected a difference in infection

22 patterns (shape and position of distributions) between multi-species TPNs

10
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263 and each of the single-species TPNs due to the greater individual heterogene-
264 ity in the multi-species networks and the heterogeneity in 6 in individuals

265 from different species.

% 2.5 Statistical analyses

27 Analyses were done within the R environment (version 3.0; [32]) with aid
28 of the ‘bipartite’ package (version 2.00; [33]). We calculated EC with the
260 eveent function from the igraph package (version 0.6-3; [34]). Multi-model
270 inference was done with package MuMIn in R [35]. Modularity analyses

2ann - were done with software bipartmod [26] and MRM analysis in MatLab.

w3 Results

a3 3.1 Network modularity in ecological networks

o For ecological networks with > 10 nodes, all but one single-species network
215 (Bandicota savilei in Buriram) were significantly modular (Table 1). The
a6 three multi-species networks were evenly fragmented with 4 modules in each
277 but modularity (M) of the multi-species networks of Buriram and Sihanouk
ozs was =~ 1.8 times stronger than in Mondolkiri. Modularity was higher in the
279 multi-species than in the single-species networks in Buriram and Sihanouk,
20 but not in Mondolkiri (Table 1). Differences in M between multi- and single-
231 species networks were generally not a result of differences between network
282 size or connectance (Supplementary Information SI.3).

283 The phylogenetic distance between individuals was a significant predictor
284 of affiliation to modules in Buriram and Sihanouk (but not in Mondolkiri):
285 the closer two individuals were phylogenetically, the more likely that they
26 occurred in the same module (Fig. 2a,c). Individual traits like habitat
287 and body mass were also significant predictors of the affiliation of individ-

288 uals to modules in the multi-species networks of Buriram (Fig. 2a) and

11
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Table 1. Information on multi- and single-host bipartite networks. Parasite rich-
ness is the number of helminth taxa infecting an individual rodent. C — Network
connectance — is the number of realized interactions divided by the number of possible
ones. Statistical significance of modularity: *P < 0.05; * « P < 0.01; * x P < 0.001.

# Helminth Parasite richness M

# Individuals taxa (range, mean+SD) (# modules)

BURIRAM

Multi-species 27 10 1-3, 1.6340.63 16.30% 0.53 (4) ***
Bandicota savilei 15 7 1-3, 1.934+0.59 27.60% 0.24 (5)
Mus cervicolor 6 4 1-2, 1.33£0.52 33.30%

Rattus exulans 6 3 1-2, 1.1740.41 38.90%

MONDOLKIRI

Multi-species 37 1-4, 1.95+0.85 24.30% 0.29 (4) ***
Bandicota savilei 23 7 1-4, 2.134+0.87 30.40% 0.24 (3) *
Rattus tanezumsi 14 1-3, 1.6440.74 27.40% 0.33 (3) *
SIHANOUK

Multi-species 40 6 1-3, 1.32+0.57 22.10% 0.54 (4) ***
Rattus argentiventer 5 3 1-3, 1.8+0.84 60%

Rattus exulans 11 3 1-3, 1.45+0.69 48.50% 0.25 (3) **
Rattus norvegicus 9 2 1, 1+0 50%

Rattus tanezums 15 6 1-2, 1.2740.46 21.10% 0.52 (4) ***

20 Sihanouk (Fig. 2¢). When considering only single-species networks, none of
200 the individual traits that we proposed was a significant predictor of module
201 affiliation (except sex in B. savilei in Mondolkiri). Looking more closely
202 at the standardized coefficients, a large difference between the coefficient of
203 the multi-species network and that of a single-species network indicates that
204 the effect of the trait on the probability that two individuals will co-occur
205 in the same module changes upon inclusion of other species. In Sihanouk,
206 for example, the effect of immunocompetence was stronger when considering
207 only Rattus exulans than when considering all species. In contrast, sex had
208 a relatively constant effect when considering all species and for each species

200 in particular (Fig. 2c).

