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Abstract: The outstanding biodiversity found in the American tropics (the Neotropics) has attracted the 45 

attention of naturalists for centuries. Despite major advances in the generation of biodiversity data, many 46 

questions remain to be answered. In this review, we first summarize some of the knowns and unknowns 47 

about Neotropical biodiversity, and discuss how human impact may have drastically affected some of the 48 

patterns observed today. We then link biodiversity to landscape, and outline major advances in 49 

biogeographical research. In particular, we argue that it is crucial to test the effect of landscape and 50 

climatic evolution to biotic diversification and distribution in order to achieve a comprehensive 51 

understanding of current patterns. In this context, it is also important to consider extant and extinct taxa, 52 

as well as to use probabilistic and parametric methods that explicitly include landscape evolution models. 53 

We subsequently explore different scales in Neotropical biogeography, focusing on the intersection 54 

between biogeography and community ecology, both of which often address similar questions from 55 

different angles. The concepts of community assembly, island biogeography, neutral processes, and 56 

ecological interactions are then discussed as important components of the complex processes that 57 

determine the patterns observed today. Single-taxon and cross-taxonomic studies are complementary and 58 

greatly needed, but achieving synthesis remains challenging. Finally, we argue that phylogenetic 59 

approaches hold great potential to connect across taxonomic, spatial and temporal scales, despite current 60 

difficulties to generate and cross-analyze large volumes of molecular data. We conclude by outlining 61 

major prospects and hindrances for further advancing our knowledge on the rich Neotropical biodiversity. 62 

 63 

Keywords: biogeography, biotic diversification, community ecology, human impact, landscape 64 

evolution, phylogeny, scale, spatio-temporal evolution. 65 
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I. WHAT DO WE KNOW ABOUT PATTERNS OF NEOTROPICAL BIODIVERSITY? 66 

 67 

Biodiversity refers to the diversity of life across all levels of biological organization (Gaston & Spicer, 68 

2004). The diversity of life is unevenly distributed on Earth and varies among and within geographic 69 

regions, between terrestrial and aquatic ecosystems, and among different groups of organisms. 70 

Biodiversity increases from the poles to the equator, reaching the highest values in tropical regions, a 71 

pattern termed the latitudinal diversity gradient (Willig, Kaufman & Stevens, 2003). This pattern is 72 

complex though, with numerous non-diverse tropical or diverse non-tropical areas and taxa. More 73 

importantly, there are still numerous uncertainties in the underlying data and in our ability to generalize 74 

overall patterns and identify their main determinants. 75 

 76 

For many groups of organisms, the Neotropics are home to outstandingly high levels of biodiversity, 77 

when compared to other major biotic realms (Lundberg et al., 2000a; Antonelli & Sanmartín, 2011). This 78 

region, extending from central Mexico to central Argentina and including the Caribbean islands 79 

(Morrone, 2013), contains a vast range of biomes and habitat types, each with a particular biota and 80 

evolutionary history (Hughes, Pennington & Antonelli, 2013) (Fig. 1). As such, understanding 81 

Neotropical biodiversity patterns and the processes associated with its origin and maintenance is complex 82 

(Magurran, 2013). As result, researchers tend to focus on different aspects of biodiversity such as 83 

taxonomic, phylogenetic, and functional diversity (Swenson, 2011). Each of these aspects of biodiversity 84 

may vary differently among regions and taxa, and each must therefore be assessed by independent criteria 85 

(Strecker et al., 2011). 86 

 87 

Taxonomic diversity 88 

Taxonomic diversity refers to how many taxa can be found within a given area or higher clade, and how 89 

individuals are distributed among these taxa. Taxonomic diversity can be quantified at different 90 

taxonomic ranks (e.g., species, genera, families), with the species rank being the most popular by far. 91 
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Species richness – the number of distinct evolutionary lineages – is widely viewed as a fundamental 92 

measure of overall biodiversity (Gotelli & Colwell, 2001). This is due to the fact that the species 93 

boundary defines the limits of genetic variation, natural selection, and adaptation (Sexton et al., 2009). 94 

While individual organisms live and die, the stable phenotypes recognized as species may persist for 95 

millions of years, serving as predictable components of the ecosystems in which all species function and 96 

evolve (Eldredge, 2014). As result, species are thought to constitute the basic structural and functional 97 

units in ecology and evolution (Tilman & Downing, 1996; Worm et al., 2006). 98 

 99 

Generic and family-level taxonomic ranks are occasionally used in comparative studies, especially when 100 

species identification or delimitation is difficult (Bertrand, Pleijel & Rouse, 2006). However, higher-level 101 

taxa are only arbitrary constructs, reflecting little biological organization and incorporating further biases 102 

and artifacts when compared. Species are thus seen as the “fundamental category of biological 103 

organization” despite the multitude of species definitions available (de Queiroz, 2005). Taxonomic 104 

diversity is generally measured by taxon richness, i.e., the number of taxa in a given area. However, 105 

diversity indices (e.g., Brillouin, Shannon-Wiener, and Simpson Index) that take the relative abundances 106 

of taxa into account can also be used. These indices allow us to distinguish habitats with the same species 107 

richness but different degrees of dominance. Because quantitative abundance data are so rare, few studies 108 

to date have documented patterns of diversity in the Neotropics (but see Tuomisto, 2010; Valdujo, 109 

Carnaval & Graham, 2013; Steege et al., 2013; Jenkins et al., 2015; Moura et al., 2016; Azevedo, Valdujo 110 

& C Nogueira, 2016). 111 

 112 

For well-studied clades, relatively good estimates of taxonomic diversity are available for the Neotropics 113 

as a whole, and for each of the major biomes included therein. These estimates have been used to identify 114 

the best predictors of diversity at large scales (Jenkins et al., 2015; Moura et al., 2016). However, the 115 

observed taxonomic diversity is sensitive to sampling effort. For the Neotropics, taxonomic diversity is 116 
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generally underestimated, even though the level of sampling across taxa is comparable or even greater 117 

than in other tropical regions (Fig. 2). 118 

 119 

For example, in a few years of increased collection efforts, the Guide of the Ducke Reserve (Brazil) (da S 120 

Ribeiro, 1999), which covers one of the most thoroughly studied areas of Amazonian forest, increased the 121 

number of known vascular plants from 825 (Prance, 1990) to 2079 (Hopkins, 2005). Unless sampling is 122 

thorough at a given site, species richness of any community will always be underestimated. The accuracy 123 

of estimates of taxonomic diversity depends on the number of individuals sampled, the size of the local 124 

species pool, the size of the area, and the status of taxonomic knowledge of the groups surveyed (e.g., 125 

Tuomisto, Ruokolainen & Ruokolainen, 2012). 126 

 127 

Even among Neotropical vertebrates, several examples of species-rich yet incompletely- documented 128 

fauna are available, including large clades of freshwater fishes, amphibians, and some groups of reptiles. 129 

Although about 5,600 species of freshwater fishes are currently known in the Amazon, the Orinoco, and 130 

adjacent river basins of tropical South and Central America, more than 100 new species are described 131 

every year. In other words, approximately two new species are described per week, although a higher 132 

number of new species would be expected if a greater amount of trained taxonomists were available. This 133 

rapid pace of species description is not slowing, and recent estimates for the total number of Neotropical 134 

freshwater fishes exceed 8,000 species (Reis et al., 2016). This estimate is remarkable, implying that 135 

more than 2,400 fish species remain to be described in the Neotropics alone, a number that exceeds the 136 

combined number of rodent species currently known on Earth. This large number of expected, but still 137 

hidden, lineages represents an example of the unknown unknowns of Neotropical biodiversity.  138 

 139 

Current knowledge of taxonomic limits of Neotropical amphibians and reptiles is gradually growing. 140 

Several molecular studies have shown that known diversity is underestimated in many taxonomic orders 141 

by the occurrence of high levels of cryptic diversity, i.e., the existence of two or more lineages within a 142 
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known species (Bickford et al., 2007; Fouquet et al., 2012) to 350% in some groups (Funk, Caminer & 143 

Ron, 2011). Even in the much more densely sampled and well-studied Atlantic Rainforest of Brazil, 144 

charismatic species of frogs are still being discovered. For instance, seven new species of Brachycephalus 145 

were recently described for the Atlantic Rainforest (Ribeiro et al., 2015). Likewise, intraspecific analyses 146 

of Neotropical lizards show that the occurrence of cryptic diversity is often manifested across biomes 147 

(Geurgas & Rodrigues, 2010; Domingos et al., 2014; Guarnizo et al., 2016; Domingos et al., 2017). This 148 

subdivision of broadly distributed taxa into multiple cryptic species with restricted geographic 149 

distributions increases the perception of biological diversity of a given region, as well as has numerous 150 

implications for biogeography (Werneck et al., 2012a), and conservation (Simões et al., 2014). 151 

 152 

Estimates of local taxonomic diversity can be more accurately compared among areas when based on 153 

quantitative and standardized sampling such as metrics of beta diversity, i.e., changes in species 154 

composition among sites (Tuomisto, 2010; Leprieur et al., 2011). However, this data is only available for 155 

organisms whose taxonomy is relatively well understood, such as vascular plants (e.g., trees, ferns), and 156 

some vertebrates (e.g., birds, primates). For these same organisms, we also have a general understanding 157 

about species richness gradients (e.g., Rosauer & Jetz, 2014). For most other organisms, however, little 158 

data are available, preventing accurate circumscriptions of taxa and reasonable estimates of species 159 

richness gradients (e.g., Andújar et al., 2015). Indeed, the smaller and less conspicuous the organism, the 160 

poorer the state of knowledge. For instance, very little is known about microbial and fungal diversity, and 161 

insect diversity is similarly under studied (Basset et al., 2012). 162 

 163 

Another difficulty in assessing taxonomic diversity is associated with the fact that taxa may not represent 164 

comparable units. In organisms for which we have a good understanding of distribution patterns, 165 

morphological variation, and phylogenetic relationships, more narrowly defined taxa may be recognized. 166 

On the other hand, in poorly-studied organisms, species complexes are generally circumscribed as 167 

broadly defined taxa, biasing diversity estimates. Similarly, in well-sampled areas, species are likely to be 168 
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more narrowly defined than those from poorly-known areas. As result, our understanding of taxonomic 169 

diversity and species gradients is biased by our taxonomic knowledge (Brito, 2010). Taxonomic units 170 

may also vary according to the taxonomist revising a particular group (e.g., whether a ‘splitter’ or a 171 

