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Abstract 17 

Aim  18 

To improve predictions of spatial and temporal patterns of species richness it is important to 19 

consider how species presence at a site is defined. This is because this definition affects our 20 

estimate of species richness, which should be aligned with the aims of the study, e.g. 21 

estimating richness of the breeding community. Here we explore the sensitivity of species 22 

richness estimates to criteria for defining presence of species (e.g. in relation to number of 23 

days present during the breeding season) at 107 wetlands.  24 

Innovation 25 

We use opportunistic citizen science data of high density (a total of 151,817 observations of 26 

77 wetland bird species; i.e. about 16 observations per day) to build site-occupancy models 27 

calculating occupancy probabilities at a high temporal resolution (e.g. daily occupancies) to 28 

derive probabilistic estimates of seasonal site use of each species. We introduce a new way 29 

for defining species presence by using different criteria related to the number of days the 30 

species are required to be present at local sites. We compared patterns of species richness 31 

when using these different criteria of species inclusions.  32 

Main conclusion  33 

While estimates of local species richness derived from high temporal resolution occupancy 34 

models are robust to observational bias, these estimates are sensitive to restrictions 35 

concerning the number of days of presence required during the breeding season. Unlike 36 

complete local species lists, summaries of seasonal site use and different presence criteria 37 

allow identifying differences between sites and amplifying the variability in species richness 38 

among sites. Thus, this approach allows filtering out species according to their phenology and 39 
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migration behaviour (e.g. passer-by species) and could improve the explanatory power of 40 

environmental variables on predictive models.  41 

 42 

Keywords: biodiversity informatics, citizen science data, GBIF, migratory birds, occupancy 43 

model, opportunistic observations, presence-only data, site use, Swedish Species Gateway 44 

 45 

Introduction 46 

Measures of biodiversity are of central interest to many disciplines in ecology, from 47 

community and macroecology to functional ecology and conservation (Chapin et al., 2000; 48 

Sala et al., 2000; Hubbell, 2001; Leibold et al., 2004; Isbell et al., 2017). Biodiversity 49 

measures (a.k.a. biodiversity variables) are elaborations upon primary data such as species 50 

observations (Schmeller et al., 2017). These measures are the species presence, species 51 

richness and community composition (or species lists) from which richness of functional 52 

traits could also be derived. However, these summary metrics are clearly dependent on the 53 

definition of the presence status of a species at a site that determines a species’ inclusion in 54 

the summary metric. In other words, when is a species part of a local community? Is it 55 

enough for it to be present at a site only once during the season?  56 

Here, we propose that in order to improve our understanding of species assemblages, we 57 

should first focus on how we define the presence of a species at a site, i.e. the data that is 58 

being fed into predictive models, before we can focus on how species distributions and local 59 

species richness are explained and predicted. So far, much focus has been set on the ability of 60 

predictive models to estimate species richness at unvisited sites (Dubuis et al., 2011; Guisan 61 

& Rahbek, 2011; Calabrese et al., 2014; Pollock et al., 2014; Distler et al., 2015; Zurell et al., 62 

2016). However, although mean richness levels are accurately predicted, these models 63 
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typically over-predict low local species richness and under-predict high local species richness 64 

(Zurell et al., 2016). Typical biases in richness predictions seem to be affected by species' 65 

prevalence and site use (e.g. habitat and resource requirements), which can only partially be 66 

amended by adequate predictor choice and resolution (Zurell et al., 2016).  67 

Based on recent modelling advancements (Ruete et al., 2017), we introduce a new way of 68 

looking at species counts that challenges previous definitions of species presence in light of 69 

how each species use a site. So far, most modelling approaches use summaries of 70 

presence/absence or presence-only data collected during a rather long time period (e.g. 71 

typically, the population closure is assumed over a season, but could be a decade too) to infer 72 

about the presence of a species at a site. As we previously showed (Ruete et al., 2017), 73 

seasonal closure periods may over-simplify the species phenology and day-to-day site use 74 