0 3.2 Network centrality in epidemiological networks

s Results of model selection (Table S3) indicated that species identity was a
302 strong determinant of the position of individuals in the multi-species TPNs
303 in Buriram and Sihanouk, and to a lesser extent in Mondolkiri (Fig. 2d-f).
ss  Thus, individuals of particular species were consistently more central (we
s0s  used eigenvalue centrality). We found differences among the multi-species

36 networks in the importance of traits. For example, in Buriram the body mass

12
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Fig. 2. Differences between multi- and single-species networks in traits that deter-
mine co-occurrence in modules and centrality of individuals (rows) for three localities
(columns). (a-c) The PCA-standardized coefficients of a multiple-regression on matrices
(MRM) procedure. (d-f) The importance of coefficients calculated from a multi-model
inference procedure as the sum of model weights across all the models in which the co-
efficient appears (see Table S3). In (a-c) phylogeny is the taxonomic distance between
two individuals and in (d-f) it is a factor depicting rodent species. BM body mass;
RSM relative spleen mass to body mass (see Materials and Methods for details). Note
that: (1) in Buriram the single-species network was not analyzed because it was not
statistically significantly modular; (2) RSM was not included in the analyses in Mon-
dolkiri due to an excess of missing cases; (3) Statistical significance is relevant only for

(a-c).

of individuals was an important predictor of centrality whereas in Mondolkiri
age was important (Fig. 2d-f). As with modularity, we found inconsistencies
between the multi- and single- species networks in the importance of traits

that affect centrality within a locality. For example, in Mondolkiri, age was

13




s an important predictor of centrality in the multi-species network and in the
s single-species network of B. sawilei but not in that of Rattus tanezumi. In
s13  contrast, body mass was a poor predictor of centrality in the multi-species
s network and in both single-species networks (Fig. 2e).

315 The position of specific individuals in the single-species networks in re-
316 lation to their respective multi-species networks was maintained for some
317 host species but not for others as indicated by a correlation between the
s1is  centrality of individuals in a particular single-species network and their cen-
s19 trality in the corresponding multi-species network (Fig. S2). For example,
320 individuals of Rattus norvegicus in Sihanouk, which were very central in the
;21 multi-species network (high centrality), were peripheral (low centrality) in
32 the single-species network, as indicated by a negative correlation coefficient

3 (Fig. S2).

24 3.3 Parasite transmission dynamics

325 When controlling for network size and connectance, the density plots differed
326 greatly between the single- and multi-sub-TPNs (with differential 0, the
27 infection probability) in all five comparisons made: B. savilei in Buriram,
328 B. savilei and R. tanezumi in Mondolkiri, and R. exulans and R. tanezumi
320 in Sihanouk (Fig. 3). Specifically, the proportion of simulations with faster
330 parasite spread (lower TGT; see Methods) was greater in the single-species
ss1 sub-TPNs. When not considering differential infection probability (i.e. fixed
32 ), the spread of the parasite became similar to that of the single-species
533 network in Sihanouk (Fig. 3d,e), but not in Buriram and Mondolkiri (Fig.

34 3a-c).
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Fig. 3. Density plots depicting the distribution of time to global infection for
transmission-potential networks (TPN) of equal size and connectance under three con-
ditions: single-species, multi-species with § varying among species (see Materials and
Methods for details) and multi-species with fixed # = 0.02. Each panel describes com-
parison of single-species network in a certain locality: (a) Bandicota savileiin Buriram;
(b) and (c) B. savilei and Rattus tanezumi in Mondolkiri, respectively; (d) and (e) R.
exulans and R. tanezumi in Sihanouk, respectively. Plots skewed to the left indicate a
faster infection and plot height is indicative of the probability that global infection oc-
curs at a certain pace. Lack of overlap between the single-species and the multi-species
plots means that the inclusion of other species changes the velocity of parasite spread.

5 4 Discussion

336 A primary aim of disease ecology is to understand host-parasite interactions
ss7  and parasite spread in a particular environment [36]. At the species level,
38 studies of host-parasite networks have provided insights into parasite shar-

33 ing and the inter-dependence among hosts in the parasites that infect them
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a0 [6, 23]. At the individual level, epidemiological network models have shed
31 light on the dynamics of parasite spread among individuals within a host
s2  species (reviewed in [13]). Here, we integrated individual- and species-level
33 network approaches. We found that a combined approach improves our un-
344 derstanding of host-parasite interactions and dynamics in host communities.
a5 By examining indices common to network ecology and using a simulation
s model, we offer a tractable framework to investigate the impact of multi-
347 ple species in individual-based host-parasite networks. Below, we discuss
a8 our results in the light of the connection between ecology and epidemiology,
a0 we consider the assumptions and limitations of our study, and we identify

30 avenues for future research.

