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Abstract

Aim

To improve predictions of spatial and temporal patterns of species richness it is important to
consider how species presence at a site is defined. This is because this definition affects our
estimate of species richness, which should be aligned with the aims of the study, e.g.
estimating richness of the breeding community. Here we explore the sensitivity of species
richness estimates to criteria for defining presence of species (e.g. in relation to number of

days present during the breeding season) at 107 wetlands.

Innovation

We use opportunistic citizen science data of high density (a total of 151,817 observations of
77 wetland bird species; i.e. about 16 observations per day) to build site-occupancy models
calculating occupancy probabilities at a high temporal resolution (e.g. daily occupancies) to
derive probabilistic estimates of seasonal site use of each species. We introduce a new way
for defining species presence by using different criteria related to the number of days the
species are required to be present at local sites. We compared patterns of species richness

when using these different criteria of species inclusions.

Main conclusion

While estimates of local species richness derived from high temporal resolution occupancy
models are robust to observational bias, these estimates are sensitive to restrictions
concerning the number of days of presence required during the breeding season. Unlike
complete local species lists, summaries of seasonal site use and different presence criteria
allow identifying differences between sites and amplifying the variability in species richness

among sites. Thus, this approach allows filtering out species according to their phenology and
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migration behaviour (e.g. passer-by species) and could improve the explanatory power of

environmental variables on predictive models.

Keywords: biodiversity informatics, citizen science data, GBIF, migratory birds, occupancy

model, opportunistic observations, presence-only data, site use, Swedish Species Gateway

Introduction

Measures of biodiversity are of central interest to many disciplines in ecology, from
community and macroecology to functional ecology and conservation (Chapin et al., 2000;
Sala et al., 2000; Hubbell, 2001; Leibold et al., 2004; Isbell et al., 2017). Biodiversity
measures (a.k.a. biodiversity variables) are elaborations upon primary data such as species
observations (Schmeller et al., 2017). These measures are the species presence, species
richness and community composition (or species lists) from which richness of functional
traits could also be derived. However, these summary metrics are clearly dependent on the
definition of the presence status of a species at a site that determines a species’ inclusion in
the summary metric. In other words, when is a species part of a local community? Is it

enough for it to be present at a site only once during the season?

Here, we propose that in order to improve our understanding of species assemblages, we

should first focus on how we define the presence of a species at a site, i.e. the data that is

being fed into predictive models, before we can focus on how species distributions and local
species richness are explained and predicted. So far, much focus has been set on the ability of
predictive models to estimate species richness at unvisited sites (Dubuis et al., 2011; Guisan
& Rahbek, 2011; Calabrese et al., 2014; Pollock et al., 2014; Distler et al., 2015; Zurell et al.,
2016). However, although mean richness levels are accurately predicted, these models
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typically over-predict low local species richness and under-predict high local species richness
(Zurell et al., 2016). Typical biases in richness predictions seem to be affected by species'
prevalence and site use (e.g. habitat and resource requirements), which can only partially be

amended by adequate predictor choice and resolution (Zurell et al., 2016).

Based on recent modelling advancements (Ruete et al., 2017), we introduce a new way of
looking at species counts that challenges previous definitions of species presence in light of
how each species use a site. So far, most modelling approaches use summaries of
presence/absence or presence-only data collected during a rather long time period (e.g.
typically, the population closure is assumed over a season, but could be a decade too) to infer
about the presence of a species at a site. As we previously showed (Ruete et al., 2017),
seasonal closure periods may over-simplify the species phenology and day-to-day site use
patterns, making it impossible to e.g. discriminate passer-by species from species attempting
to breed in the area. Furthermore, mobile species, such as birds, might have large home
ranges and use several sites for foraging and locally breeding species will therefore not be
present at a site at all visits, i.e. hence it could be temporarily absent from a site during the
season. The question that arises then is how to define the presence of a species, and in
extension the species richness at a site that better reflects the species’ more permanent site
use in terms of diet, foraging and breeding habitat. Different definitions of species presence at
a site are also of interest in communities with rapid succession within each season where
some ephemeral species are observable during very short periods of time but may determine
the succession of species during the rest of the season (e.g. algae, insects or vascular plants;

Southwood et al., 1979; Bond et al., 1984; Berntsson & Jonsson, 2003; Whalen et al., 2016).