patterns, making it impossible to e.g. discriminate passer-by species from species attempting 75 

to breed in the area. Furthermore, mobile species, such as birds, might have large home 76 

ranges and use several sites for foraging and locally breeding species will therefore not be 77 

present at a site at all visits, i.e. hence it could be temporarily absent from a site during the 78 

season. The question that arises then is how to define the presence of a species, and in 79 

extension the species richness at a site that better reflects the species’ more permanent site 80 

use in terms of diet, foraging and breeding habitat. Different definitions of species presence at 81 

a site are also of interest in communities with rapid succession within each season where 82 

some ephemeral species are observable during very short periods of time but may determine 83 

the succession of species during the rest of the season (e.g. algae, insects or vascular plants; 84 

Southwood et al., 1979; Bond et al., 1984; Berntsson & Jonsson, 2003; Whalen et al., 2016).  85 

One way of summarizing richness over a time window is by setting requirements on the 86 

amount of time units (i.e. days) a species needs to be present for it to be counted in estimates 87 

of local species richness. Such criteria are very much the same as used for several 88 
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standardised inventory methods (e.g. territory mapping; Bibby, 2000). In this way, different 89 

criteria can be added for different species to filter species to be included as permanent 90 

members of the breeding community.  91 

Techniques for stacking species-specific occupancies or distributions are popular among 92 

ecologists because they are intuitive and easy to apply (Calabrese et al., 2014), by summing 93 

either binary states (presence/absence) or occupancy probabilities. However, these techniques 94 

have not been confronted with multiple potential definitions of species presence. With the 95 

advent of big biodiversity data (e.g. from citizen science), site-occupancy models can be used 96 

to estimate occupancy probabilities at a high temporal resolution, e.g. daily during a season 97 

(Ruete et al., 2017), and to derive probabilistic estimates of seasonal site use. Here we 98 

explore how time series of site use can be used to constrain definitions of local species 99 

presence using biologically informed criteria to discriminate e.g. breeding species from 100 

passer-by’s. We also propose that this approach allows refining species richness estimates 101 

and local species lists before using them in predictive models.   102 

We used high density opportunistic citizen science data from popular birding wetlands in 103 

Sweden to explore the sensitivity of probabilistic stacking techniques to alternative 104 

definitions of species presence based on sequences of daily occupancy probabilities of 105 

wetland birds (mostly migrant species) in Sweden during a breeding season. We specifically 106 

analysed how different criteria for species presence lead to differences in species richness, 107 

and if they can be used to objectively filter out e.g. passer-by and vagrant species from local 108 

species list.  109 

 110 

 111 

 112 
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Methods 113 

Data 114 

We obtained data from Artportalen (Swedish Species Gateway, www.artportalen.se) by using 115 

the Swedish LifeWatch Analysis portal (Leidenberger et al., 2016). This data is also available 116 

at the Global Biodiversity Information Facility (www.gbif.org). We extracted a total of 117 

151,817 opportunistic presence-only species observations collected during 28,207 118 

independent visits over 90 days (April to June) during 2014 for 77 wetland bird species at 119 

107 wetland sites in Sweden (Fig. S1). A visit was defined as all observations made by each 120 

observer at a site during a day. The sampled area was restricted to a convex hull of all the 121 

locations from which observations were reported within a predefined polygon over the 122 

wetland extension used to query the observations from the Analysis portal. The area of the 123 

convex hull was later used to analyse if there were any effects of sampled area on species-124 

richness estimates. 125 

 126 

Species richness – using different definitions of presence 127 

We used a site-use model, that assumes each day as closure periods (Ruete et al., 2017), to 128 

estimate daily site- and species-specific occupancy probabilities. To explore the temporal 129 

variation in species richness we calculated daily, monthly and seasonal estimates of species 130 

richness based on the daily estimates of occupancy probability (pdij, for day d, species i and 131 

site j) obtained from the site-use model.  132 

Daily local richness (Sjd
day) was calculated following Calabrese et al. (2014) summing daily 133 

estimates of occupancy probability, pdij, over species (Fig. 1). To summarise local species 134 

richness over time periods longer than the model resolution (i.e. >1 day) we used two 135 
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approaches: 1) based on mean site use, and 2) based on different definitions for presence 136 

using different criteria for the number of days a species is required to be present. 137 