‘lumper’), and by the data and methodologies underlying taxonomic revisions and species 172 

circumscriptions. This issue becomes obvious when taxonomic treatments of the same group are produced 173 

by different researchers independently. For example, the Neotropical palm genus Attalea included 29 174 

species in one monograph (Henderson & Chávez, 1995), and 65 species in another taxonomic treatment 175 

published just four years later (Glassman, 1999). Similarly, the Caribbean palm genus Coccothrinax 176 

included 14 species in one taxonomic treatment (Henderson, Galeano & Bernal, 1995) and 53 species in 177 

another (Dransfield et al., 2008). 178 

 179 

The commonness of rarity. Species with low abundances and narrow geographic ranges, as well as those 180 

confined to special habits, habitats or areas, represent a sizable portion of tropical diversity. Indeed, a 181 

recent study extrapolating population size for Amazonian trees suggests that most species in the region 182 

are represented by relatively few individuals (Steege et al., 2013). Another study suggests that a 183 

considerable fraction of the rare species in the region may actually have relatively large distribution 184 

ranges (Zizka et al., 2017), although many apparently widespread species known from very few scattered 185 

records may easily turn out to contain multiple biological species. However, the characteristics of these 186 

species and their contributions to diversity patterns are difficult to quantify and remain largely obscure 187 

(Coddington et al., 2009), partly because most truly rare species will be completely unknown, and partly 188 

because rareness in the ecological sense is hard to define, depending on a variety of aspects, including the 189 

species concept adopted and the taxonomic preferences. 190 

 191 

As in others biotas, most Neotropical species are rare, narrowly distributed, and endemic to particular 192 

regions or biomes (Steege et al., 2016). Plant endemism seems to be largely related to edaphic conditions, 193 

although few studies have attempted to empirically quantify factors that cause range restrictions to 194 
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particular regions (Ficetola, Mazel & Thuiller, 2017). The geographic distributions of many riverine and 195 

floodplain taxa are limited by river basin watersheds, and opportunities for dispersal via river capture 196 

events (Albert et al., 2017). Climate change velocity is also thought to be associated with restricted 197 

distribution patterns. In other words, how fast a species can expand into similar climatic conditions, can 198 

affect the species’ range. For instance, most vertebrates with small ranges are restricted to areas of higher 199 

climatic stability and/or mountainous areas (Sandel et al., 2011). Patterns of endemism may, however, be 200 

one of the most difficult things to document given our limited sampling of biodiversity. It is not enough to 201 

know where particular species occur, we also need to know where these species do not occur (Soria-Auza 202 

& Kessler, 2008). It is, therefore, difficult to reliably say if the biodiversity patterns known to date really 203 

reflect true patterns or simple biases in collection effort. 204 

 205 

Additional biases and gaps. For most of the Neotropics, detailed geographical distribution information is 206 

restricted to certain well-studied taxa (e.g., primates) and well-studied areas (e.g., Barro Colorado Island 207 

in Panama, the Ducke Reserve in Brazil). Interestingly, there is also a bias towards rare species, as most 208 

scientific collectors tend to over-collect rare or uncommon taxa (Steege et al., 2011). For the vast 209 

majority of groups and areas, knowledge is still scarce. For instance, many places in tropical South 210 

America have no occurrence records available (Feeley, 2015). Furthermore, particular large areas of 211 

Amazonia remain completely unexplored (Hopkins, 2005; Guedes et al., In press). In general, knowledge 212 

of species distributions and diversity patterns are strongly biased towards areas that are more easily 213 

accessible by roads, rivers, and research stations (Hopkins, 2005; Albert & Carvalho, 2011; Meyer et al., 214 

2015). Although bioinformatic solutions may now assist in cleaning, predicting and validating species 215 

occurrence data, taxonomic expertise is still essential but limited (Maldonado et al., 2015; Töpel et al., 216 

2016). As a result of our limited knowledge on species distributions patterns, and large gaps in knowledge 217 

about climatic and edaphic conditions for large portions of the Neotropics, the ecological requirements for 218 

species remain only roughly or even completely unknown for most taxa. 219 

 220 
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Phylogenetic diversity 221 

Phylogenetic diversity assesses cumulative evolutionary distinctiveness within and among areas and taxa. 222 

The use of species as universally comparable units may not always be appropriate due to differences in 223 

species concepts, operational criteria of delimitation, and circumscriptions among areas, taxa, and 224 

taxonomists. In addition, species differ widely in their evolutionary ages, geographic distributions, habitat 225 

tolerances, and degree of genetic structure. Species also differ in the biological attributes of their 226 

constituent organisms, and therefore, in the effects that these traits may have on ecological and 227 

evolutionary processes. Furthermore, species are really just the tips of larger phylogenetic trees evolving 228 

through time. Some Neotropical clades are known from just one or a few species that may represent 229 

relictual survivors of ancient and extinct groups. Examples include the leaf cacti (Pereskia spp; 230 

Cactaceae), the South American lungfish (Lepidosiren paradoxa; Lepidosirenidae), the hoatzin 231 

(Opisthocomus hoazin; Opisthocomidae), and the coral pipe snake (Anilius scytale; Aniliidae). Other 232 

species are members of species-rich Neotropical clades still in the full bloom of their diversification, like 233 

the Bignoniaceae with more than 860 species (Fischer, Theisen & Lohmann, 2004), palms with over 730 234 

species (Dransfield et al., 2008), armoured catfishes (Loricariidae) with 680 species (Nelson & Platnick, 235 

1980a), Cactaceae with 1400 species (Hernández-Ledesma et al., 2015), and tanagers (Thraupidae) with 236 

371 species (Burns et al., 2014). To cope with the differences in diversity among different taxa, many 237 

researchers have turned their attention to Phylogenetic Diversity (PD) indices (Faith, 1992). 238 

  239 

The basic idea of PD is to measure the total amount of lineage evolution through time found in a 240 

particular area (Faith, 1992). Overall, PD has been shown to provide a better estimate of “feature 241 

diversity” than species richness alone (Forest et al., 2007). However, there are many ways of deriving and 242 

applying such metrics from phylogenies. As such, researchers should try to choose the most appropriate 243 

index for each situation, as well as should acknowledge these differences in cross-taxonomic comparisons 244 

(Tucker et al., 2016). 245 

 246 
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The evolutionary relationships among major groups of macroscopic organisms (i.e., up to family level) 247 

are relatively well understood (e.g., Meredith et al., 2011). Recent efforts to understand the global tree of 248 

life have improved substantially our understanding of relationships among genera and species (Hinchliff 249 

et al., 2015). For instance, recent phylogenies of birds (Jetz et al., 2012), mammals (Faurby & Svenning, 250 

2015a) and squamate reptiles (i.e., lizards and snakes) (Tonini et al., 2016) purport to include all living 251 

species. However, a substantial fraction of the species included in these studies was placed within the 252 

phylogeny solely based on morphological features due to the lack of genetic data. This is especially 253 

common for tropical species, for which genetic data is even more limited (Reddy, 2014). In contrast, other 254 

phylogenies have been built exclusively from genetic data, such as the seed plant phylogeny for ca. 255 

32,000 species (Zanne et al., 2014) and the Neotropical tree phylogeny (Dexter & Chave, 2016). While 256 

this approach eliminates incorrect phylogenetic placements based on morphology, it creates biases given 257 

the limited genetic data available for tropical species (Antonelli et al., 2015). More detailed knowledge on 258 

evolutionary relationships is available for selected groups of vascular plants, e.g., ferns (Lehtonen, 2011), 259 

Bignoniaceae (Lohmann, 2006; Grose & Olmstead, 2007; Olmstead et al., 2009), Orchidaceae (Chase, 260 

2003), legumes (Azani et al., 2017) and Cactaceae (Hernández-Ledesma et al., 2015). 261 

 262 

The first trials to map phylogenetic diversity over continental and global scales were conducted for 263 

selected vertebrate groups for which phylogenies were available and for which distribution patterns are 264 

relatively well known, such as amphibians, birds, and mammals (e.g., Safi et al., 2011). Other than these, 265 

large-scale phylogenetic and functional diversity studies in the Neotropics are scarce. Some progress has 266 

been made in mapping phylogenetic diversity patterns in the Neotropics for specific clades (Rossatto, 267 

2014; Fenker et al., 2014; Bacon et al., In press) or at the intraspecific level in the search for areas of high 268 

phylogeographic diversity and endemism (Carnaval et al., 2014; Smith et al., 2017). Several ongoing 269 

studies by independent research groups are now working to broaden our knowledge on the spatial 270 

distribution of Neotropical phylogenetic diversity. 271 

 272 
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Complementary to phylogenetic diversity based on the relationships among taxa, patterns of genetic 273 

variation within species also represent a vital but often under-appreciated component of biodiversity. 274 

Knowledge of intraspecific genetic variation may also improve the prediction of a species ability to adapt 275 

to changing climates, as well as can improve the understanding of the determinants of speciation. This 276 

type of information is particularly important in the light of global warming. However, our current 277 

knowledge of species genetic diversity is restricted to a few selected species, and overall patterns of 278 

intraspecific genetic diversity remain poorly understood. Even among well-studied groups (e.g., 279 

mammals), spatial patterns of genetic diversity are effectively unknown within the tropics. In one study 280 

addressing this question at a broad spatial scale (Miraldo et al., 2016), found higher genetic diversity at 281 

lower latitudes, and lower genetic diversity in Europe. However, no clear pattern was recovered within 282 

the tropics. 283 

 284 

A massive increase in the availability of genetic information is being driven by high throughput 285 

sequencing technologies. This data accumulation is likely to significantly improve our understanding of 286 

genetic diversity and evolutionary relationships amongst species (e.g., Chakrabarty et al., In press). 287 

Furthermore, this data will also greatly improve our understanding of largely under-studied groups, such 288 

as soil microbes (Mahé et al., 2017). However, a central challenge to understanding current patterns of 289 

evolutionary diversity is the absolute dating of phylogenies, which relies heavily on fossils. Fossils are 290 

rare and poorly explored and studied in tropical areas, complicating a detailed understanding of the ages 291 

of tropical taxa, especially those from rainforests (Wing et al., 2009; Lovejoy, Willis & Albert, 2011). It 292 

is therefore crucial that more efforts are put into the exploration, digitization, and analyses of the 293 

