A peer-reviewed version of this preprint was published in PeerJ on 19 December 2017.

View the peer-reviewed version (peerj.com/articles/4178), which is the preferred citable publication unless you specifically need to cite this preprint.

https://doi.org/10.7717/peerj.4178
Profiling soil microbial communities with next-generation sequencing: the influence of DNA kit selection and technician technical expertise

Taha Soliman Corresp., Sung-Yin Yang, Tomoko Yamazaki, Holger Jenke-Kodama

1 Microbiology and Biochemistry of Secondary Metabolites Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
2 National Institute of Oceanography and Fisheries, 11516 Cairo, Egypt

Corresponding Author: Taha Soliman
Email address: tahasoliman2000@yahoo.com

Structure and diversity of microbial communities are an important research topic in biology, since microbes play essential roles in the ecology of various environments. Different DNA isolation protocols can lead to data bias and can affect results of next-generation sequencing. To evaluate the impact of protocols for DNA isolation from soil samples and also the influence of individual handling of samples, we compared results obtained by two researchers (R and T) using two different DNA extraction kits: (1) MO BIO PowerSoil® DNA Isolation kit (MO_R and MO_T) and (2) NucleoSpin® Soil kit (MN_R and MN_T). Samples were collected from six different sites on Okinawa Island, Japan. For all sites, differences in the results of microbial composition analyses (bacteria, archaea, fungi, and other eukaryotes), obtained by the two researchers using the two kits, were analyzed. For both researchers, the MN kit gave significantly higher yields of genomic DNA at all sites compared to the MO kit (ANOVA; P <0.006). In addition, operational taxonomic units for some phyla and classes were missed in some cases: Micrarchaea were detected only in the MN_T and MO_R analyses; the bacterial phylum Armatimonadetes was detected only in MO_R and MO_T; and WIM5 of the phylum Amoebozoa of eukaryotes was found only in the MO_T analysis. Our results suggest the possibility of handling bias; therefore, it is crucial that replicated DNA extraction be performed by at least two technicians for thorough microbial analyses and to obtain accurate estimates of microbial diversity.
Profiling soil microbial communities with next-generation sequencing: the influence of DNA kit selection and technician technical expertise

Taha Soliman1,2*, Sung-Yin Yang1, Tomoko Yamazaki1, Holger Jenke-Kodama1

1Okinawa Institute of Science and Technology Graduate University, Microbiology and Biochemistry of Secondary Metabolites Unit, 1919-1 Tancha, Onna-son, Kunigami, Okinawa 904-0495, Japan

2National Institute of Oceanography and Fisheries, 11516 Cairo, Egypt

*Taha Soliman
E-mail: tahasoliman2000@yahoo.com
Phone: +818027077341
Abstract

Structure and diversity of microbial communities are an important research topic in biology, since microbes play essential roles in the ecology of various environments. Different DNA isolation protocols can lead to data bias and can affect results of next-generation sequencing. To evaluate the impact of protocols for DNA isolation from soil samples and also the influence of individual handling of samples, we compared results obtained by two researchers (R and T) using two different DNA extraction kits: (1) MO BIO PowerSoil® DNA Isolation kit (MO_R and MO_T) and (2) NucleoSpin® Soil kit (MN_R and MN_T). Samples were collected from six different sites on Okinawa Island, Japan. For all sites, differences in the results of microbial composition analyses (bacteria, archaea, fungi, and other eukaryotes), obtained by the two researchers using the two kits, were analyzed. For both researchers, the MN kit gave significantly higher yields of genomic DNA at all sites compared to the MO kit (ANOVA; P <0.006). In addition, operational taxonomic units for some phyla and classes were missed in some cases: Microarchaea were detected only in the MN_T and MO_R analyses; the bacterial phylum Armatimonadetes was detected only in MO_R and MO_T; and WIM5 of the phylum Amoebozoa of eukaryotes was found only in the MO_T analysis. Our results suggest the possibility of handling bias; therefore, it is crucial that replicated DNA extraction be performed by at least two technicians for thorough microbial analyses and to obtain accurate estimates of microbial diversity.