Using the mean site use as a criterion for presence (Ruete et al., 2017) we estimated mean 138 

richness over a time period (here months and the whole season): we first computed the mean 139 

of each species’ estimated daily occupancy probability over the specified time window at 140 

each site (pij
mean = mean site use; Ruete et al., 2017). We then computed estimates of species 141 

richness per site (Sj
mean, henceforth) by summing the mean probabilities (pij

mean) over all 142 

species j (Fig. 1). Therefore, Sj
mean estimates the number of species expected to co-occur at 143 

site j on any given day during the time period. This approach does not allow to identifying 144 

species with different phenologies (e.g. species arriving and breeding at different times) and 145 

behaviours (e.g. species passing by), and therefore is not possible to construct species lists as 146 

species assemblage may change from day to day. 147 

To be able to distinguish between different phenologies and behaviours we also summarized 148 

richness over a time window by setting requirements on the amount of time units (i.e. days) a 149 

species needs to be present for it to be included in estimates of local species richness. We 150 

used criteria for the number of days a species needs to be present, either in any sequence 151 

(spread) or strictly on consecutive (continuous) days within the season. We used thresholds of 152 

1, 20, 30 and 45 days during our 90 day (3 month) season to test for sensitivity to these 153 

criteria, see Table 1 and Fig. 1. Since species-specific models were fitted within the Bayesian 154 

framework, the model results comprise more than one estimate of daily occupancies (i.e. 155 

posterior distributions of daily occupancy status). Hence, the criteria for seasonal presence 156 

were assessed for each of the 2,000 posterior samples (N) of local sequences of daily 157 

occupancies summarising model uncertainty. The occupancy probability of species i at site j  158 

during a longer time window is then estimated as pij = ∑ 𝑂𝑖𝑗𝑛
𝑁
𝑛=1 𝑁⁄ , where the inclusion 159 

parameter Oijn is 1 if a given criterion as defined above (Fig. 1) is fulfilled, and 0 otherwise, 160 
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evaluated for each posterior sample n. Local richness at site j under a given criterion, e.g. 1 161 

day, is then defined as 𝑆𝑗
1𝑑 = ∑ 𝑝𝑖𝑗

𝑅
𝑖=1  where R = 77 species. Sj

’criterion’ estimates richness as the 162 

total number of species in the community that fulfils certain presence criteria. Because this 163 

approach is binary regarding the fulfilment of a criteria it can produce local species lists. 164 

As a baseline for comparison we compiled daily, monthly and seasonal lists of detected 165 

species at each site (observed species richness), solely based on the opportunistic primary 166 

observational data (i.e. number of species per month and season that were observed at least 167 

once under that period). For comparison with the criterion-based estimates, we also compiled 168 

species lists, using the same criteria for presence of a species, i.e. given each species was 169 

observed at least 1, 20, 30 or 45 days. 170 

To test for the sensitivity of estimates of local richness to the variability in site- and time-171 

specific sampling effort, we fitted logarithmic regression models testing for the effect of the 172 

number of visits and sampled area on estimates of site-specific richness. We assumed the 173 

number of species at site i to follow a Poisson distribution with mean 𝜆i, which was further 174 

modelled as ln(𝜆𝑖) = 𝛼 + 𝛽𝑋𝑖; where α is an intercept parameter, Xi is a matrix of 175 

explanatory variables, β is a vector of associated effect size parameters. For this we used the 176 

glm(…, family = "poisson") command in R (R Development Core Team, 2014).   177 

 178 

Results 179 

Species richness varied across the season. The monthly richness peaked in May (observed 180 

richness and estimated richness S1d, Fig. 2), i.e. a time period when both migrants and 181 

breeders may be present at the wetlands. The difference between observed and estimated S1d 182 

richness decreased as the time periods over which the data is summarised increased (from 1 183 

day to month and to season). That is because many species will be detected at least once 184 
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during a longer time period, although this also depends on the temporal patterns in number of 185 

visits per site (e.g. the difference was greater in June when the number of visits decayed). 186 