Neotropical fossil record, in addition to further exploration and sampling of living species. 294 

  295 

Functional diversity 296 

Functional diversity measures differences in the physiological, behavioral, and ecological characteristics 297 

of organisms, and how biological trait values affect ecological and evolutionary processes. Knowledge 298 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3074v1 | CC BY 4.0 Open Access | rec: 6 Jul 2017, publ: 6 Jul 2017



 
 

 
Antonelli et al: Neotropical biodiversity 

Page 13 

about species traits and ecological functions (including the variation within and between species) is a 299 

crucial component of biodiversity. However, this is one of the major shortcomings in current biodiversity 300 

knowledge, especially in tropical areas. Few studies to date have mapped large-scale patterns of 301 

functional diversity, although efforts in this direction are underway (see for fishes e.g., Arbour & L pez-302 

Fern ndez, 2014; Toussaint et al., 2016). 303 

 304 

Apart from the lack of data, the theory behind functional diversity is not yet consolidated. We still do not 305 

know which traits are important for different groups, how to compare traits for different sets of 306 

organisms, and how functional diversity affects forest productivity, stability, and resilience, especially in 307 

the tropics. An additional shortcoming is associated with biotic interactions. Apart from basic information 308 

on pollination and dispersal syndromes, we know surprisingly little about biotic interactions. Very few 309 

species interaction networks are available to date (see Toju et al., 2017). 310 

 311 

For the terrestrial vertebrate groups studied to date, patterns of phylogenetic diversity and species richness 312 

seem to be correlated at a global scale, generally supporting the assumption of the surrogacy of various 313 

measures (but see Pardo et al., 2016). At least for birds and mammals, global patterns of phylogenetic and 314 

functional diversity seem to be comparable (Safi et al., 2011).  315 

 316 

The human impact on biodiversity  317 

Even through knowledge of contemporary patterns of biodiversity has improved substantially during the 318 

past years, it is still unclear whether the documented patterns are derived from natural processes or driven 319 

by human influences. Humans have occupied the Neotropics at least since the end of the Late Pleistocene 320 

and likely caused major extinctions in the diverse fauna of large mammals (Sandom et al., 2014). The 321 

drastic decrease in the density and diversity of large mammals likely led to major changes in overall 322 

vegetation structure (Bond, 2005). For example, in South America, the limits between the Dry Diagonal 323 

and the adjacent forests may have shifted significantly compared to where they would have been without 324 
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any human involvement and its cascading effects (Doughty, Faurby & Svenning, 2015). In addition to 325 

anthropogenic extinctions, humans likely also caused drastic range contractions of many other species 326 

while reduced the abundance of others to the point of ecological irrelevance (Faurby & Svenning, 2015b).  327 

The human-linked reduction in Neotropical megafauna likely also affected the plants that they dispersed. 328 

This pattern was recently discussed in the context of the impact of over-hunting of primates and tapirs on 329 

the total woody biomass of Amazonia (Peres et al., 2016), and large frugivorous in the Atlantic Forest 330 

(Bello et al., 2015). Overall, it seems that the patterns observed reflect past hunting. Humans have 331 

restricted the ranges of some species, but actively or passively increased the ranges of others, such as 332 

invasives or domesticated species (Levis et al., 2017). The knowledge to date is based on the best-studied 333 

groups and still it is not clear whether substantial effects of humans will be frequent among other 334 

organisms. Clearly, we are observing just the tip of the iceberg. 335 

 336 

Apart from the effects of past human activity for the assembly of Neotropical biodiversity, current habitat 337 

loss, climate change and neglected conservation strategies also pose serious threats to natural landscapes. 338 

Indeed, these are presumably the primary drivers of the current global biodiversity crisis. Studies that 339 

quantify genetic diversity, vulnerability, and extinction risk derived from the impact of habitat loss and 340 

climate change are essential to grasp how current human activities are expected to impact the future of 341 

Neotropical diversity at multiple levels. Although we now have a fair understanding of several 342 

components of Neotropical biodiversity, for many taxonomic groups, well-defined processes remain 343 

elusive and biases loom large; refining these issues will constitute an area of active scientific exploration 344 

for the next decade and beyond (Table 1).  345 

 346 

II. BIOGEOGRAPHIC ADVANCES LINKING BIODIVERSITY AND LANDSCAPES  347 

 348 

Early ideas about Neotropical biogeography 349 
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The Prussian naturalist Alexander von Humboldt was among the first to realize that biotic and abiotic 350 

processes work together to constrain species distributions, and to place these influences into a geological 351 

framework. He came to this notion in the Neotropics, most famously during his study of the Chimborazo 352 

volcano in Ecuador, where he carefully documented the location of different species along elevational 353 

zones (Humboldt & Bonpland, 2010). It was in this study that he first observed that physical parameters 354 

such as topography and climate were key for floral distributions (Humboldt & Bonpland, 2010). 355 

  356 

A century later, Wegener (1912) advanced the incipient field of historical biogeography with the theory of 357 

continental drift, based in part on past geographic distributions of biotas linked by previously connected 358 

continental plates. The striking fit between the coastlines of South America and Africa was one of the 359 

pieces of evidence inspiring Wegener’s theory of dynamic, non-static landmasses. In the 1960s, a 360 

geophysical mechanism for plate tectonics was proposed (Vine & Matthews, 1963; Raven & Axelrod, 361 

1974; Rosen, 1975), placing studies of plant and freshwater fish biogeography into a plate tectonic 362 

framework. This provided historical biogeography a solid basis for further advancement. 363 

 364 

Inferring landscape evolution in the Neotropics 365 

Now, early in the 21st century, the field of historical biogeography increasingly relies on geological 366 

models that specify the landscape configurations on which species originate, disperse, and go extinct. 367 

This is especially true in the Neotropics, where understanding phylogeny and biogeography in the context 368 

of landscape evolution requires assessment of geological data, including sedimentary environments, 369 

sedimentation rates, paleontological records, and fission track ages, among others (e.g., Hoorn et al., 370 

1995; Lundberg et al., 2000b; Figueiredo et al., 2009; Hoorn et al., 2010; Sanín et al., 2016; Jaramillo et 371 

al., 2017; Hoorn et al., 2017). 372 

  373 

Some recent reconstructions of the Neogene landscape in Amazonia are based on numerical modelling, 374 

which create reconstructions based on physical parameters such as erosion and mountain uplift. These 375 
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reconstructions are useful but often depend on arbitrary and artificial values. An example is the 376 

reconstruction of the Amazon River where Sacek, 2014 coupled different physical effects derived from 377 

the Andes uplift in a mathematical model to explain the drainage reversal in the Miocene (Sacek, 2014). 378 

However, this study ignores the synergic effects of plate movement and surface dynamics which are 379 

known to have an impact in wetland formation. Other landscape models rely on dynamic topography, in 380 

which mantle movements through time are quantified. The effects of these movements are estimated on 381 

surface subsidence and are then related to environmental and landscape changes, such as the model 382 

applied to explain the genesis of the Pebas wetland in western Amazonia (Hoorn, Wesselingh & 383 

Hovikoski, 2010) which reveals the origin of wetlands trough Amazonia. Landscape models are also 384 

extremely useful but also lack specificity. Biological data can also help improve landscape models. In 385 

recent years, integrated approaches have built landscape evolution models based on both geological and 386 

biodiversity data (Craw et al., 2016; Badgley et al., 2017). Some studies make use of geographic 387 

information systems (GIS) and combine these with well-dated palynological databases, such as Neotoma 388 

(https://www.neotomadb.org/). These models are mainly applied to reconstruct landscapes across the 389 

Quaternary timescale. For example, reconstruction of changes in connectivity across the northern Andes 390 

enabled the inference of cyclic phases of biotic dispersal and speciation versus extinction (Flantua & 391 

Hooghiemstra, 2014). Molecular phylogenetic data can also be used to statistically evaluate the likelihood 392 

of competing geological models, such as the closure of the Central American Seaway dividing South and 393 

Central America (Bacon, 2013), and the roles of the Caribbean plate margins as dispersal corridors 394 

between South and Central America (Tagliacollo et al., 2015a). Similar approaches may prove useful in 395 

several cases where geological data are insufficient or ambiguous (Baker & Couvreur, 2013). 396 

 397 

Effects of landscape and climatic evolution on Neotropical diversification 398 

Given the sheer size of the Neotropical region, Neotropical biogeography and biodiversity can only 399 

properly be understood when considering the Andean uplift and the effects of this orogeny on the 400 

landscape (Fig. 3), and regional climate (Gentry, 1982; Hoorn et al., 2010). The 7,000 km long Andes is 401 
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strategically positioned perpendicular to the principal global atmospheric currents and traps the humid air 402 

of the Intertropical Convergence Zone (ITCZ). This configuration enhances precipitation along the 403 

Andean slopes and in western Amazonia, making them wetter than they would be in a low Andes setting. 404 

Moreover, the high Andes also redirects the atmospheric flow inducing the southward deflected South 405 

American Low-Level Jet (Garreaud et al., 2005; Insel, Poulsen & Ehlers, 2010; Rohrmann et al., 2016). 406 

 407 

The situation is reversed in southern and in northwestern South America. In these regions the Andes trap 408 

the humid air of the Southern Hemisphere westerlies (Garreaud et al., 2005). In contrast to the 409 

Amazonian scenario, the eastern margin of the Andes at its northern and southern extremes forms a rain 410 

shadow where semi-desert conditions prevail, although this situation is partially reverse during El Niño 411 

events. Instead, on the western flank there is increased precipitation with more humid conditions 412 

(Blisniuk et al., 2005; Palazzesi, Barreda & Cuitiño, 2014). The monumental Andean barrier has thus a 413 

huge impact both on the climate and landscapes of South American lowlands, resulting in the 414 

modification of river systems and drastic changes in regional climate and habitats. 415 

 416 

The influence of South American climate on biodiversity is well illustrated in the contrasting 417 

development of biodiversity between Amazonia and Patagonia. Over the course of the Miocene, Andean 418 

uplift led to a humidification of Amazonia and aridification of Patagonia (Blisniuk et al., 2005; Palazzesi, 419 

Barreda & Cuitiño, 2014; Rohrmann et al., 2016). This contrast is particularly well-illustrated by the 420 

history of New World monkeys (Platyrrhini), which were widely distributed in Patagonia from early to 421 

middle Miocene, including the southernmost non-human primates that ever lived (Tejedor et al., 2006; 422 