One way of summarizing richness over a time window is by setting requirements on the
amount of time units (i.e. days) a species needs to be present for it to be counted in estimates
of local species richness. Such criteria are very much the same as used for several
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standardised inventory methods (e.g. territory mapping; Bibby, 2000). In this way, different
criteria can be added for different species to filter species to be included as permanent

members of the breeding community.

Techniques for stacking species-specific occupancies or distributions are popular among
ecologists because they are intuitive and easy to apply (Calabrese et al., 2014), by summing
either binary states (presence/absence) or occupancy probabilities. However, these techniques
have not been confronted with multiple potential definitions of species presence. With the
advent of big biodiversity data (e.g. from citizen science), site-occupancy models can be used
to estimate occupancy probabilities at a high temporal resolution, e.g. daily during a season
(Ruete et al., 2017), and to derive probabilistic estimates of seasonal site use. Here we
explore how time series of site use can be used to constrain definitions of local species
presence using biologically informed criteria to discriminate e.g. breeding species from
passer-by’s. We also propose that this approach allows refining species richness estimates

and local species lists before using them in predictive models.

We used high density opportunistic citizen science data from popular birding wetlands in
Sweden to explore the sensitivity of probabilistic stacking techniques to alternative
definitions of species presence based on sequences of daily occupancy probabilities of
wetland birds (mostly migrant species) in Sweden during a breeding season. We specifically
analysed how different criteria for species presence lead to differences in species richness,
and if they can be used to objectively filter out e.g. passer-by and vagrant species from local

species list.
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Methods

Data

We obtained data from Artportalen (Swedish Species Gateway, www.artportalen.se) by using
the Swedish LifeWatch Analysis portal (Leidenberger et al., 2016). This data is also available
at the Global Biodiversity Information Facility (www.gbif.org). We extracted a total of
151,817 opportunistic presence-only species observations collected during 28,207
independent visits over 90 days (April to June) during 2014 for 77 wetland bird species at
107 wetland sites in Sweden (Fig. S1). A visit was defined as all observations made by each
observer at a site during a day. The sampled area was restricted to a convex hull of all the
locations from which observations were reported within a predefined polygon over the
wetland extension used to query the observations from the Analysis portal. The area of the
convex hull was later used to analyse if there were any effects of sampled area on species-

richness estimates.

Species richness — using different definitions of presence

We used a site-use model, that assumes each day as closure periods (Ruete et al., 2017), to
estimate daily site- and species-specific occupancy probabilities. To explore the temporal

variation in species richness we calculated daily, monthly and seasonal estimates of species
richness based on the daily estimates of occupancy probability (paij, for day d, species i and

site ) obtained from the site-use model.

Daily local richness (Sj¢®) was calculated following Calabrese et al. (2014) summing daily
estimates of occupancy probability, pqij, over species (Fig. 1). To summarise local species

richness over time periods longer than the model resolution (i.e. >1 day) we used two
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approaches: 1) based on mean site use, and 2) based on different definitions for presence

using different criteria for the number of days a species is required to be present.

Using the mean site use as a criterion for presence (Ruete et al., 2017) we estimated mean
richness over a time period (here months and the whole season): we first computed the mean
of each species’ estimated daily occupancy probability over the specified time window at
each site (p;j"*" = mean site use; Ruete et al., 2017). We then computed estimates of species
richness per site (S;™2", henceforth) by summing the mean probabilities (p;™®") over all
species j (Fig. 1). Therefore, Sj™2" estimates the number of species expected to co-occur at
site j on any given day during the time period. This approach does not allow to identifying
species with different phenologies (e.g. species arriving and breeding at different times) and
behaviours (e.g. species passing by), and therefore is not possible to construct species lists as

species assemblage may change from day to day.

To be able to distinguish between different phenologies and behaviours we also summarized
richness over a time window by setting requirements on the amount of time units (i.e. days) a
species needs to be present for it to be included in estimates of local species richness. We
used criteria for the number of days a species needs to be present, either in any sequence
(spread) or strictly on consecutive (continuous) days within the season. We used thresholds of
1, 20, 30 and 45 days during our 90 day (3 month) season to test for sensitivity to these
criteria, see Table 1 and Fig. 1. Since species-specific models were fitted within the Bayesian
framework, the model results comprise more than one estimate of daily occupancies (i.e.
posterior distributions of daily occupancy status). Hence, the criteria for seasonal presence
were assessed for each of the 2,000 posterior samples (N) of local sequences of daily
occupancies summarising model uncertainty. The occupancy probability of species i at site j
during a longer time window is then estimated as pij= Y5~ 0;j»/N, where the inclusion
parameter Oijn is 1 if a given criterion as defined above (Fig. 1) is fulfilled, and 0 otherwise,
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evaluated for each posterior sample n. Local richness at site j under a given criterion, e.g. 1
day, is then defined as !¢ = ¥X_; p;; where R = 77 species. S; """ estimates richness as the
total number of species in the community that fulfils certain presence criteria. Because this

approach is binary regarding the fulfilment of a criteria it can produce local species lists.