Keywords: Soil, microbes, DNA extraction, commercial kits, Amplicon
1. Introduction

Determining microbial community structures of environmental samples by means of amplicon next-generation sequencing (NGS) is an important technique in fields such as agriculture, ecology, and human health. Deep sequencing and the capacity to sequence multiple samples make metagenomic sequencing technologies very attractive for exploring microbial species diversity (Hamady et al. 2008; Pinto & Raskin 2012; Sogin et al. 2006). However, for all NGS approaches, the first crucial step is isolation of DNA, since any bias introduced in this step will affect the final results, although additional biases can also be introduced subsequently by different sequencing protocols, databases, and data analysis using different algorithms.

Microbial communities in soil participate in diverse ecological interactions between organisms and in biogeochemical processes of nutrient mobilization, decomposition, and gas fluxes (Urbanova et al. 2011). Therefore, metagenomic studies of soil communities are very important to understand these processes. However, compared to aquatic environments, DNA isolation from soil is particularly challenging due to its physicochemical and biological properties, as well as the presence of compounds that inhibit the polymerase chain reaction (Hata et al. 2011; Iker et al. 2013). Three factors need to be considered for a full metagenomic analysis of soils: soil sampling, DNA extraction from microbes in the soil, and data analysis (Bakken 1985; Lombard et al. 2011). In principle, there are two approaches to DNA isolation. The indirect method first isolates the microorganisms and in the next step, DNA is extracted from the isolates. In the direct method, DNA extraction is conducted without prior isolation of the target organisms. Direct DNA extraction from soils is faster and more accurate than indirect extraction (Knauth et al. 2013); therefore, it is now used exclusively. Further improvements of current techniques are important for at least two reasons. First, metagenomics-based community studies
must be reproducible within the same laboratory and between different laboratories in order for results to be comparable. Second, even small differences in community composition need to be reproducible, because many bacterial, archaeal, fungal, and other eukaryotic species have yet to be discovered (Taberlet et al. 2012). Hence, bias resulting from DNA isolation must be minimized.

Several studies on this topic have been published recently. Most have analyzed only the quantity and quality of the DNA isolated by various methods (Dineen et al. 2010; Knauth et al. 2013; Mahmoudi et al. 2011; Tanase et al. 2015). Two studies demonstrated that different isolation methods and the use of different commercial kits can influence sequencing results and community analysis, but they focused on bacterial 16S rRNA genes (Bag et al. 2016; Zielińska et al. 2017). We have considerably extended those investigations by assessing not only the quality and quantity of the isolated DNA, but also the sequencing outcome and the results of the final bioinformatics analysis of community structure. Furthermore, we have analyzed not only bacterial communities, but also archaea, fungi, and other eukaryotes.

This study evaluated the effectiveness of two commercial DNA isolation kits (MO BIO PowerSoil® DNA and NucleoSpin® Soil) and also variation in results attributable to skill level differences among technicians (R and T). These factors were evaluated to identify potential bias resulting from different kits and their handling, in order to optimize protocols for analysis of soil microbial communities.

2. **Materials and methods**

2.1. **Sampling and DNA extraction**
Soil samples were collected from six locations [Masoho (A), Manzamo_1 (B), Manzamo_2 (C), Iriomote (D), Haemidanohama (E) and Kohamajima (F)] in Okinawa Prefecture, Japan (Table 1). Each dry soil sample was mixed well and frozen in sterilized Falcon tubes at -20 °C until use. Two researchers (R and T) independently extracted total DNA in triplicate from soil samples using commercially available MO BIO PowerSoil® DNA Isolation (MO BIO Laboratories, Carlsbad, CA, USA) and NucleoSpin® Soil (Macherey-Nagel, Düren, Germany) kits. Researchers R and T both handled all samples in the same way. For each sample, 0.25 g of soil were used as starting material. All steps of DNA isolation were conducted according to the respective manufacturer’s protocols. Of the two buffers supplied with the MN kit, we used buffer SL1 with enhancer for DNA isolation from all MN samples because it consistently yielded the best DNA extraction results. Detailed protocols for the two kits are available online at https://mobio.com/media/wysiwyg/pdfs/protocols/12888.pdf and http://www.mn-net.com/Portals/8/attachments/Redakteure_Bio/Protocols/Genomic%20DNA/UM_gDNASoil.pdf, respectively. Both researchers had equal and ample experience with DNA extraction methods and used the same equipment for all steps. DNA concentration and purity of all samples were determined using a Nanodrop spectrophotometer ND 2000 (Nano-Drop Technologies, Wilmington, DE, USA). Whereas DNA extraction experiments were conducted independently by two researchers, all other steps, such as PCR amplification, purification of PCR products, library preparation, and sequencing, were conducted by only one researcher so as to avoid additional variation in the other steps. Triplicate total DNA samples were barcoded, pooled, and mixed well in one tube.