Tejedor & Novo, 2017). However, those primates were later extirpated during regional aridification and 423 

global cooling after the Middle Miocene. The platyrrhine record of the high Chilean Andes indicates that 424 

the connection between Patagonia and the northern Neotropics possibly persisted on the western part of 425 

South America, as the southern Andean cordillera was not an important barrier in the Middle Miocene 426 

(Flynn et al., 1995). This scenario provided primates and other animals with a migration route to the 427 
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north, facilitating faunal turnover (Tejedor & Muñoz-Saba, 2013). This connection may also have 428 

contributed to the subsequent Amazonian diversification of crown platyrrhines, including some 429 

Patagonian lineages (Rosenberger et al., 2009). Three extant platyrrhine subfamilies were already present 430 

in Patagonia by the early Miocene, later represented in the middle Miocene of Colombia (Tejedor & 431 

Novo, 2017), which are diverse and widely distributed today. 432 

 433 

The rise of the northern Andes had a major impact on Neotropical biodiversity, as documented for many 434 

taxa (e.g., Hughes & Eastwood, 2006; Santos et al., 2009; Antonelli et al., 2009; Tagliacollo et al., 435 

2015b; Sanín et al., 2016; Chazot et al., 2016; Diazgranados & Barber, 2017). Recent studies that 436 

explicitly integrate surface uplift and climatic changes as a function of speciation and extinction include 437 

work on the Andean bellflowers (Lagomarsino et al., 2016), Neotropical orchids (Perez-Escobar et al., In 438 

press) and Neotropical hummingbirds (Condamine et al., 2017). A similar approach could be applied to 439 

many other taxa and systems, such as the recent cross-taxonomic study on the flora of the Hengduan 440 

Mountains by Xing & Ree (2017). 441 

 442 

At an intercontinental scale, the uplift of the Andes can be compared to the Eastern Arc orogeny in 443 

Central Africa, which started during the Eocene but reached its maximum in the Pliocene (Pokorny et al., 444 

2015). Both of these events resulted from the slow collision of two plates and contributed to the 445 

‘humidification’ of Amazonia and Central Africa, respectively. However, the northeastward movement of 446 

Africa brought the continent close to the Equator, closing the Thetrys Seway and precipitating an 447 

aridification that remains today (Pokorny et al., 2015). Advances on climatic reconstructions via historical 448 

records and climatic modeling (Cheng et al., 2013; Wang et al., 2017) or biome paleo-distribution 449 

modeling (Carnaval & Moritz, 2008; Werneck et al., 2011; 2012b; Ledo & Colli, In press) allow for 450 

direct hypothesis testing based on independent biodiversity data. 451 

 452 

Methodological approaches for estimating biogeographic histories 453 
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Inferring spatial and temporal dimensions of evolution are fraught with difficulties, especially due to the 454 

lack of abundant and evenly sampled biological and geological data. This is particularly critical for the 455 

Neotropics due to the region’s size, limited access, extraordinary biodiversity levels, landscape 456 

heterogeneity, and complex evolutionary and geo-climatic histories. To tackle these problems, we 457 

summarize some of the main issues associated with the analyses of biogeography and diversification, 458 

focusing on how those issues affect Neotropical biodiversity research. 459 

 460 

Definition and use of operational units. Defining units of study in biogeography, sometimes called “areas 461 

of endemism,” is not an easy task, especially when diverse systems are involved such as the Neotropics. 462 

Sympatry or the geographic congruence among the distribution areas of taxa, is often used as a criterion 463 

to define sound units for these studies. The identification of such areas has long been based on expert 464 

opinion, with data-driven approaches that use actual species distribution data only becoming available 465 

more recently (Holt et al., 2013; Vilhena & Antonelli, 2015; Edler et al., 2016; Antonelli, 2017). These 466 

approaches to bioregionalization are of great importance as they allow for more objective, reproducible 467 

and informative analyses. Areas have also been defined using geologically explicit criteria, including 468 

information on the geological history of landmasses or geographic barriers, both of which are not 469 

exclusive to the group under study (Antonelli et al., 2009; Albert & Carvalho, 2011; Töpel et al., 470 

2016 ;Bacon et al., In press). Areas defined based on species distribution patterns and geological history 471 

are of particular interest (Perret et al., 2007; Givnish et al., 2014). 472 

 473 

The use of areas as discrete entities is useful in parametric biogeographic models where areas are 474 

considered as biogeographic traits that evolve along the phylogeny, and whose ancestral areas are inferred 475 

at speciation nodes. In these models, the spatial units of analysis are defined by the biogeographic 476 

hypothesis under examination. For example, it is possible to determine whether diversification rates have 477 

been historically higher in Andean or non-Andeantaxa (Chazot et al., 2016). However, defining areas as 478 

discrete entities is difficult when there are overlapping boundaries and an excess of widespread taxa. 479 
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Models have been proposed to objectively define areas of endemism by overlapping taxa with “fuzzy” 480 

boundaries (Szumik et al., 2002; Szumik & Goloboff, 2004). Similarly, biotic element analyses have also 481 

been proposed to test for non-random distributions of species ranges (Hausdorf & Hennig, 2003). Some 482 

of these methods have been applied to Neotropical taxa (Casagranda M, Roig-Juñet & Szumik, 2009; 483 

Noguera-Urbano & Escalante, 2015; Azevedo, Valdujo & C Nogueira, 2016). 484 

 485 

Another possibility is to use vicariance -- geographic barriers -- rather than areas as units of analysis 486 

(Hovenkamp, 1997; Arias, Szumik & Goloboff, 2011; Arias, In press). This approach explicitly 487 

introduces the spatial (landscape) aspect missing from the predefined areas-as-discrete entities used in 488 

parametric biogeography. Since this approach is based on taxon-defined ranges, biogeographic 489 

reconstructions are not dependent on different area definitions (Arias, in press). A parametric version of 490 

this approach allows geographic (dispersal) barriers to evolve over time within the landscape (Albert et 491 

al., 2017). 492 

 493 

An alternative to using discrete areas in biogeographical analyses is the spatial diffusion approach, which 494 

conducts spatial-temporal reconstructions under random walk models within likelihood (Lemmon & 495 

Lemmon, 2008) or Bayesian (Lemey et al., 2010) frameworks. This approach has been used to study taxa 496 

from open and dry Neotropical biomes (Werneck et al., 2011; 2012b; Nascimento et al., 2013; Camargo 497 

et al., 2013), and taxa with broad continental distributions (Gehara et al., 2014). A further development of 498 

this approach has been applied to the Neotropical bird genera Psophia and Cinclodes (Quintero et al., 499 

2015). The method uses georeferenced point-localities to infer ancestral areas and thus does not make 500 

assumptions about species ranges and operational units that fit many taxa. On the other hand, this method 501 

suffers from the common issue of ancestral lineages occupying average values of the descendant lineages. 502 

For instance, analyses with this method have reconstructed the ancestral of Cinclodes ovenbirds to a 503 

region in-between the western and eastern margins of South America, where no such species occur today 504 

(Quintero et al., 2015). 505 
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 506 

Considering the complex and dynamic nature of the Neotropical region across multiple temporal and 507 

spatial scales, spatial diffusion biogeographic analyses would greatly benefit from the incorporation of 508 

landscape-explicit models that allow the reconstruction of actual paths along branches (McRae et al., 509 

2008). These developments would allow the incorporation of spatial heterogeneity via dispersal 510 

constraints, derived from estimated ecological niche models or landscape evolution models, among 511 

others. 512 

 513 

Single lineage approaches. These provide detailed reconstructions of the temporal and spatial evolution 514 

for individual clades, species, or lineages. The focus is not on generalities but on contingencies or events 515 

that are idiosyncratic to the group under study. Methodological advances in single lineage approaches 516 

have undergone major developments with parametric methodologies (Ree & Sanmartín, 2009; Landis et 517 

al., 2013; Matzke, 2014). The explosion of molecular phylogenetics and molecular dating analyses 518 

allowed inference of time-calibrated trees, where branch lengths are measured as units of time or rates of 519 

molecular evolution. The integration of time-calibrated trees into biogeographic analyses allowed the 520 

establishment of links with external sources of temporal information such as landscape evolution, 521 

geological history, fossil record, and climate history. 522 

 523 

Typical biogeographic analyses currently use time-trees and parametric models of biogeographic 524 

evolution to reconstruct ancestral ranges at speciation nodes, and to infer rates of biogeographic processes 525 

(e.g., dispersal, speciation, and extinction). Parametric biogeographic models are based on Continuous-526 

Time Markov chains (CTMC). These are stochastic, memoryless processes in which transition rates 527 

between discrete states (i.e., geographic ranges) are governed by an instantaneous Q matrix, with 528 

transition probabilities obtained after exponentiating the matrix as a function of time (i.e., branch lengths) 529 

(Ronquist & Sanmartín, 2011). Transition rates are defined in terms of biogeographic processes 530 
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describing the evolution of geographic ranges, such as range expansion, jump dispersal, range contraction 531 

and local extinction. 532 

 533 

Biogeographic hypotheses or models about the relative role of these processes in a the geographic 534 

evolution of particular groups can be compared statistically using methods for model selection in 535 

phylogenetics, such as Likelihood Ratio Tests (LRT) or Bayes Factors (Sanmartín & Meseguer, 2016). 536 

Moreover, the rates of these processes may be modified (scaled) to reflect the changing connectivity 537 

among the areas of analysis over time (Ree & Smith, 2008). These advances have contributed to the 538 

integration of landscape dynamics and geological history into taxon biogeography in the Neotropics (e.g., 539 

Perret et al., 2013; Givnish et al., 2014; Chazot et al., 2016 ;Bacon et al., In press). Dispersal-Extinction-540 

Cladogenesis (DEC), a likelihood-based method derived from CTMC models, is likely the most popular 541 

parametric biogeographic method. This method infers anagenetic evolution (i.e., along branch internodes) 542 

as a function of two rate parameters: range expansion (dispersal) and range contraction (local extinction). 543 