1 4.1 Single-species vs multi-species networks

352 We found that the structure of bipartite individual-based ecological networks
353 differed between multi- and single-species networks, partially supporting
354 our first hypothesis that predicted stronger modularity in multi-species net-
355 works. This indicates that species-related traits — such as diet — shape the
356 structure of individual-based ecological networks. Individual heterogeneity
357 in some traits — such as body mass — had similar effects in both multi-and
358 single-species networks, while other traits had different effects in the different
350 networks such as habitat. When scaling up from individual to species-level
s0  networks, this may affect the structure of the species-level network [7]. In
ss1  addition, differences between localities point to the context-dependence of
32 the network itself.

363 At the node level, the difference between single- and multi-species net-
s34 works was more striking, indicating that the role individuals played in par-
35 asite transmission was a function of both sources of heterogeneity. Previous
366 studies have emphasized the importance of transmission heterogeneity and

ss7  the identification of super-spreaders [10, 22]. In our study and others, char-
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38 acteristics of super-spreaders were also identified [37]. Our results suggest
60 that another source of heterogeneity involves differences among species. In
sio  support, individuals that were more central in the single-species networks

s were generally also more central in the multi-species networks.

sz 4.2 Parasite dynamics in multi-host systems

373 Host heterogeneity is known to be important for parasite infectiousness
s[4, 15, 16, 38]. For example, the introduction of Grey squirrels infected
375 with parapoxvirus caused a severe decline in a diseae-free population of Red
sre  squirrels in England [2]. Recently, Streicker et al. [16] have identified major
sr7 - sources of heterogeneity among host species (host abundance, infection rates
srs  and egg-shedding rates) which can help identify key host species for parasite
a0 transmission. Similarly, there were also previous efforts to understand par-
380 asite dynamics in multi-host systems, and these indicated that the ability
331 of parasites to spread in multi-host systems depend on the relative contri-
sz bution of within-species to cross-species transmission [1, 3, 14]. Therefore,
33 dynamics is affected by both individual- and species-level sources of hetero-
s34 geneity. However, current multi-host models of parasite dynamics assume
35 a homogeneously-mixed population. Here, we made a first attempt to in-
36 clude multiple host species in an epidemiological network model based on
337 ecological observations of host-parasite interactions.

388 Our simulations clearly showed that in networks of the same size and con-
380 nectance, a parasite (potentially) spreads faster in single-species networks,
30 supporting our prediction. This result was not only due to the relative con-
301 tribution of within-species vs. cross-species transmission but also due to
32 network structure because it was maintained in two of the three sites (Buri-
503 ram and Mondolkiri), even when assuming that the parasite has an identical
304 infection probability in different species. Studies that consider transmission

305 only within a single species, as is common in current network models (e.g.
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306 [39, 40]), may thus be overestimating the velocity of parasite spread, in line
37 with previous studies that demonstrated a decreased infection probability
38  with increasing species richness under certain conditions [15, 38]. However,
309 this aspect should be further investigated because incorporation of several
200 host species may have several effects on the system, depending on the par-
a1 ticular dynamics of the pathogen in each of the species [15] and species traits
w2 related to their potential to encourage transmission [16].

403 Interestingly, the process of infection was context-dependent: While in
a0+ Sihanouk assuming a constant infection probability () for all species made
405 parasite transmission velocity equal in single- and multi-species networks,
206 in Mondolkiri the distributions of the multi-species networks greatly over-
a7 lapped regardless of that assumption. This indicated that different networks
208 may be affected by different processes: in Sihanouk individuals of different
100 species shared parasites to a large degree, and thus a constant infection
a0 probability essentially transformed the multi-species network to a single-
a1 species one. Furthermore, there was a striking similarity in the shape of the
412 curves between species within a locality in Mondolkiri and Sihanouk, indi-
a3 cating that network structure is probably more important than the species
a2 involved in the process of infection.