2.2. PCR amplifications and sequences
PCR amplifications employed primer sets that targeted the 16S rRNA gene of bacteria and archaea, an internal transcribed spacer (ITS) region of fungi, and the 18S rRNA gene of other eukaryotes (Table 1). PCR amplification was carried out in a total volume of 20 µL containing 40 ng (10 ng/µL) microbial template genomic DNA, 0.6 µL (10 µM) each of forward and reverse primers, 4.8 µL PCR-grade water and 10 µL 2× KAPA HiFi HotStart ReadyMix (Kapa Biosystems, Boston, MA, USA). PCR conditions were as follows: 95°C for 5 min (initial denaturing step), 30 cycles of 20 s at 98°C, 20 s at 58°C, and 30 s at 72°C, followed by a final extension step at 72°C for 5 min. Amplicons were quality-tested and size-selected using gel electrophoresis (1.2% (w/v) agarose concentration and 1x TAE run buffer). All PCR was conducted after pooling triplicate samples of total DNA isolates. PCR products were cleaned-up using AMPure XP beads (Agencourt ®AMPure ®XP kit, Beckman Coulter, USA) according to the Illumina MiSeq protocol for amplicon preparation. The following steps of library preparation and sequencing were performed by the DNA sequencing section of the Okinawa Institute of Science and Technology (OIST) Graduate University. Sequencing was done on an Illumina MiSeq using MiSeq Reagent Kit V3.

2.3. Data analyses

Analysis of variance (ANOVA) was performed using IBM SPSS v21.0.0, with a significance level of P < 0.05 for differences in DNA concentrations and purities derived from the two kits (MO & MN) and two researchers (R & T). We created four groups (MNR, MNT, MOR, MOT) of raw read sequences for the ANOVA test. We used FastQC v0.11.4 (Andrews 2010) to assess the quality of raw fastq data files produced by the MiSeq. High-throughput sequences were imported into CLC Genomics Workbench v8.5.1 (QIAGEN, Aarhus A/S, http://www.clcbio.com) according to quality scores of Illumina pipeline 1.8. In order to achieve
the highest quality sequences for clustering, paired reads were merged in CLC microbial
genomics module v1.1 using default settings (mismatch cost = 1; minimum score = 40; Gap cost
= 4 and maximum unaligned end mismatch = 5). Primer sequences were trimmed from merged
reads using default parameters (trim using quality scores = 0.05 and trim ambiguous nucleotides
= 2), and samples were filtered according to the number of reads. Sequences were clustered and
chimeric sequences detected using CLC microbial genomics module v1.1 at a level of similarity
97% of operational taxonomic unit (OTU). Reference OTU data used in the present study were
downloaded from the Greengenes database (DeSantis et al. 2006) for 16S rRNA (bacteria and
archaea), the Unite database (Koljalg et al. 2013) for ITS (fungi), and the Silva database (Quast
et al. 2013) for 18S rRNA (other eukaryotes). Alpha rarefaction curve and principle component
analysis (PCoA) plots were generated among samples using CLC Microbial Genomics Module
v1.1. Raw sequences data were submitted to GenBank under accession numbers SRR5286108 -
SRR5286131.