Cladogenetic evolution (i.e., at speciation nodes) is modeled as the likelihood of alternative range 544 

inheritance scenarios that describe the division of ancestral ranges into descendant nodes: sympatric 545 

speciation, allopatric (vicariance) speciation, and peripheral isolate speciation in the case of widespread 546 

ranges (Ree & Smith, 2008). 547 

 548 

The popularity of DEC is based on the fact that, given a time tree and associated terminal distributions, it 549 

can provide detailed biogeographic reconstructions of the ancestral origin of a clade and the history of 550 

dispersal and extinction events that helped model its spatial evolution (Sanmartín & Meseguer, 2016). A 551 

potential drawback of DEC is, however, the number of areas that it can implement. Because widespread 552 

geographic ranges (comprising two or more areas) are possible states in the Q matrix, a large number of 553 

unit areas rapidly leads to computational and convergence issues. Constraining the number of states based 554 

on biological or geological criteria, is a way to decrease model complexity (Ree & Sanmartín, 2009). 555 

 556 
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Bay-Area, a data augmentation approach based on stochastic mapping and which extends the DEC model 557 

to deal with a large number of unit areas, has been proposed to tackle the limited number of areas allowed 558 

in DEC (Landis et al., 2013). Furthermore, the parameter (“J”) was introducted to model “jump dispersal” 559 

or founder-event speciation (Matzke, 2014). This extra parameter effectively reduces the contribution of 560 

range expansion, and therefore of widespread range evolution, in biogeographic likelihood estimations 561 

(Matos-Maraví et al., 2013; Matzke, 2014; Ree & Sanmartin, in prep.). The DEC+J model is 562 

implemented in the package BioGeoBEARS (Matzke, 2013) implemented in R (R Development Core 563 

Team, 2017), and is now widely used in Neotropical biogeography (e.g., Matos-Maraví et al., 2014; 564 

Espeland et al., 2015; Chomicki & Renner, 2016). 565 

 566 

Cross-taxonomic (multi-clade) approaches. Unlike single taxon biogeographic approaches, cross-567 

taxonomic approaches aim to extract generalities on the evolution of a biogeographic region or a whole 568 

biota, or generalities on the relationships among biogeographic regions or biotas, by reconstructing the 569 

history of their individual components. The focus of this approach is not on obtaining detailed 570 

reconstructions of each individual lineage (although these reconstructions inform the model), but on 571 

inferring shared biogeographic histories, such as general patterns of colonization and diversification or a 572 

common response to extinction events. This approach was traditionally known as “area biogeography” 573 

and was the focus of the cladistic biogeographic school for decades (Nelson & Platnick, 1980b; 574 

Humphries & Parenti, 1999b).  575 

 576 

The first methods used for cross-taxonomic biogeographic approaches were based on parsimony, which 577 

does not allow the integration of a temporal dimension (Crisci et al., 1991; Marshall & Liebherr, 2000; 578 

Sanmartín, 2016). Further approaches attempted to solve this issue by adopting an event-based approach 579 

to recover the relative sequence of biogeographic events (Sanmartín, 2007). However, these methods are 580 

subject to “biogeographic pseudo-congruence,” when the same biogeographic pattern originates in two 581 

clades at different times and therefore, not as a result of a shared biogeographic history (Donoghue & 582 
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Moore, 2003). Ad hoc introduction of time into event-based methods allow the identification of reticulate 583 

history or the cyclical formation and disappearance of dispersal corridors and barriers. This is the case of 584 

the North Atlantic and Beringian Land Bridges in the migration of Holarctic faunas and floras (e.g., 585 

Sanmartín, Enghoff & Ronquist, 2001; Donoghue & Smith, 2004). Parametric approaches such as the 586 

biogeographic CTMC models (Ronquist & Sanmartín, 2011) offer a more powerful way to obtain 587 

generalities about patterns of dispersal and diversification in biotas, allowing us to test between 588 

alternative geological or spatial scenarios. One such example is the Bayesian Island Biogeographic (BIB) 589 

model of Sanmartín et al. (2008), which uses a hierarchical Bayesian model to infer common rates of 590 

colonization and area carrying capacities from phylogenetic and distribution data across multiple clades. 591 

Because phylogenies are co-estimated with the model (and not fixed as in DEC), and each clade is 592 

allowed to evolve under its own molecular rate, BIB can be used across different, unrelated organisms 593 

that differ in biological traits such as the age of origin or dispersal ability, but which inhabit the same set 594 

of oceanic (Sanmartín, van der Mark & Ronquist, 2008) or continental islands (Sanmartín et al., 2010). 595 

 596 

Landscape evolution models (LEMs) and biotic diversification. A potential problem with single-taxon and 597 

cross-taxonomic parametric analyses is that areas are treated as traits of organisms evolving along 598 

phylogenetic trees. Geology is often used to inform the model but does not form its core. For instance, 599 

area connectivity is often used in parametric methods to constrain or scale migration rates but not as an 600 

actual part of the model. 601 

 602 

At first, the explanatory power of vicariance biogeography was the ability to predict biogeographic 603 

distributions of individual taxa and that of whole biotas from knowledge of how landscapes changed 604 

through time (Rosen, 1978). The paradigmatic example is the geological fragmentation of the Gondwana 605 

supercontinent, and the resulting fragmentation of the resident Gondwanan biotas. The vicariance 606 

biogeography approach satisfies the scientific impulse of systematists and biogeographers for general 607 

explanations of organismal distributions, rather than ascribing each distribution to the vagaries of 608 
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idiosyncratic dispersal and extinction events (Humphries & Parenti, 1999a). However, ecologists have 609 

long understood dispersal to be a perennial and pervasive process influencing biogeographic distributions 610 

(Cowie & Holland, 2006), and evidence for the action of long-distance, overseas dispersal has now been 611 

documented in the formation of many biotas worldwide (Bell et al., 2015) including those in the 612 

Neotropics (Smith et al., 2014; Tagliacollo et al., 2015a; Hawlitschek, Ramírez Garrido & Glaw, 2017). 613 

Similarly, palaeontologists have long understood extinction as an important driver of patterns in 614 

biodiversity and biogeography (Jablonski, 2008). The challenge to vicariance biogeography as a general 615 

theory is the commonplace observation that vicariant cladogenesis (i.e., speciation) is only one of three 616 

general macroevolutionary processes, along with dispersal and extinction (Ree & Smith, 2008). 617 

 618 

A new generation of methods is now being developed using the power of landscape evolution models to 619 

study the full panoply of evolutionary processes, at both microevolutionary (population) level (Byrne & 620 

Hopper, 2008; Morlon, 2014) and macroevolutionary (interspecific) scales (e.g., Tagliacollo et al., 2015b; 621 

Badgley et al., 2017). For example, uplift of a dissected landscape and river capture are two landscape 622 

evolution processes with great power to generate high species richness. Both of these processes 623 

simultaneously and continuously merge and separate portions of adjacent landscape areas, allowing biotic 624 

dispersal and larger geographic ranges, vicariant speciation and smaller geographic ranges, and extinction 625 

when range sizes are subdivided below a minimum persistence threshold (Albert et al., 2017). 626 

 627 

Integrating fossils into biogeography. One important shortcoming of molecular-based biogeographic 628 

analyses in general, and parametric models of range evolution in particular, is the fact that it is almost 629 

always based on extant data alone. Because of the effects of extinction, the pattern of geographic 630 

distribution we observe today may be a poor representation of the actual biogeographic history, especially 631 

if extinction rates have been unequal among areas (Meseguer et al., 2015) and taxa (Silvestro et al., 632 

2016). One way to solve this is to include extinct lineages in biogeographic analyses (Mao et al., 2012), 633 

or to use their distribution (the fossil record) to constrain inferences of ancestral ranges (Meseguer et al., 634 
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2015). This has in many cases revealed a new, different biogeographic history for the study group (Mao et 635 

al., 2012; Meseguer et al., 2015). An alternative approach is a modification of DEC, termed DES 636 

(Dispersal-Extinction-Sampling), to infer rates of dispersal and area extinction exclusively from fossil 637 

data (Silvestro et al., 2014; 2015). An additional sampling parameter is used to account for the 638 

unevenness of the fossil record both spatially and temporally. Advantages of this approach are that the 639 

fossil record provides a more accurate measuring of changes in rates of geographic evolution and 640 

unbiased extinction rates, than if only extant taxa are used (Silvestro et al., 2015). 641 

 642 

 643 

III. FROM LARGE TO FINE SCALES: BIOGEOGRAPHY MEETS COMMUNITY ECOLOGY 644 

 645 

While biogeographic studies are key to identify large-scale patterns and processes, different processes 646 

operate at regional and local levels. A major question in tropical biodiversity is how ecological 647 

communities have been assembled over time and how abiotic factors and species’ interactions have 648 

influenced this process. Approaches for the study of tropical communities have employed a wide range of 649 

models with diverse conceptual roots. Over the last 20 years, there has been an expansion from studies 650 

focusing on contemporary community structure and spatial patterns of physical properties of ecosystems, 651 

to studies focusing on historical aspects of community structure and evolution (Leite & Rogers, 2013; 652 

Smith et al., 2017). Early approaches (e.g., Margalef, 2015) focused on indexes of diversity, descriptions 653 

of community membership, as well as flow charts of energy and nutrients through the community. Key 654 

variables influencing community structure consistently emphasized classic Hutchinsonian processes such 655 

as resource use, competition, and niche partitioning. However, as ecologists adopted new techniques, the 656 

resolution of the niche increased from simple variables exclusively to also include high-resolution data on 657 

climate, soil chemistry, microbiomes and other physical and biological properties. These approaches have 658 

guided several recent analyses of tropical groups, including micro-organisms and palms (Costa et al., 659 

2009a; Mendes et al., 2015). Additionally, the availability of spatially explicit online global datasets of 660 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3074v1 | CC BY 4.0 Open Access | rec: 6 Jul 2017, publ: 6 Jul 2017



 
 

 
Antonelli et al: Neotropical biodiversity 

Page 27 

climate and environmental parameters has helped spawn a generation of studies using large-scale spatial 661 

biodiversity surveys and inventories, analyzed with statistical approaches, allowing the interpolation 662 

between sampled sites and estimated diversity in unsampled areas (Costa et al., 2007; 2009b; Steege et 663 

al., 2010; 2013). Such studies yield important data for interpreting community processes. However, 664 

progress in this area is often based on the important assumption that ecosystems and community 665 

structures are at equilibrium, or nearly so. Analyzing such data sets under non-equilibrium assumptions is 666 

an important challenge for the future. 667 

 668 

The theory of island biogeography (TIB) (MacArthur & Wilson, 2016) introduced parameters such as 669 

colonization, immigration, and extinction within a mathematical framework, allowing the prediction of 670 

community structure, dynamics, and diversity (Losos & Ricklefs, 2009; Warren et al., 2015). The TIB has 671 

inspired models that attempted to integrate additional parameters, such as speciation and island ontogeny 672 