As a baseline for comparison we compiled daily, monthly and seasonal lists of detected
species at each site (observed species richness), solely based on the opportunistic primary
observational data (i.e. number of species per month and season that were observed at least
once under that period). For comparison with the criterion-based estimates, we also compiled
species lists, using the same criteria for presence of a species, i.e. given each species was

observed at least 1, 20, 30 or 45 days.

To test for the sensitivity of estimates of local richness to the variability in site- and time-
specific sampling effort, we fitted logarithmic regression models testing for the effect of the
number of visits and sampled area on estimates of site-specific richness. We assumed the
number of species at site i to follow a Poisson distribution with mean 4; which was further
modelled as In(4;) = a + BX;; where a is an intercept parameter, X; is a matrix of
explanatory variables, P is a vector of associated effect size parameters. For this we used the

glm(..., family = "poisson”) command in R (R Development Core Team, 2014).

Results

Species richness varied across the season. The monthly richness peaked in May (observed
richness and estimated richness S'9, Fig. 2), i.e. a time period when both migrants and
breeders may be present at the wetlands. The difference between observed and estimated S°
richness decreased as the time periods over which the data is summarised increased (from 1

day to month and to season). That is because many species will be detected at least once
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during a longer time period, although this also depends on the temporal patterns in number of
visits per site (e.g. the difference was greater in June when the number of visits decayed).
Although sampling effort in opportunistic observations of birds typically decreases at the end
of the season (thus the lower number of detected species, Fig. 2), the occupancy model can
correct for this tendency (see estimated richness in Fig. 2 and Ruete et al., 2017). S™ean-Season jg
the number of species expected to co-occur daily at a site, which is mathematically the same
as the mean over the season of S%. Due to the turnover in species diversity over the season,
the number of species co-occurring daily at a site (SMea"5#%°") \was, as expected, much lower

than Std-Season \which summarizes the total number of species present at least once at each site

(Fig. 2).

Sensitivity of estimated richness to different definitions of species presence

Estimates of seasonal richness were very sensitive to the number of days required for
considering a species to be present at a site (Fig. 3). Compared to the criterion 1d criterion
(i.e. observed at least once during April to June), naturally, the number of species considered
as present decreased markedly (30% and 50% depending on the continuity criterion) when
the species needed to occupy the site at least 20 days during the same time period (Fig. 3).
Further increasing the restrictions on number of days present also reduced the number of
species but less dramatically so (Fig. 3). Similarly, estimates under the continuous criterion
(i.e. presences during consecutive days) were at least 20% lower than estimates under the
spread criterion (i.e. presence on a given number of days in any sequence during a time

period).
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209  Sensitivity of estimated richness to sampling effort (number of visits and sampled area)

210  As expected, more visits resulted in greater observed and estimated species richness. In

211 comparison to observed richness this effect was, however, widely reduced on richness

212 estimates from the occupancy models (Fig. 4), with the estimated rate of increase in richness
213 per added visit ranging between only 1.8% (p > 0.05) for S'® and 6.3% (p < 0.01) for S$**
214  (Table S1). We also found a positive effect of sampled area on estimated richness, but only
215  when richness was based on primary observations or the stricter 30 and 45 day criteria (S
216 and $*9). However, adding sampled area to a model already accounting for the effect of

217  number of visits did not improve the model fit (Table S1).
218
219  Discussion

220  Occupancy models, under the right circumstances, allow correcting for detection errors and
221 predicting occupancy using presence-only data more precisely and presumably in a less

222  biased way than other modelling techniques (Kéry & Royle, 2008; Dubuis et al., 2011).

223 However, occupancy models to estimate occupancy of breeding populations typically assume
224  closure periods over the whole breeding season, neglecting effects of phenology and

225  migration behaviour on the presence of species and hence occupancy probabilities across the
226  season (Ruete et al., 2017). For mobile species, assuming closure periods over the whole

227  breeding season will also include species that are only passing by either during migration or
228  during distant foraging trips. By making use of a large number of opportunistic observations
229  spread out during the breeding season and specifically modelling the daily variability in

230  occupancy probabilities for 77 wetland bird species at 107 sites, we were able to use different
231 criteria for including species in each local species lists which allows to distinguish between

232 species according to their phenology and migration behaviour. Here, we suggest using
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corrected occupancy data with high-temporal resolution together with biologically reasonable
criteria to appropriately filter local species lists as the initial step before further analysing

spatial and temporal patterns of species diversity.