Although sampling effort in opportunistic observations of birds typically decreases at the end 187 

of the season (thus the lower number of detected species, Fig. 2), the occupancy model can 188 

correct for this tendency (see estimated richness in Fig. 2 and Ruete et al., 2017). Smean.Season is 189 

the number of species expected to co-occur daily at a site, which is mathematically the same 190 

as the mean over the season of Sday. Due to the turnover in species diversity over the season, 191 

the number of species co-occurring daily at a site (Smean.Season) was, as expected, much lower 192 

than S1d.Season, which summarizes the total number of species present at least once at each site 193 

(Fig. 2).  194 

 195 

Sensitivity of estimated richness to different definitions of species presence 196 

Estimates of seasonal richness were very sensitive to the number of days required for 197 

considering a species to be present at a site (Fig. 3). Compared to the criterion 1d criterion 198 

(i.e. observed at least once during April to June), naturally, the number of species considered 199 

as present decreased markedly (30% and 50% depending on the continuity criterion) when 200 

the species needed to occupy the site at least 20 days during the same time period (Fig. 3). 201 

Further increasing the restrictions on number of days present also reduced the number of 202 

species but less dramatically so (Fig. 3). Similarly, estimates under the continuous criterion 203 

(i.e. presences during consecutive days) were at least 20% lower than estimates under the 204 

spread criterion (i.e. presence on a given number of days in any sequence during a time 205 

period).  206 

 207 

 208 
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Sensitivity of estimated richness to sampling effort (number of visits and sampled area) 209 

As expected, more visits resulted in greater observed and estimated species richness. In 210 

comparison to observed richness this effect was, however, widely reduced on richness 211 

estimates from the occupancy models (Fig. 4), with the estimated rate of increase in richness 212 

per added visit ranging between only 1.8% (p > 0.05) for S1d and 6.3% (p < 0.01) for S45d 213 

(Table S1). We also found a positive effect of sampled area on estimated richness, but only 214 

when richness was based on primary observations or the stricter 30 and 45 day criteria (S30d 215 

and S45d). However, adding sampled area to a model already accounting for the effect of 216 

number of visits did not improve the model fit (Table S1).  217 

 218 

Discussion 219 

Occupancy models, under the right circumstances, allow correcting for detection errors and 220 

predicting occupancy using presence-only data more precisely and presumably in a less 221 

biased way than other modelling techniques (Kéry & Royle, 2008; Dubuis et al., 2011). 222 

However, occupancy models to estimate occupancy of breeding populations typically assume 223 

closure periods over the whole breeding season, neglecting effects of phenology and 224 

migration behaviour on the presence of species and hence occupancy probabilities across the 225 

season (Ruete et al., 2017). For mobile species, assuming closure periods over the whole 226 

breeding season will also include species that are only passing by either during migration or 227 

during distant foraging trips. By making use of a large number of opportunistic observations 228 

spread out during the breeding season and specifically modelling the daily variability in 229 

occupancy probabilities for 77 wetland bird species at 107 sites, we were able to use different 230 

criteria for including species in each local species lists which allows to distinguish between 231 

species according to their phenology and migration behaviour. Here, we suggest using 232 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3077v1 | CC BY 4.0 Open Access | rec: 7 Jul 2017, publ: 7 Jul 2017



11 
 

corrected occupancy data with high-temporal resolution together with biologically reasonable 233 

criteria to appropriately filter local species lists as the initial step before further analysing 234 

spatial and temporal patterns of species diversity.  235 

An important question then is: What richness estimate to use in a given study. Here we 236 

compared i) daily species richness (Sday), ii) the average number of species daily co-occurring 237 

at a site over a chosen period (here month and season, Smean), and iii) species richness where 238 

species are filtered based on criteria for presence (S1d - S45d), i.e. the number of days a species 239 

is required to be present at a site to be considered present in the season (here we chose 1, 20, 240 