415 It is equally important to consider the parasite’s perspective. For in-
a6 stance, the transmission potential of a parasite may differ across host species.
a7 Likewise, parasite virulence may be very high in one host species but low in
a1z another [4]. This may affect the dynamics of between-species transmission
a0 for different parasites. In multi-host systems in general [4], and networks
420 in particular, a parasite may spread mostly among nodes of a single host
41 species in the network regardless of their connectivity to nodes of other
422 species. Yet, high connectivity between individuals of particular species in
423 the network increases the likelihood of transmission to other host species.

424 Such considerations can be incorporated into the multi-host network model
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425 by changing the parameters of cross-species transmission rates.

26 4.3 The use of transmission-potential networks

427 Using network models to study parasite dynamics in multi-host systems is
28 advantageous because individuals of different species may not be homoge-
229 neously mixed as previously assumed (e.g. [2, 3]). We captured this effect
430 by using parasite sharing as a predictor of parasite spread on our TPNs. At
41 the interspecific host level parasites may be shared through processes oc-
a2 curring at different time scales: cross-species transmission (ecological time
a33 scales) and co-inheritance (evolutionary time scales). However, the mech-
43¢ anisms underlying parasite sharing at the host level are irrelevant for our
s TPNs because once two individuals of different species do share at least one
a6 parasite it is clear that they posses similar physiological (e.g. immune re-
s37 sponse) and ecological (e.g. diet and habitat preferences) traits that would
438 most likely allow them to share a novel one.

439 One limitation of our approach is that for a widespread parasite, in-
40 dividuals may be connected on the TPN yet have no actual contact. A
as1 second limitation is that TPNs do not represent true individual contacts.
w2 However, a recent study by VanderWaal et al. [12] showed that a net-
43 work based on shared Escherichia coli strains matched a network of social
wa  contacts in giraffes (Giraffa caelopardalis). This finding supports the as-
45 sumption in our study that shared parasites reflect transmission pathways.
s  However, this study was conducted on one host species. Thus, comparisons
47 between a TPN and a true contact network are needed to further validate
s our approach. For multiple species, we are not aware of any data set that
49 includes both individual contacts and parasite survey, but such data can be
a0 obtained. For example, spillover is possible between primate species shar-
ss1 ing a physical space [41]. Following primate groups to document potential

a2 transmission edges (e.g. shared space, common food), while simultaneously
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453 collecting their faeces for a parasite survey would enable construction of a
4sa - multiple-species network based on shared space use and a TPN.

455 When working at the individual level, several criteria must be satisfied.
46 First, data collection should occur over a rather narrow time window and
457 limited geographical space, depending on the animal’s life history and the
48 goal of capturing individual heterogeneity. For example, data aggregated
40 over a reproductive and a non-reproductive season may lead to biased results
w0 because parasitism and social contacts may be affected by reproduction [37].
461 Second, capture probability should be equal among species, an assumption
w2 that in practice is difficult to achieve (although can sometimes be corrected
a3 statistically). Finally, transmission mode of parasites included in the eco-
464 logical network should be taken into account. For instance, a TPN derived
465 from an ecological network in which parasites are sexually-transmitted is
a6 likely to differ from one based on environmental transmission.

467 The method chosen for quantifying edge weights can also affect the re-
a8 sults. Here, we assumed a linear proportion between the number of parasite
460 species shared and parasite transmission potential. Other quantitative meth-
a0 0ds, such as those based on similarity indices (e.g. Jaccard), could also be
a1 applied. For many of these issues, computer simulations can be usefully ap-
a2 plied to investigate options for constructing TPNs from patterns of parasite

473 sharing.

aa 4.4 Applicability and future directions

475 From a modelling perspective, applying other structural indices will un-
476 doubtedly provide new insights into individual-based multi-species networks.
477 For example, the degree of specialization of individuals and parasite species
s in the host-parasite network can be measured [42]. On the epidemiological
479 side, extensions of our SI model could allow for recovery or an exposed but

40 non-infectious period. From a disease control perspective, understanding
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481 multi-species networksis essential because it provides a way to model spread
42 across individuals of parasites or pathogens that can switch hosts. Insights
483 from individual-based multi-species models may aid disease control efforts
482 by identifying both individuals and species that require a tighter control,
s making the efforts more effective [22]. Furthermore, in systems where in-
46 dividual data has already been collected, such as in many parasite surveys
w7 (e.g. [43]), TPNs provide an immediate and low-cost method to understand
488 individual heterogeneity and multiple species in disease transmission. Over-
a9 all, TPNs provide a prediction for routes of disease spread, which is based
200 on parasite sharing and can be investigated for additional parasites or over
401 time.