3. Results

For all locations except B and D, both researchers obtained higher DNA yields with the
MN kit than with the MO kit (ANOVA, p < 0.00) (Table 2). The amount of DNA extracted by
researcher R was greater than that extracted by researcher T for all samples using the MO kit
(Table 2). Furthermore, the MN kit showed variation in DNA concentration between researchers
R and T among samples. Researcher R obtained greater DNA yields from locations A, C, E, and
F, whereas researcher T obtained higher yields from locations B and D (Table 2), but these
differences were not significant (p<0.50). DNA quality, as judged by the 260/280 nm absorption
ratio showed relatively small and insignificant differences between kits (MN and MO) (p<0.50)
and between researchers (R and T) \(p<0.50 \) for all sample locations (Table 2). Differences in the number of final sequence reads among archaeal sequences were significant \(p < 0.00 \) between researchers R and T, but insignificant regarding the two kits (MN and MO) \(p<0.50 \).

In most cases, DNA samples extracted by researcher T produced fewer sequence reads than those by researcher R for both kits across all microbial communities \(p < 0.05 \) (bacteria: \(P < 0.0000 \); archaea: \(P < 0.00 \); fungi: \(P < 0.50 \) ; other eukaryotes: \(p < 0.00 \)) (Table 3).

We calculated OTUs for all samples defined by 97% sequence identity among the four groups of organisms, i.e. bacteria, archaea, fungi, and other eukaryotes. Taxonomic assignments of bacterial OTUs at the phylum level were dominated by Proteobacteria (32.2%), Acidobacteria (18.9%), Actinobacteria (13.7%), Planctomycetes (8.6%), Bacteroidetes (7.3%), Verrucomicrobia (6.8%), and Chloroflexi (6.0%) across all samples (Fig. 1). Archaeal taxonomic composition at the phylum level included 93.5% Crenarchaeota, 2.4% Euryarchaeota, and 1.5% Parvarchaeota, across all samples. However, the class level composition of archaea was Thaumarchaeota (91.9%), Parvarchaea (1.5%), Crenarchaeota_MCG (1.4%), and Methanomicrobia (1.2%) across all samples (Fig. 2). Calculations of relative abundance showed low differences with both kits and researchers \(p < 0.05 \). Among fungi, the dominant phyla were Ascomycota (41.5%), unidentified fungi (22.7%), and Basidiomycota (7.4%) across the various locations (Fig. 3). The most abundant other eukaryotic classes among all locations were Opisthokonta Fungi (33.5%), Opisthokonta Metazoa (18.3%), Alveolata (17.3%), and Rhizaria (9.9%) (Fig. 4).

Interestingly, we found a high percentage of no-blast hits for fungal communities for researcher R using both kits at locations D (46.4%), E (99.9%), and F (99.5%), and two locations for researcher T when the MN kit was used \(C = 45.5\% ; \ F = 51.5\% \) (Fig. 3). The relative
abundance of Micrarchaea was shown only by researcher T (both kits and OTUs of Amoebozoa).

WIM5 for eukaryotic communities was also detected by the same researcher (T), but only with
the MO kit. In addition, OTUs of Armatimonadetes were detected only by researcher T and only
with the MO kit. Alpha rarefaction plots suggest that species diversity between archaeral and
fungal communities were the same with both kits (MN and MO), but differed by researcher (Fig.
5). For bacterial and eukaryotic communities, the alpha diversity rarefaction curve was relatively
similar for both researchers, but differed between kits (Fig. 5). Principle component analysis
(PC) showed clusters of each sample for bacteria and archaea with slight differences between
kits and researcher (Fig. 6a and b). However, with the MO kit and researcher T, fungi and other
eukaryotes showed significant difference among soil samples (Fig. 6c and d).

4. Discussion

Selection of a DNA extraction kit and protocol is crucial to achieve consistent results for
microbial community analysis using NGS technology. Many studies have examined the
composition of microbial taxonomic groups in soils and have claimed that unbiased DNA
extraction kits and methods are necessary to obtain accurate results (Claassen et al. 2013; Cruaud
et al. 2014; Deiner et al. 2015; McOrist et al. 2002; Tang et al. 2008; Vishnivetskaya et al. 2014).
In this study, we investigated the impact of handling methods and DNA extraction kits among
four microbial communities (bacteria, archaea, bacteria, fungi, and other eukaryotes). The two
DNA kits showed clear differences in DNA yield for both kits (MO and MN) and researchers (R
and T). The MN kit produced a higher DNA yield overall. This result may be due to the bead-
beating protocol, the type of beads, and differences in the chemical reagents of the two kits.
Knauth et al. (2013) and Finley et al. (2016) reported that for soil, the MN kit yielded more DNA
than other kits [(FastDNA® SPIN kit (MP Biomedicals, Solon, OH, USA), the NucleoSpin® soil kit (Macherey-Nagel, Duren, Germany), and the innu-SPEED soil DNA kit (Analytik Jena AG, Jena, Germany)). In addition, researcher T obtained lower DNA yields than researcher R for most locations using both kits.