An important question then is: What richness estimate to use in a given study. Here we
compared i) daily species richness (S%), ii) the average number of species daily co-occurring
at a site over a chosen period (here month and season, S™@"), and iii) species richness where
species are filtered based on criteria for presence (S - $*°9), i.e. the number of days a species
is required to be present at a site to be considered present in the season (here we chose 1, 20,
30 and 45 days). Richness estimated by summarising means of daily probabilities of
occupancy (S™2") describes the average site use of the whole bird community over time, that
IS, how many species are expected to share a site at a given time (day). However, since in this
approach species richness is the results of added occupancy probabilities, the species actually
being present cannot be identified and hence does not allow constructing local species lists or
separating between species with different phenologies and behaviours (e.g. species passing
by). Consider the case of three species with an occupancy probability across the period pim2"
= 0.27. These species may contribute equally little to the estimated richness S™2". However,
species 1 has a constant daily occupancy probability pqij = 0.27 across the season, species 2
has a low pgij = 0.1 during the first 70 days but pgij = 0.9 during the last 20 days, while species
3 is likely present on 20 random days with pgij = 0.9 and most likely absent the rest of the
days with pgij = 0.1. Biological criteria are needed to decide about the inclusion of a species,
e.g. species most likely attempting to breed at a site. For example, one may want to use
restrictive criteria as e.g. required presence during at least 45 days, to estimate the richness of

species only using the site regularly during the breeding season (thus filtering out species

passing by).
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Richness estimates using a permissive criterion e.g. S'° (i.e. species observed at least once
during the time period) result in complete lists of species that could be observed at a site,
including species using the site only temporary (e.g. passer-by and vagrant species). Cases
where the inclusion of such species is of interest are surveys of e.g. stop-over sites or
communities where species occur with rapid succession within a season and some ephemeral
species are observable only during very short periods of time (e.g. algae, insects or vascular
plants; Southwood et al., 1979; Bond et al., 1984; Berntsson & Jonsson, 2003; Whalen et al.,
2016). Then, using a permissive criterion will produce estimates of richness that are more
suitable to understand the composition of those communities. However, in cases where the
interest is the breeding community of migrant species more restrictive criteria are to define

the presence of each species.

Different criteria need, however, to be chosen with care. Using continuous-presence criteria
resulted in lower estimated richness compared to the spread-presence criteria (Fig. 3)
indicating that there is a substantial group of vagrant species or species having large home
ranges and thus being likely temporarily missing at a site. On the other hand, when
continuous sequences of species presence may not be correctly identified, spread-presence
criteria may safeguard from uncertainties in the occupancy model (e.g. due to very low
detection probabilities; see Table S2: many of the 77 wetland species had low detection

probabilities).

As expected, the variability in richness among sites increased when increasing the restrictions
of inclusion of species in local lists (Fig. 3), highlight the differences between sites (Ruete et
al., 2017). Thus, this approach could improve the explanatory power of environmental
variables describing the site use and breeding habitat selection reducing the risk of over- and

underprediction error of predictive models (Calabrese et al., 2014; Zurell et al., 2016).
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Although the number of visits at a site had strong positive effect on the number of species
observed, when correcting for variability in the detection probability by occupancy models,
the number of visits were only marginally positively associated with estimated species
richness (Fig. 4). Given that richer sites may attract more voluntary observers the remaining
effect of sampling effort (i.e. number visits) may be correlational and not strictly causal.
These results suggest that occupancy models are robust for estimating richness compared to

approaches using primary observational data, supporting the findings of Isaac et al. (2014).