492 Some previous studies have looked at mutualistic networks, limited to
w03 a single species [44, 45, 46, 47]. The main conclusion of these studies was
204 that the individual level provides new insights to how mutualistic networks
405 operate. Our view is more focused towards parasite transmission yet our
a6 conclusion is similar: by downscaling to the individual level, we can gain
47 new insights into the ecological mechanisms that underlie host-parasite in-
108 teractions. From an epidemiological perspective, our method provides an
209 indication of transmission pathways, with differences in parasite dynamics
s0  between single and multi-species networks. We therefore advocate the use of
so0 - multiple species in individual-based ecological and epidemiological networks
s due to potential effects on parasite transmission.

503 In conclusion, the greatest advantage of our approach is that insights
so4 can be gained from ecological and epidemiological perspectives alike for a
ss complete picture of the infection process. In this way, we provide novel
s06 insights into how disease is transmitted within a community or assemblage,
s07 thereby opening a new avenue of research in the interface between ecology

ss  and epidemiology.
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s S1 Supplementary Information

s Supplementary Figures

Mondolkiri

‘Bandicota savilei . Mus cervicolor . Rattus argentiventer . Rattus exulans ‘Rattus norvegicus Rattus tanezumi

Fig. S1. Networks at the three localities. The leftmost network at each locality
is the multi-species network. In each network helminth taxa (upper nodes) are in red
and their ID numbers correspond to Table S1. Lower nodes are individual rodents, and
their color represents their species. Width of rectangles is proportional to the number of
individuals infected by a parasite (higher rectangles) or the number of parasite species
an individual is infected by (lower rectangles). Inset: a map of the general region of
the capture localities. Bipartite graphs were made using package ‘bipartite’ in the R
environment.
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Fig. S2. Coefficients of Pearson correlation between the rescaled eigenvalue
centrality of individuals of a particular species in the single-species network and
in the multi-species network. Inset: an example for Rattus tanezumi in Sihanouk.
Note that in the inset data points represent individuals, with some overlapping data
points (i.e. individuals with identical centrality values).
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o SI.1 Study system and data set

601 We used data from the Community Ecology of Rodents and their Parasites
sz (CERoPath) project. An extensive description of the field and laboratory
3 methodology (including helminths surveys) applied in the project can be
s« found in refs. [24, 48, 49] and in the CERoPath website (www.ceropath.org).
605 Briefly, rodents were trapped at three human-disturbed localities: Buriram
o0 (14°89’N; 103°01’E; Thailand), Mondolkiri (12°12’N; 106°89’E; Cambodia)
sor and Sihanouk (10°71°’N; 103°82’E; Cambodia) (Fig. S1). Trapping was
s conducted during the dry season in November 2008 (Sihanouk and Buriram)
0o and November 2009 (Mondolkiri). At each locality, 30 lines of ten traps,
700 distanced 1 to 5 km from one other were set over four days. The traps were
701 evenly distributed among four habitat types: forest (natural forest and tree
702 plantations); non-flooded upland (shrub, orchards and upland agriculture);
703 lowland flooded areas (rice paddies); and peridomestic locations (houses and
704 immediate surrounding areas).