30 and 45 days). Richness estimated by summarising means of daily probabilities of 241 

occupancy (Smean) describes the average site use of the whole bird community over time, that 242 

is, how many species are expected to share a site at a given time (day). However, since in this 243 

approach species richness is the results of added occupancy probabilities, the species actually 244 

being present cannot be identified and hence does not allow constructing local species lists or 245 

separating between species with different phenologies and behaviours (e.g. species passing 246 

by). Consider the case of three species with an occupancy probability across the period pij
mean 247 

= 0.27. These species may contribute equally little to the estimated richness Smean. However, 248 

species 1 has a constant daily occupancy probability pdij = 0.27 across the season, species 2 249 

has a low pdij = 0.1 during the first 70 days but pdij = 0.9 during the last 20 days, while species 250 

3 is likely present on 20 random days with pdij = 0.9 and most likely absent the rest of the 251 

days with pdij = 0.1. Biological criteria are needed to decide about the inclusion of a species, 252 

e.g. species most likely attempting to breed at a site. For example, one may want to use 253 

restrictive criteria as e.g. required presence during at least 45 days, to estimate the richness of 254 

species only using the site regularly during the breeding season (thus filtering out species 255 

passing by). 256 
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Richness estimates using a permissive criterion e.g. S1d (i.e. species observed at least once 257 

during the time period) result in complete lists of species that could be observed at a site, 258 

including species using the site only temporary (e.g. passer-by and vagrant species). Cases 259 

where the inclusion of such species is of interest are surveys of e.g. stop-over sites or 260 

communities where species occur with rapid succession within a season and some ephemeral 261 

species are observable only during very short periods of time (e.g. algae, insects or vascular 262 

plants; Southwood et al., 1979; Bond et al., 1984; Berntsson & Jonsson, 2003; Whalen et al., 263 

2016). Then, using a permissive criterion will produce estimates of richness that are more 264 

suitable to understand the composition of those communities. However, in cases where the 265 

interest is the breeding community of migrant species more restrictive criteria are to define 266 

the presence of each species. 267 

Different criteria need, however, to be chosen with care. Using continuous-presence criteria 268 

resulted in lower estimated richness compared to the spread-presence criteria (Fig. 3) 269 

indicating that there is a substantial group of vagrant species or species having large home 270 

ranges and thus being likely temporarily missing at a site. On the other hand, when 271 

continuous sequences of species presence may not be correctly identified, spread-presence 272 

criteria may safeguard from uncertainties in the occupancy model (e.g. due to very low 273 

detection probabilities; see Table S2: many of the 77 wetland species had low detection 274 

probabilities).   275 

As expected, the variability in richness among sites increased when increasing the restrictions 276 

of inclusion of species in local lists (Fig. 3), highlight the differences between sites (Ruete et 277 

al., 2017). Thus, this approach could improve the explanatory power of environmental 278 

variables describing the site use and breeding habitat selection reducing the risk of over- and 279 

underprediction error of predictive models (Calabrese et al., 2014; Zurell et al., 2016).  280 
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Although the number of visits at a site had strong positive effect on the number of species 281 

observed, when correcting for variability in the detection probability by occupancy models, 282 

the number of visits were only marginally positively associated with estimated species 283 

richness (Fig. 4). Given that richer sites may attract more voluntary observers the remaining 284 

effect of sampling effort (i.e. number visits) may be correlational and not strictly causal. 285 

These results suggest that occupancy models are robust for estimating richness compared to 286 

approaches using primary observational data, supporting the findings of Isaac et al. (2014). 287 