(Whittaker, Triantis & Ladle, 2008), abundance (Rosindell & Harmon, 2013), and trophic interactions 673 

(Gravel et al., 2011). Whereas the TIB maintained a focus on species as the unit of analyses, another 674 

strand of theory introduced individual-based models that assumed ecological or functional equivalence of 675 

individuals in communities inspired by Hubbell’s neutral theory of biodiversity (NTB) (Hubbell, 1997). 676 

In the ecological sense, both the TIB and NTB are not-equilibrium models, however they are often 677 

invoked as equilibrium models in macroevolutionary perspectives. Their predictions are based on 678 

conditions of systems states (i.e., values of parameters such as dispersal, colonization, speciation, 679 

extinction, and the strength of species interactions) in which all competing influences are balanced 680 

(dynamic equilibrium), or have not changed over time (static equilibrium). 681 

 682 

Alternatively, other models have dynamic equilibria in which the parameter values balance one another, 683 

giving a constant result, such as the number of species. In the last 15 years, community ecology, and an 684 

expanded TIB, have adopted a more historical approach by integrating phylogenetic data to the study of 685 

community assembly and dynamics, including the role of in situ adaptation or speciation versus dispersal 686 
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in community assembly, the temporal sequence of species interactions, or the role of abiotic and biotic 687 

factors in diversification of specific lineages (Webb et al., 2003; Sanmartín, van der Mark & Ronquist, 688 

2008; Valente, Etienne & Phillimore, 2014; Valente, Phillimore & Etienne, 2015; Cabral, Valente & 689 

Hartig, 2017). By adopting a more historical focus, these methods get around the equilibrium assumption 690 

by explicitly attempting to reconstruct the sequence of events leading to modern-day communities. These 691 

approaches relax the assumption of ecological neutrality, and focus on the uniqueness of individual 692 

lineages, historical contingency, and particularities of present-day outcomes (Emerson & Kolm, 2005; 693 

Sanmartín, van der Mark & Ronquist, 2008). In their most recent forms, these models incorporate 694 

ecological parameters such as competition and species interactions (Clarke, Thomas & Freckleton, 2016) 695 

or landscape dynamics (Aguilée, Claessen & Lambert, 2013). 696 

 697 

The diversity of theoretical approaches has enriched the field of tropical biology, particularly in the 698 

Neotropics. Below we provide some examples of how different approaches to community ecology have 699 

been applied to (Neo)tropical systems. 700 

 701 

Island biogeography studies. The Amazon basin is highly heterogeneous although this heterogeneity is 702 

rarely structured in ways that are amenable to the application of island biogeography theory. However, 703 

‘white-sand’ habitats in the interior of the Amazon seem to represent ‘islands’ with savanna-like 704 

vegetation and distinctive plants and animals, that often achieve differentiation or endemism due to their 705 

isolation and environmental uniqueness compared to the surrounding lowland rainforest (Anderson, 1981; 706 

Alonso, Metz & Fine, 2013). Although a similar situation is found for the fragmented and understudied 707 

Amazonian savannas (de Carvalho & Mustin, 2017), open areas are characterized by lower richness for 708 

some taxa (e.g., amphibians and reptiles) that may harbor species with restricted distributions missing 709 

from adjacent Amazonian mainland forests (Borges et al., 2016). These islands are known as “campinas” 710 

and are the focus of active research programs (see Fine & Bruna, 2016). Bird diversity in these white 711 

sands islands has been shown to conform well to the predictions of TIB, with larger and more connected 712 
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islands including a higher number of species than smaller and more isolated patches (Oren, 1982). 713 

Furthermore, assembly studies at the regional scale have shown that lizard local richness is explained by 714 

patch size, degree of isolation, and stochastic extinction following isolation (Gainsbury & Colli, 2009). 715 

However, Alonso et al. (2013) and Borges et al. (2016) suggested that more regional effects, perhaps 716 

overshadowing patch size, also seem to be at play. For instance, patches south of the Marañón/Amazon 717 

region seem to be depauperate when compared to northerly patches (Alonso, Metz & Fine, 2013; Borges 718 

et al., 2016). Nonetheless, white sands provide a compelling example of island biogeography theory in 719 

the context of a continental biota. 720 

 721 

Niche-based studies. The general idea that species are adapted to their environment (i.e., have different 722 

niches) has two important consequences. First, species distributions are expected to reflect the distribution 723 

of suitable habitats. Second, species composition in local communities should reflect the environmental 724 

characteristics of the site, as unsuitable environmental characteristics or biotic interactions make it 725 

impossible for a species to establish and/or survive. Along these lines, many studies have aimed to 726 

characterize the edaphic associations of tropical plant species (Tuomisto & Poulsen, 1996; Tuomisto et 727 

al., 2003; Phillips et al., 2003; Costa, Magnusson & Luizao, 2005; Roncal, 2006; Zuquim et al., 2009; 728 

Kristiansen et al., 2012; Cámara Leret et al., 2017) and the elevational ranges of many taxa (Kluge, Bach 729 

& Kessler, 2008). If there are more species adapted to some environmental conditions than others and 730 

dispersal limitations are unimportant, a species richness gradient should result. However, it is also 731 

possible that some environmental conditions may allow more species to coexist than others. Several 732 

studies have analyzed species richness gradients along environmental gradients such as elevation (Kluge, 733 

Kessler & Dunn, 2006; Brehm, Colwell & Kluge, 2007), rainfall (Clinebell et al., 1995; Esquivel 734 

Muelbert et al., 2017), and soil fertility (Costa, Magnusson & Luizao, 2005; Steege et al., 2006; 735 

Tuomisto, Zuquim & Cárdenas, 2014). In general, these studies have shown that Neotropical species 736 

richness tends to be highest in warm, humid, and aseasonal environmental niches at low to middle 737 

elevations. 738 
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 739 

Neutral and non-neutral perspectives. In contrast to niche-based processes, spatial patterns in abundance 740 

in communities of anurans from Central Amazonia have been shown to follow Hubbell’s neutral 741 

biodiversity theory (Diniz-Filho et al., 2011). However, Manceau et al. (2015) demonstrated that, the 742 

incorporation of population genetic dynamics into NBT supported the hypothesis that biodiversity 743 

dynamics are out of equilibrium, and that these types of models can predict macroevolutionary patterns 744 

(Manceau, Lambert & Morlon, 2015). Additional research is still needed to assess the relative roles of 745 

niche constraints, neutral, and non-neutral processes in explaining and predicting Neotropical 746 

biodiversity. 747 

 748 

Ecological interactions. It is now evident that species interactions (mutualistic or antagonistic) play a 749 

major role in the spatial distribution of taxa, the evolution of communities (Wiens, 2011), and species 750 

boundaries (Pigot & Tobias, 2013). Biotic interactions can be a source of ecological divergent selection, 751 

with interspecific competition representing a major contributor to ecological character displacement 752 

(Rundle & Nosil, 2005). In turn, this suggests that competition may play an important role in shaping 753 

ecological speciation at meta-community scale. Geography can also affect gene flow among populations, 754 

and the ecological sources of divergent selection (Räsänen et al., 2012). Large-scale biogeographical 755 

studies based on interspecies interactions are still lacking, reflecting a general paucity of interaction data 756 

as well as difficulties in estimating past interactions and processes. However, speciation resulting from 757 

species interactions may represent a main driver of biotic radiations (Elias et al., 2012; Correa Restrepo et 758 

al., 2016). Such a model seems to apply to both plants (Xu, Schl ter & Schiestl, 2012) and animals, such 759 

as the South American opossums, where biotic interactions may have led to allopatric speciation 760 

(Gutiérrez, Boria & Anderson, 2014). 761 

 762 

Exploring ecological interactions among species can help improve our understanding of the evolution of 763 

biotic associations. For arboreal ants (Pseudomyrmex) and their host plant Vachellia (Mimosoidae), 764 
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historical associations and new colonizations (Platymiscium, Tachigali, and Vachellia) have been 765 

documented (Chomicki, Ward & Renner, 2015). This study highlights how new interactions, formed by a 766 

group of ants colonizing a new plant, can contribute to an interaction shift (from parasitic to mutualistic). 767 

The macroevolutionary assembly of ant-plant symbiosis in the Neotropics seems to be highly dynamic 768 

and underlines convergent evolution of complex multispecies interactions. 769 

 770 

The integration of phylogenetic inference coupled with network theory has shed light on the importance 771 

of interaction dependence (mutual dependence vs. asymmetric dependence) in the radiation of interacting 772 

species. For instance, Ramirez et al. (2011) unraveled the evolutionary processes involved in the 773 

specialized association between Neotropical stingless bees (Euglossini) and Euglossinni-pollinated 774 

Orchids using this approach (Ramírez et al., 2011). More specifically, through a combination of 775 

phylogenetic inference, network analysis, and chemical data, this study revealed that selection on orchids 776 

for their specialized pollinators triggered their radiation, whereas a similar radiation was not observed for 777 

the bees. 778 

 779 

Phylogenetic approaches. Community phylogenetic approaches have been used to test hypotheses 780 

involving multiple historical and ecological factors controlling phylogenetic diversity over time. Kissling 781 

et al., (2011) showed that global diversity in palms (Arecaceae) has strong phylogenetic clustering on 782 

islands and in the Neotropics (Kissling et al., 2012). Recently, a “Historical Assembly Analysis” was 783 

proposed (Weeks, Claramunt & Cracraft, 2016) as a conceptual framework for integrating evolutionary 784 

history and ecological processes into studies of biotic assembly. Using this approach, the assembly 785 

history of Amazonian Pteroglossus toucans was reconstructed through time and space using a 786 

combination of phylogenetic and biogeographical tools (Weeks, Claramunt & Cracraft, 2016). 787 

 788 

Thus far, most community phylogenetics approaches have been applied to single lineages, within which 789 

competition and other ecological processes are thought to dominate. Because it is unlikely that ecological 790 
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and community processes operate within individual lineages, cross-taxonomic community assembly 791 

analyses would be especially relevant. For instance, important insights were gained from a study on the 792 

phylogenetic assembly of Amazonian tree communities within a comparative framework (Dexter et al., 793 