705 Trapped rodents were euthanized and dissected. The stomach, small
706 intestine and large intestine were separated and examined for helminth in-
707 fection under a stereo-microscope. The collected helminths were preserved
708 in 70% alcohol and identified according to general helminth identification
700 keys as referenced in [24, 49]. All work with animals was approved by
70 the French National Research Agency, project ANR 07 BDIV 012. Ani-
711 mals were treated in accordance with the guidelines of the American So-
712 ciety of Mammalogists and with the European Union legislation (Directive
713 86/609/EEC). Each trapping session was validated by the national, regional
714 and local health authorities, and including the oral agreement of local land
715 owners. Approval notices for trapping and investigating rodents were given
716 by the Ethical Committee of Mahidol University, Bangkok, Thailand, num-
717 ber 0517.1116/661 based on the validation of the rodents trapping book
718 protocols of CERoPath.
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www.ceropath.org

719 Across the three localities, the three multi-species networks had 27-40 in-
720 dividuals from 2-4 rodent species infected by 6-10 helminth taxa. The single-
721 species networks had 5-23 individuals infected by 2-7 helminths. Helminth
722 richness (number of helminth taxa infecting an individual rodent) ranged
723 between 1 and 4. When averaged across individuals within each network,
724 mean helminth richness ranged between 1 and 2.13. The prevalence of each
725 helminth in each rodent species is indicated in Table S2. Network con-
726 nectance was higher in the single-species compared to the multi-species net-

727 works within each locality in most cases (Table 1).

Table S1. Information on helminth taxa used in this study. Data are from [49] and
Palmeirim et al. (unpublished). B Buriram; M Mondolkiri; S Sihanouk. Helminths in
the table are gastrointestinal parasites transmitted via fecal-oral pathways. We included
helminths with direct mode of transmission because our preliminary work indicated that
removing those helminths did not change our results, but decreased the viability of the
analysis due to low parasite richness. ID corresponds to that in Fig. S1

ID Species Locality Group Transmission Vector Zoonotic
1 Aonchotheca sp B Nematoda Direct

2 Capillaria sp 1 M Nematoda Direct

3 Echinostoma malayanum M Trematoda Indirect Snail +
4 FEucoleus sp M,B Nematoda Direct

5 Ganguleterakis spumosa M,S Nematoda Indirect Arthropod

6 Gongylonema neoplasticum S,B Nematoda Indirect Arthropod

7 Hymenolepis diminuta M,S,B Cestoda Indirect Arthropod +
8 Notocotylus sp B Trematoda Indirect Snail

9 Physaloptera ngoci M,S,B Nematoda Indirect Arthropod

10 Protospiura siamensis B Nematoda Indirect Arthropod

11 Raillietina sp. M,S,B Cestoda Indirect Arthropod +
12 Rodentolepis nana B Cestoda Indirect Arthropod

13 Syphacia muris M,S,B Nematoda Direct

Table S2. Prevalence of helminths in rodent species in the three localities.
Bs—Bandicota savilei; Mc—Mus cervicolor; Re—Rattus exulans; Rn—Rattus norvegicus;
Rt—Rattus tanezumi. Empty cells indicate that the helminth taxa did not occur in the

locality.
Buriram Mondolkiri Sihanouk

Bs Mec Re Bs Rt Ra Re Rn Rt
Aonchotheca sp 0.067 0 0
Capillaria sp 1 0 0.29
Echinostoma malayanum 0.04 0.07
FEucoleus sp 0.067 0.333 0 0.57 0
Ganguleterakis spumosa 0.17 0 0.2 0 0 0.4
Gongylonema neoplasticum 0 0.167 0 0 0.45 0 0.07
Hymenolepis diminuta 0 0 0.667 0.26 0.21 0 0.64 0.44 0.07
Notocotylus sp 0.067 0 0
Physaloptera ngoct 0.200 0 0 0.17 0.07 0.8 0 0 0.2
Protospiura siamensis 0.067 0.167 0.333
Raillietina sp 0.867 0 0 0.52 0.71 0 0 0.56 0.27
Rodentolepis nana 0 0.667 0
Syphacia muris 0.600 0 0.167 0.39 0.29 0.8 0.36 0 0.27
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2s SI.2 phylogenetic tree construction

720 We built a phylogenetic tree (Fig. S3) based on molecular data of the
730 cytochrome b mitochondrial gene. We compiled cytochrome b sequences
731 from the NCBI gene bank and used a maximum likelihood analysis with the
132 GTR4GHI substitution model of molecular evolution with the aid of the
733 function phymltest in the R package ape [50]. To ensure that our results
73« were not affected by the way we constructed the tree, we re-ran analyzes
735 with a tree from [51], but that did not include Mus cervicolor. The results
736 were qualitatively the same.