 288 

Conclusion 289 

We show how species presence can be defined in several ways when exploring species 290 

observation data at high temporal resolution, and how derived biodiversity variables, like 291 

estimates of species richness, are sensitive to it. In light of the results presented here, we 292 

suggest that the following questions should be considered when using species observations to 293 

define species presence: 1) how likely is it for different species to violate the closure 294 

assumption? That is, e.g. what possible dynamics in the species presence may be relevant to 295 

include in the occupancy model that is not captured by a assumed closure period of three or 296 

four months? 2) How relevant is the inclusion of e.g. vagrant species? That is, what richness 297 

(e.g. daily site use or seasonal maximum) is of interest? When the aim is to estimate the 298 

complete lists of species that could be visiting sites, even those occurring briefly, and if 299 

multiple observations per day are common we suggest to use S1d. When the aim is to estimate 300 

the number of breeding species we suggest more restrictive approaches (such as S45d or S20dC). 301 

When the main interest is in summarising expected number of species simultaneously using 302 

the site then averages, such as Smean, are recommended. Following those decisions, the 303 

filtered estimates of local species richness produced can be analysed using macroecological 304 
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models (Dubuis et al., 2011; Guisan & Rahbek, 2011). Alternatively, the presence criteria 305 

filters could be used per species if the intention is to stack species-specific distribution 306 

models either independently (Calabrese et al., 2014) or integrated in multispecies occupancy 307 

models (MSOMs; Dorazio et al., 2006; Iknayan et al., 2014). In case local species lists are 308 

required for further analysis, e.g. community similarity indices or diversity of functional 309 

traits, criteria-based approaches (e.g. S1d - S45d) could be used. Then, bootstrapping 310 

techniques are recommended in order to account for and propagate the model uncertainty.  311 

Given that opportunistic species observations are accumulating at a high rate in biodiversity 312 

databases (especially for birds; Graham et al., 2004; Amano et al., 2016) and the potential of 313 

these data continues to be uncover (Tulloch et al., 2013; Theobald et al., 2015; Ruete et al., 314 

2017), we envision that methods like the ones presented here will become more and more 315 

common.  316 
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Table 1: Number of days present and the temporal continuity of presences (over consecutive 402 

or spread days) required for the seven different estimates of species richness over the season.  403 

Continuity Number of days required to be present 

1 20 30 45 

Spread S1d S20d S30d S45d 

Consecutive (C)  S20dC S30dC S45dC 

 404 
  405 
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 406 

Figure 1. Diagram of the summarizing procedures for daily estimates of occupancy 407 

probabilities and status obtained from Ruete et. al. (2017). The dimensions described in these 408 

summaries are species (i; I = 77), days (d; D = 90 for season or D = 30 for months), sites (j; J 409 

= 107) and monitored MCMC replicates (n; N = 2000). pij
mean = mean period-specific 410 

occupancy probabilities (e.g. 90 days season or April); Sj
mean = mean period-specific species 411 

richness, Sjd
day = daily species richness. 20d = 20 spread days criterion, 20dC = 20 412 

consecutive days criterion. Oijn = inclusion parameter, i.e. fulfilment of a given criterion. pij
45d 413 

= occupancy probability given the fulfilment of a given criterion (e.g. 45d). 414 

  415 
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    416 

Figure 2. Observed and estimated (daily Sday, mean period Smean and criterion-based S1d) 417 

species richness. Boxplots summarize species richness across all (wetland) sites. Dashed 418 

vertical lines divide months. 419 
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  421 

 Figure 3. Species richness estimates for the 2014 breeding season (April - June), as a 422 

function of number of days and spread of these days (continuous vs spread days) required for 423 

inclusion of a species in the richness estimates. The seasonal mean richness estimate (Smean) is 424 

included for comparison. 425 
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  427 

Figure 4. Effect of number of visits (sampling effort) on observed and estimated richness for 428 

different number of required days during April to June (1, 20, 30 or 45 days, either spread S1d 429 

- 45d, or continuous S20dC - 45dC) for species classified to be present at a site. Solid, dotted and 430 

dashed lines show the effect of number of visits on observed species richness, and estimated 431 

species richness under the spread and continuous estimates of local species richness, 432 

respectively.  433 
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