2017). 794 

 795 

Scaling up community ecology approaches  796 

The original goals of community ecology, as established in the early 20th century, were to predict species 797 

distributions and abundances, species richness and equitability, community productivity, food web 798 

structure, predator-prey dynamics, succession, and community assembly. However, as noted by leaders in 799 

this field, this discipline has not yet succeeded in meeting most of these goals (Ricklefs, 2008; Ritchie, 800 

2009; Vellend, 2010; Ricklefs & Jenkins, 2011; Weber & Strauss, 2016). The reasons are many, but may 801 

be especially associated to the non-equilibrium of most local assemblages, in which the effects of 802 

historical contingencies of dispersal, extirpations, and other stochastic processes override the equilibrium 803 

expectations generated by local functional processes such as predation and competition (Fig. 4). In other 804 

words, the species composition and equitability of most local assemblages are more strongly governed by 805 

regional and historical factors than by local ecological interactions (Mittelbach & Schemske, 2015; 806 

Manceau, Lambert & Morlon, 2015; Fukami, 2015; Weeks, Claramunt & Cracraft, 2016). This crisis in 807 

community ecology has fueled the rise of alternative functionally-neutral theories, like the TIB 808 

(MacArthur & Wilson, 2016), the NTB (Hubbell, 2011), and the metacommunity theory (Leibold et al., 809 

2004). However, neutral theories have been criticized for their simplistic assumptions and lack of 810 

predictive power under the non-neutral conditions frequently observed in nature (e.g., McGill et al., 811 

2006). In general, the field of community ecology appears to be ripe for a paradigm shift (DeAngelis & 812 

Grimm, 2017). 813 

 814 

While many studies conducted at the global scale aim to test broad hypotheses about drivers of 815 

biodiversity gradients (Fine, 2015), others rely on analyses of region-wide field data collected over 816 
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decades. For example, Amazonian tree diversity catalogued across 1170 forest plots has been used to 817 

estimate tree populations across one-degree cells (Steege et al., 2013). In addition to documenting 818 

hyperdominance of Amazon tree communities by only 227 species, tree diversity was also shown to be 819 

highly heterogeneous across the Amazonian landscape and at local scales (Steege et al., 2013). These 820 

surveys set the stage for analyses of the environmental correlates of diversity (e.g., Benavides et al., 2005; 821 

Steege et al., 2013). Detailed explanations of the heterogeneity found at multiple scales remains as a 822 

major challenge for Neotropical biodiversity research. 823 

 824 

IV. PHYLOGENY (OUR PRIMARY EVOLUTIONARY TOOL), AND ITS CAVEATS 825 

 826 

The power of phylogenies to inform evolutionary processes is large and not fully realized (Eiserhardt et 827 

al., 2011). Phylogenetic data from different organisms are commonly applied in community and 828 

evolutionary analyses (Forest et al., 2007; Rull, 2008; Verboom et al., 2009; Pokorny et al., 2015; Bacon 829 

et al., 2015). For community analyses, researchers often rely on smaller scale phylogenies (rather than 830 

one ‘super tree’), due to denser taxon sampling and more appropriate computational models. An inherent 831 

challenge of this approach is that different trees are often based on different priors and models, making it 832 

difficult to directly compare them, especially in terms of the distribution of node heights (ages). Several 833 

approaches have been developped to address this issue, incuding Supersmart (Antonelli et al., 2016) and 834 

msBayes (Hickerson, Stahl & Takebayashi, 2007). The Supersmart approach reconstruct large calibrated-835 

species phylogenies in a comparable tree framework by allowing the assemblage of vast molecular data 836 

with fossil data in three major steps. First, a backbone calibrated-tree is built using sequences from known 837 

species and fossils. Then, the backbone tree is partitioned into subclades which in a second step, 838 

descendent taxa with well coverage of genetic markers are integrated to infer a calibrated tree under an 839 

appropriate model, such as the multispecies-multilocus coalescent model (Edwards, 2009). Third, the 840 

resulting species-calibrated trees are implanted to the backbone tree. The msBayes approach, on the other 841 

hand, employs a hierarchical Approximate Bayesian Computation algorithm (hABC) to estimate 842 
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individual phylogenies and shared patterns such as the proportion of simultaneous change in a 843 

community, or the time of divergence among co-distributed species pairs across a barrier. This framework 844 

has been successfully applied to study the Neotropical biota (Carnaval et al., 2009; Werneck et al., 2012a; 845 

Thomé et al., 2016 ; Gehara et al., in press). Furthermore, the BIB model (Sanmartín, van der Mark & 846 

Ronquist, 2008) also draws generalities on the evolution of communities by taking the idiosyncrasies of 847 

individual clades into account. 848 

 849 

Many large phylogenies were published in recent years at higher taxonomic levels, ranging from 850 

phylogenies of complete classes (Jetz et al., 2012; Faurby & Svenning, 2015a; Figueroa et al., 2016) to 851 

attempt to build the complete Tree of Life (Hinchliff et al., 2015). Other studies have focused on 852 

reconstructing the phylogeny of complete regions such as the Cape of South Africa (Forest et al., 2007), 853 

the Californian Floristic Province (Baldwin et al., 2017), the Australian flora (Thornhill et al., 2016). In 854 

contrast, we lack well-sampled phylogenies for most Neotropical groups. In addition, many researchers 855 

have expressed their justified concerns about too simplistic assumptions and problematic data 856 

downloaded from public databases. A common challenge is the compromise between taxon sampling, 857 

character sampling (i.e., the number of loci; Edwards, 2009), and computational capacity. Additionally, 858 

branch lengths and node-ages in ‘super trees’ are often estimated secondarily, rather than being co-859 

estimated with the phylogeny through the application of appropriate clock and birth-death models. A 860 

recently developed analytical platform allows the estimation of large phylogenies through a multi-step 861 

process (Antonelli et al., 2016). 862 

 863 

From single to many loci. Sequences of only a few loci are available for most Neotropical taxa sequenced 864 

to date. Even when multiple loci are available, these loci are often concatenated to enable more time-865 

efficient analyses. Using single locus data to estimate phylogenies is problematic for multiple reasons 866 

(e.g., Maddison, 1997; Edwards, 2009; Liu et al., 2015), especially because a single line of evidence is 867 

provided by that individual genealogy. Analyzing multilocus sequence data requires more complex 868 
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computational models that are able to account for expected differences in gene tree topologies under the 869 

same species tree. 870 

 871 

Bayesian Multispecies Coalescent (MSC) methods jointly infer topology and node-heights for gene trees 872 

and the underlying species tree from multilocus sequence data (Liu et al., 2009; Heled & Drummond, 873 

2010; (Xu & Yang, 2016) while taking the stochastic variation of gene genealogies into account. Even 874 

though theoretically appropriate, it is often not computationally feasible to co-estimate the species tree 875 

and all genealogies, particularly when the number of taxa and loci are high. Instead, many researchers 876 

apply summary coalescent methods that split the estimation of gene trees as well as split of the species 877 

tree into two consecutive steps. Under this approach, gene trees are estimated separately for each locus 878 

and then used in separate analyses that estimate the most likely species trees (Kubatko, Carstens & 879 

Knowles, 2009; Liu et al., 2009; Mossel & Roch, 2010; Larget et al., 2010; Mirarab et al., 2014).  880 

 881 

Computation limitations still prevent us from estimating multilocus trees using Bayesian MSC methods. 882 

There is high demand for removing this computational bottleneck, which would provide an excellent data 883 

source for many downstream analyses. Recent improvements of existing Bayesian MSC methods with 884 

more streamlined tree searching algorithms are a step in the right direction (e.g., STACEY; Jones, 2017). 885 

Nonetheless, species divergence times based on the molecular clock model infers the original population 886 

split rather than the last stage of the speciation process, which may not have an effect on tree topologies, 887 

but has implications for diversification analyses. In addition, using such methods for molecular species 888 

delimitation are not exempt of controversy, as multispecies coalescence has been proposed to delimit 889 

populations rather than species (Sukumaran & Knowles, 2017).  890 

 891 

Another promising approach is SDVQuartets, which does not require a priori inference of individual gene 892 

trees, but uses mathematical shortcuts (singular value decomposition of the matrix of site pattern 893 

frequencies) to infer a species tree under the coalescent framework (Chifman & Kubatko, 2014; Kubatko 894 
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& Chifman, 2015b). This method has been expanded to incorporate horizontal gene transfer or 895 

hybridization (Kubatko & Chifman, 2015a). 896 

 897 

Finally, a different family of methods use gene birth-death (BD) processes to model the evolution of gene 898 

trees within species trees. These models can incorporate events such as gene paralogy (duplication) and 899 

gene loss (Boussau et al., 2013) or horizontal gene transfer HGT (SzöllQsi et al., 2013), or a combination 900 

of both (SzöllQsi et al., 2015). Coalescent methods of phylogenetic analysis are only slowly making 901 

inroads into Neotropical biology, despite the demonstrated superiority over concatenation in handling 902 

large-scale multilocus data (Liu et al., 2009). 903 

 904 

V. CONCLUSIONS AND PROSPECTS 905 

 906 

Are we living in a unique time? 907 

A long-standing question is the time of origin of the outstanding biodiversity we encounter today in the 908 

Neotropics. The answer to this question is inevitably linked to the search of so-called ‘special periods of 909 

time’ and ‘overarching theories’ for Neotropical diversification. The present day era likely is distinct from 910 

previous time periods, as manifested in the myriad geological and ecological footprints of the 911 

Anthropocene. However, there are often mixed definitions and questions related to the timing and mode 912 

of biotic evolution. Indeed, the origin of the Neotropical biodiversity encapsulates two contrasting 913 

subjects, the timing of origin of the hyperdiversity and the actual age of extant species (Hoorn et al., 914 

2011). It is clear there have been extraordinary periods of time throughout the geological history, both in 915 

terms of biodiversity and abiotic aspects (i.e., geology, climate) (e.g., Jaramillo, 2006; Hoorn et al., 2010; 916 

Jaramillo et al., 2010). However, all periods of time have contributed to the current biodiversity, and it 917 

seems unlikely that all species have entered the scene in a very ‘special’ time for Neotropical 918 

diversification. Instead, current diversity has deep origins in geological time, with different events (e.g., 919 