Conclusion

We show how species presence can be defined in several ways when exploring species
observation data at high temporal resolution, and how derived biodiversity variables, like
estimates of species richness, are sensitive to it. In light of the results presented here, we
suggest that the following questions should be considered when using species observations to
define species presence: 1) how likely is it for different species to violate the closure
assumption? That is, e.g. what possible dynamics in the species presence may be relevant to
include in the occupancy model that is not captured by a assumed closure period of three or
four months? 2) How relevant is the inclusion of e.g. vagrant species? That is, what richness
(e.g. daily site use or seasonal maximum) is of interest? When the aim is to estimate the
complete lists of species that could be visiting sites, even those occurring briefly, and if
multiple observations per day are common we suggest to use S'%. When the aim is to estimate
the number of breeding species we suggest more restrictive approaches (such as $*5¢ or $209¢),
When the main interest is in summarising expected number of species simultaneously using
the site then averages, such as S™2", are recommended. Following those decisions, the

filtered estimates of local species richness produced can be analysed using macroecological
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models (Dubuis et al., 2011; Guisan & Rahbek, 2011). Alternatively, the presence criteria
filters could be used per species if the intention is to stack species-specific distribution
models either independently (Calabrese et al., 2014) or integrated in multispecies occupancy
models (MSOMs; Dorazio et al., 2006; Iknayan et al., 2014). In case local species lists are
required for further analysis, e.g. community similarity indices or diversity of functional
traits, criteria-based approaches (e.g. S'% - $*9) could be used. Then, bootstrapping

techniques are recommended in order to account for and propagate the model uncertainty.

Given that opportunistic species observations are accumulating at a high rate in biodiversity
databases (especially for birds; Graham et al., 2004; Amano et al., 2016) and the potential of
these data continues to be uncover (Tulloch et al., 2013; Theobald et al., 2015; Ruete et al.,
2017), we envision that methods like the ones presented here will become more and more

common.
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402  Table 1: Number of days present and the temporal continuity of presences (over consecutive

403  or spread days) required for the seven different estimates of species richness over the season.

Continuity Number of days required to be present
1 20 30 45
Spread Sld SZOd SBOd S45d
Consecutive (C) g20dc gs0dc g5dC
404
405

Peer] Preprints | https://doi.org/10.7287/peerj.preprints.3077v1 | CC BY 4.0 Open Access | rec: 7 Jul 2017, publ: 7 Jul 201717




406

407

408

409

410

411

412

413

414

415

d

1/0,0,0.1,0.9,0.9,...,0.9,0.1[H 6
0 prean = z Dija/90; =" pye/30
2 210,0,0,0,0.5,0.9,...,0.9,0.9 a-1 -
8 l ] STHEan _ 277 pmean. SjmganApY‘zI = z7j1ply;|gan.Apﬂl
w \ 4 =17 -

ey 77
Siq” = z Pija
ja s

7710,0.9.0.1,0.9,0.6,...0.7,0
[

[

\ A A )
Y N Y
April May June
N Y J
Season
| | Ojjn =
d N ;v oo e sosc s
1/0,0,0,0,1,1,1, ... ,1,0,0[H N0 0 0
£ 2/0,0,0,0,0,0,1, ... ,1,1,1 AR
o) . A
& =)
7710,0,1,0,0,1,1, ... ,1,0,1 I I o S | T A

2000
o= 3 oft o
"

77
g45d 45d
4 =17

Figure 1. Diagram of the summarizing procedures for daily estimates of occupancy
probabilities and status obtained from Ruete et. al. (2017). The dimensions described in these
summaries are species (i; 1 = 77), days (d; D = 90 for season or D = 30 for months), sites (j; J
=107) and monitored MCMC replicates (n; N = 2000). pij™" = mean period-specific
occupancy probabilities (e.g. 90 days season or April); S;™**" = mean period-specific species
richness, Sj¢™ = daily species richness. 20d = 20 spread days criterion, 20dC = 20
consecutive days criterion. Ojjr = inclusion parameter, i.e. fulfilment of a given criterion. p;**

= occupancy probability given the fulfilment of a given criterion (e.g. 45d).
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Figure 2. Observed and estimated (daily S*, mean period S™2" and criterion-based S¢)

417

species richness. Boxplots summarize species richness across all (wetland) sites. Dashed

418

vertical lines divide months.
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Figure 3. Species richness estimates for the 2014 breeding season (April - June), as a
function of number of days and spread of these days (continuous vs spread days) required for
inclusion of a species in the richness estimates. The seasonal mean richness estimate (S™2") is

included for comparison.
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Figure 4. Effect of number of visits (sampling effort) on observed and estimated richness for
different number of required days during April to June (1, 20, 30 or 45 days, either spread S*
-45d or continuous S2%9C - 459C) for species classified to be present at a site. Solid, dotted and
dashed lines show the effect of number of visits on observed species richness, and estimated
species richness under the spread and continuous estimates of local species richness,

respectively.
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