Mus cervicolor @

Rattus norvegicus @

Bandicota savilei @

Rattus exulans @

Rattus argentiventer @

Rattus tanezumi

Fig. S3. Phylogenetic tree. Colours match those of Fig. S1.

7w SI.3  Analysis of network modularity

738 In the ecological networks, we identified modules of rodents that interact
730 with similar parasites with an algorithm that finds the maximization of the
720 modularity function M [26]. We tested for significance of M by comparing
741 the observed value to those derived from 100 random networks generated
722 with the probabilistic model used by [52, 53]. This null model suited our
743 study system because it assumes that the probability of drawing an edge
744 between a rodent individual and a parasite species is proportional to the

75 susceptibility of the rodent to parasites (i.e. it considers the number of par-
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76 asites infecting the individual) and to the infection potential of the parasite
747 (i.e. it considers the number of individuals infected by the parasite).

748 The value of the modularity function M may be affected by network size
749 or connectance. In our case, in each locality, the multi-species network was
750 larger than each of the single-species networks and its connectance was lower
751 (see Table 1 for exact number of individuals). To ensure that M of the multi-
752 species network (M,,) was not affected by network size or connectance, we
753 sub-sampled each of the multi-species networks 100 times as follows. In each
754 of the 100 iterations we randomly chose n individuals, where n corresponds
755 to the number of individuals in a single-species network to which comparison
756 was made. We held the proportion of species constant. For example, in the
757 original multi-species network in Mondolkiri, Bandicota savilei accounted
758 for 62% of the individuals (23 of 37) and Rattus tanezumi for 38%. These
759 proportions were kept for each sub-network.

760 Connectance of the sub-network was equalized to that of the single-
761 species network by randomly removing edges from the sub-network. It was
762 impossible to set the number of parasites equal to the original multi-species
763 network because removal of individuals entailed removal of parasites. How-
764 ever, only sub-networks with at least six parasites were considered.

765 Under these conditions, we made four comparisons: B. savilei in Buri-
66 ram; B. savilei and R. tanezumi in Mondolkiri; and R. tanezumi in Si-
767 hanouk. We then calculated M for each of the 100 sub-networks in each
768 comparison to produce a distribution of 100 values of M per locality. We
760 examined where in the distribution M, falls. If M,, does not fall beyond
770 the 2.5% or 97.5% extremes, then our conclusions hold (i.e. a two-tailed
771 permutation test). Below are the four histograms, with a red arrow indicat-
772 ing My,. Only in Buriram was M, affected by network size/connectance,
773 but this can be discarded since the single-species network of B. sawvilei in

774 Buriram was not significantly modular (see Table 1 in Main Text).
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Fig. S4. Comparisons of modularity values M for multi-species networks with the same
size and connectance as single-speceis networks.

SI.4 Effect of individual traits on modularity

We tested the effect of individual traits on module composition with logistic

multiple regression on distance matrices [54]), following [5].

Briefly, we
defined the response matrix R as a binary adjacency matrix where R;;
received a value of 1 if rodents ¢ and j occurred in the same module and 0
otherwise. Each of the explanatory matrices described pairwise differences
between individuals in a certain trait. For continuous traits, the difference
was calculated as an absolute difference; for a discrete trait, 1 was assigned
if the two individuals had the same trait value (e.g. both were males), and

0 if they differed in the trait. In the multi-species networks, we included

an explanatory variable matrix that contained patristic distances (sum of
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76 phylogenetic branch lengths) as a measure of phylogenetic distance between
757 a pair of rodents. We only analysed networks with > 10 individuals and
738 omitted RSM from analyses in Mondokiri because data were missing for

780 seven individuals.

0 SI.5 Construction of sub-TPNs

791 Our goal was to compare TGI between a multi-species TPN and a single-
792 species TPN (with > 10 individuals) within the same locality. It is inappro-
703 priate, however, to compare networks of different sizes and connectance (i.e.
704 the number of realized interactions divided by the number of possible ones).
795 To control for different size and connectance while comparing multi-species
796 TPNs to their respective single-species TPNs (within the same locality) we
797 built 100 multi-species sub-TPNs by randomly sampling the original one to
796 match the number of individuals of the single-species TPN. We kept the
799 proportion of individuals of different species in the sub-TPN equal to that
soo of the original multi-species TPN. For example, in the original multi-species
sor  network in Mondolkiri, Bandicota savilei accounted for 62% of the individ-
sz uals (23 of 37) and Rattus tanezumi for 38%. These proportions were kept
so3 at each of the 100 sub-networks.