Neogene rise of the northern Andes, formation of the modern Amazon drainage system, rise of the 920 
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Isthmus of Panama, and Cenozoic cooling culminating in Pleistocene glacial-interglacial cycles) playing 921 

different roles at different times. 922 

 923 

Examples of meta-analyses that seek for ‘special’ periods of time often come from time-calibrated 924 

molecular phylogenies. For instance, butterfly species-pairs seem to be relatively young in origin (i.e., < 2 925 

Ma), suggesting that the Pleistocene and Holocene may have represented ‘extraordinary times’ for 926 

Neotropical butterfly speciation (Garzón-Orduña, Benetti Longhini & Brower, 2014). However, time-927 

calibrated phylogenies may not fully address the potential impact of extinction and species duration 928 

(Hoorn et al., 2011). In other words, if we were able to travel back in time to any period and sequence 929 

species around us, the odds are that most species alive would also be around 2 Ma old. This potential 930 

intrinsic bias of these types of studies remains as a challenge to be addressed in the future. 931 

 932 

Incorporating fossil taxa in molecular diversification analyses could help resolve those issues. However, 933 

the fossil record is still limited for most Neotropical clades. In simulated phylogenies, the resulting shape 934 

of lineage-through-time plots vary significantly when the fossil record is added as compared to 935 

phylogenies that incorporate extant taxa exclusively (Matos-Maraví et al., 2014; Xing et al., 2014). The 936 

inferred macroevolutionary dynamics estimated from molecular phylogenies may thus be misleading if 937 

fossil taxa are neglected, or when macroevolutionary tools do not acknowledge the rare sampling of fossil 938 

lineages. New methodological developments to directly integrate fossil (extinct) lineages into phylogeny 939 

reconstruction (Ronquist et al., 2012; Heath, Huelsenbeck & Stadler, 2014; Zhang et al., 2016; Silvestro 940 

et al., 2016) offer new hope in the quest to retrieve more accurate depictions of evolutionary patterns. 941 

 942 

Variable species concepts and adequate sampling of extant and extinct taxa, represent a serious barrier for 943 

our understanding of Neotropical biodiversity. Highly structured populations with considerable genetic 944 

divergences may be seen as “incipient species” that have not yet completed the speciation process. For 945 

instance, excluding “incipient species” (i.e., highly structured populations that may not have yet 946 
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completed the speciation process) from phylogenies may incorporate artifacts that may lead to incorrect 947 

inferences of a diversification slowdown towards the present (Cusimano & Renner, 2010). Standardized 948 

species definitions and broad sampling of taxa are crucial while inferring macroevolutionary dynamics. 949 

Indeed, it is very likely that several broadly distributed Neotropical species may be composed of multiple 950 

narrowly distributed taxa once studied in further detail. 951 

 952 

Operational hindrances 953 

Comparative biology has experienced advancements in the theory and practice of biogeography and 954 

molecular phylogenetics during the past decades. However, we still need to increase sampling of 955 

Neotropical organisms drastically in order to advance our knowledge on the patterns and processes 956 

underlying Neotropical biodiversity. Despite this great need, fieldwork in the Neotropics, especially in 957 

pristine areas, is time consuming, expensive, and logistically demanding. Research funding for 958 

exploratory inventory projects is also becoming increasingly harder to obtain, despite the fact that highly 959 

successful projects (i.e., sequencing the first human genome and creating the Amazon Tree Diversity 960 

Network) were initially discovery-driven, rather than focused on testing specific hypotheses. Furthermore, 961 

obtaining permits to collect and export biological samples is also challenging, involving many differences 962 

across national legislations. Finally, fieldwork might be seen as unnecessary given the wealth of 963 

specimens already available in biological collections around the world, and their potential for biodiversity 964 

and genomic analyses (Buerki & Baker, 2016; Zedane et al., 2016). 965 

  966 

 967 

Despite all these obstacles, fieldwork remains absolutely essential for data generation and 968 

monitoring biodiversity changes (Albert, 2002). Fieldwork also provides students and researchers with a 969 

deeper understanding and inspiration of their study systems (often providing new ideas and questions), 970 

while facilitates the establishment of new collaborations, enables the exchange of knowledge, fuels the 971 

development of new methods, and increases the possibilities of major discoveries (Fleischner et al., 972 
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2017). We should seriously consider new strategies for the generation of new biodiversity data, as well as 973 

for the syntheses of the already available data. Multi-taxon field campaigns could provide unique 974 

opportunities for intensive sampling, while optimizing resources, bureaucratic and logistic efforts. 975 

Investments on these activities would be mutually beneficial and worthwhile from a global perspective. 976 

The future of Neotropical biodiversity research depends on extensive collaborations and coordinated 977 

efforts (Baker et al., 2017). 978 
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FIGURES 1957 

 1958 

 1959 

Fig. 1 The Neotropical region and examples of landscapes and taxa. Map generated through the 1960 

remote-sensing ESA GlobCover 2009 project and colored by biome assignments (© ESA 2010 and 1961 

UCLouvain; http://due.esrin.esa.int/page_globcover.php). a) Eastern slopes of the Bolivian Andes, where 1962 

the Amazonian and Andean biotas meet; b) Patagonian mountains of southern Chile, which despite being 1963 

in the temperate zone of South America is home to many Neotropical-derived lineages; c) Iguazu 1964 

waterfalls, where increased humidity create gallery forests within the Open Diagonal domain; d) southern 1965 

grasslands of the Pampas, a naturally open habitat now largely influenced by human activity; e) one of the 1966 

ca. 338 known species of hummingbirds, a conspicuous clade currently restricted to the American 1967 

continent and particularly diverse in the Andes; f) Epidendrum ibaguense, a widespread species in the 1968 

orchid family in which many new Neotropical species are discovered each year; g) an unidentified fly in 1969 
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the inselbergs of southern French Guiana, where basaltic rocks emerge several hundred meters above the 1970 

surrounding Amazonian rainforest: h) Hydrolycus scomberoides, exemplifying the world's richest 1971 

ichthyofauna in the Amazon drainage basin; i) Ameerega flavopicta, a rock-dwelling frog species adapted 1972 

to a region of high seasonality of precipitation; j) a columnar cactus of central Mexico, near the 1973 

northwestern limits of the Neotropical region where low-canopy forests and succulent vegetation build 1974 

vegetation mosaics across the landscape. [Photo credits: a-g, i-j: A.A.; h: J.A.]. 1975 

1976 
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 1977 

Fig. 2 Taxonomic sampling across the world's tropics. Density maps for geo-referenced species 1978 

occurrences available from the Global Biodiversity Information Facility for four organism groups 1979 

between the Tropics of Cancer and Capricorn (23.5 °S to 23.5 °N), showing the main spatial biases of 1980 

taxonomic sampling. All records were cleaned using SpeciesGeoCoder. The figure is shown on a 1981 

cylindrical equal area projection with standard parallels of 11.75 °S and 11.75 °N. The width of each cell 1982 

is consistently 1 degree while the height of each cell is1 degree at the standard parallels, slightly lower at 1983 

the equator and slightly higher at the Tropics of Cancer and Capricorn. The scale is in log10 number of 1984 

records.  1985 
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 1987 

Fig. 3 The complex topography of South America. This map highlights the topographic differences 1988 

across the continent, major mountain chains and river basins. Areas colored in blue are sedimentary 1989 

basins in the Andean foreland; areas colored in yellow are topographic barriers (or 'highs') that divide 1990 

these basins and define the Amazon drainage basin in its higher reaches. Base map created by Paulo Petry 1991 

from the Shuttle Radar Topography Mission with elevations in meters. Note that the scale exaggerates 1992 

differences at lower elevations. 1993 

1994 
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 1995 

Fig. 4 Main evolutionary and ecological processes contributing to the formation of species richness. 1996 

The regional species pool (light gray box) is defined as the sum of all the local species assemblages 1997 

(darker gray box). Black arrows indicate processes that increase species richness, red arrows processes 1998 

that reduce species richness. Note the hierarchical organization of processes resulting in species richness, 1999 

with evolutionary processes occurring over regional to continental spatiotemporal scales and ecological 2000 

processes occurring over local scales. Speciation and dispersal contribute new species to the regional 2001 

pool, while extinction removes species. Dispersal mediated by abiotic habitat filtering and biotic 2002 

facilitation (Kraft et al., 2014) increase the richness of local assemblages by enhancing establishment of 2003 

species preadapted to local conditions, or aiding in the establishment of other species. Biotic interactions 2004 

such as predation and competition may serve to reduce local richness. Diagram modified from Ricklefs 2005 

and Schluter (1993).  2006 
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TABLES 2007 

 2008 

Table 1. The various components of Neotropical biodiversity, major aspects known about them, and key 2009 

topics that remain to be understood.  2010 

Biodiversity	components Known	knowns Known	unknowns Unknown	unknowns

Taxonomic	diversity	(i.e.,	species	

numbers)

Approximate	species	numbers	for	

macroscopic	organisms;	human	impact	

tends	to	decrease	overall	diversity

Large	portions	of	biodiversity	are	

unexplored	(i.e.,	microbes,	

invertebrates,	fungi)

Taxonomic	units	used	in	biodiversity	

studies	may	be	unequal

Genetic	diversity	(within	species)
Patterns	of	genetic	diversity	for	very	

selected	taxa
Overall	patterns	of	genetic	diversity

How	generalizable	are	conclusions	drawn	

by	such	limited	patterns	of	genetic	diversity

Phylogenetic	diversity
General	understanding	of	the	Tree	(or	

Network)	of	Life
Drivers	of	diversification

Potential	biases	in	phylogeny	

reconstruction	and	time-calibration

Spatial	patterns	of	diversity

Hotspots	and	general	patterns	of	

species	richness	and		diversity;		large	

scale	species	ranges	for	charismatic	

taxa

Areas	of	endemism;	known	patterns	

of	biodiversity	distributions	are	

biased;	ecological	preferences	of	

species;	drivers	of	spatial	patterns	of	

diversity

Human	impact	to	overall	spatial	patterns

Functional	diversity	(traits) Large	scale	productivity	patterns Biotic	interactions

Relevance	of	current	functional	diversity	

measures;	equivalency	in	functional	traits;	

relationship	between	current	and	future	

functional	diversity
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