804 We also kept the connectance of the sub-TPNs constant to that of the
sos original TPN. The connectance of the single-species TPN was always higher
sos than that of the multi-species TPN (Table 1 in Main Text). Therefore,
sor  we built 100 single-species sub-TPNs by randomly removing edges from
sos the original one to adjust for the connectance of the original multi-species
soo network. The result was a set of 100 multi-species sub-TPNs and a set
sio  of 100 single-species sub-TPNs of equal size and connectance. For each
si1  of these 200 sub-TPNs we generated a distribution of 100 TGI values by
sz randomly selecting individuals as starting points. We used the distribution

s13  of 100 mean TGI values (averaged for each sub-TPN) to examine differences
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se  between the single- and multi-species TPNs.
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Table S3. Comparison of models used for multi-model inference. Models were obtained
with a backwards stepwise regression starting from the global model and are ranked
from the most to the least supported according to corrected Akaike information criteria
(AlCc). The global models contained all possible variables. Variables with missing cases
(e.g. RSM in Mondokiri) or with no variation (e.g. when all individuals belonged to one
sex) were excluded. AAICc — difference in AICc between the current and best model;
w; — model probabilities. Species — host species; BM — body mass; RSM — relative
spleen mass to body mass (see Methods for details); EC — eigenvalue centrality; ¢ —
global model.

Rank Model structure AAICc w;

Buriram multi-species

1 EC Species + BM 0 0.62
2 EC Species + BM + RSM 1.651 0.27
3 EC Species + BM + RSM + Sex 4.078 0.08
4 EC Species + BM + RSM + Sex + Age 7.887 0.01
5¢ EC Species + BM + RSM + Sex + Age + Habitat ~ 7.887  0.01
6 (Null) 29644 0
Buriram Bandicota savilet

1 (Null) 0 0.49
2 EC BM 0.272 0.42
3 EC BM + Sex 3.511 0.08
4% EC BM + Sex + Age 8176  0.01
Mondolkiri multi-species

1 EC Species + Age 0 0.4
2 EC Species + Sex + Age 0.2 0.36
3 (Null) 2.146  0.14
4 EC Species + BM + Sex + Age 2.843 0.1
5¢ EC Species + BM + Habitat + Sex + Age 10.407 0
Mondolkiri Bandicota savilei

1 EC Age 0 0.61
2 EC Sex + Age 2.399 0.18
3 (Null) 2621 0.17
4 EC BM + Sex + Age 5.586 0.04
5¢ EC BM + Habitat + Sex + Age 10.211 0

Mondolkiri Rattus tanezumsi

1 (Null) 0 0.7

Continued on next page
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Table S3 — continued from previous page

Rank Model structure AAICc w;
2 EC Age 2.174 0.24
3 EC BM + Age 4.768 0.06
4 EC BM + Habitat + Age 9.658 0.01
5¢ EC BM + Habitat + Sex + Age 16.144 0
Sihanouk multi-species

1 EC Species 0 0.63
2 EC Species + RSM 1.84 0.25
3 EC Species + RSM + Sex 4.348 0.07
4 (Null) 6.197 0.03
5 EC Species + BM + RSM + Sex 7.496 0.02
6 EC Species + BM + RSM + Sex + Age 10.88 0
7¢ EC Species + BM + RSM + Habitat + Sex + Age  15.052 0
Sihanouk Rattus exulans

1 (Null) 0 0.74
2 EC BM 2.254 0.24
3 EC BM + RSM 6.731 0.03
4¢ EC BM + RSM + Sex 14.034 0

Sihanouk Rattus tanezumsi

1 (Null) 0 0.76
2 EC Sex 2.533  0.21
3 EC BM + Sex 6.423  0.03
4 EC BM + RSM + Sex 11.743 0
5¢ EC BM + RSM + Sex + Habitat 28.103 0
815
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