We found that the type of kit and handling both affect the DNA yield from soil samples. Some previous studies on soils and feces have shown that the type of DNA isolation kit used significantly affected the results of microbial community analysis and that higher yields of genomic DNA produced a more comprehensive picture of microbial communities (Knauth et al., 2013; Claassen et al., 2013; Ariefdjohan et al., 2010). In contrast, our finding using the Illumina MiSeq platform showed that the MO kit yielded a greater abundance of OTUs. Mackenzie et al. (2015) reported that the most effective DNA extraction kit for the human gut microbiome is MO, because of the quality of the DNA it produces. Our results differ from those of some previous studies, possibly due to differences between the Denaturing Gradient Gel Electrophoresis (DGGE) and MiSeq techniques (Knauth et al., 2013; Claassen et al., 2013; Ariefdjohan et al., 2010). As per DNA isolation protocols, the MN kit has two different spin columns: a red ring spin column to remove inhibitors such as humic substances, and a green ring spin column to wash and bind DNA. So, for both kits, the richness of OTU profiles of microbial communities may differ depending upon the spin column type. Pooling DNA extractions from individual soil samples increased OTU richness (Song et al. 2015). Triplicate DNA extractions using different handling methods for replicates with the same kit have been recommended to avoid biases of NGS analysis and to enhance richness by isolating more unique OTUs. Our results with both DNA extraction kits yielded similar DNA purity among samples and relatively similar OTU compositions. Therefore, both kits can be used for DNA extraction from soil.
5. Conclusions

Our findings indicate that the type of DNA isolation kits used and laboratory handling of samples both influence the results of microbial soil community analysis. However, the yield of extracted DNA and the numbers of raw reads sequenced have a significant impact on the number of OTUs across all communities. We recommend that microbial DNA isolation be done in triplicate by at least two persons to obtain more accurate results when using amplicon sequences (Illumina-MiSeq).

Conflict of Interest

The authors declare no conflict of interest.

Acknowledgments

We thank Dr. Hiroki Goto and members of OIST DNA Sequencing Section, Okinawa, Japan, for their help with library preparation and sequencing. This work was supported by internal grant of Okinawa Institute of Science and Technology Graduate University (OIST). The authors are grateful for the help of Professor Steven D. Aird in the editing of this study.
References

Table 1 (on next page)

Tables
Table 1. Next-generation primers used for PCR amplification of samples of soil microbial communities.

<table>
<thead>
<tr>
<th>Marker</th>
<th>Size</th>
<th>Primer’s Name</th>
<th>Sequence</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>16S rRNA (bacteria)</td>
<td>460bp</td>
<td>Bakt_341F</td>
<td>5’-CCTACGCGGCCGCGCAG-3’</td>
<td>Herlemann et al. (2011)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bakt_805R</td>
<td>5’-GACTACHVGGGTATCTTAATCC-3’</td>
<td></td>
</tr>
<tr>
<td>16S rRNA (archaea)</td>
<td>570bp</td>
<td>340F</td>
<td>5’-CCCTAYGCGGYGCASCAG-3’</td>
<td>Gantner et al. (2011)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>915R</td>
<td>5’-GTGCTCCCCCGCAATTCC-3’</td>
<td>Stahl and Amann (1991)</td>
</tr>
<tr>
<td>ITS (fungi)</td>
<td>330bp</td>
<td>ITS3</td>
<td>5’-GCATCGATGAAGAACGCAG-3’</td>
<td>(White et al., 1990)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ITS4</td>
<td>5’-TCCTCCGCTATTGATATGC-3’</td>
<td></td>
</tr>
<tr>
<td>18S rRNA (other eukaryotes)</td>
<td>165bp</td>
<td>1380F</td>
<td>5’-CCCTGCGCTTTGTACACAC-3’</td>
<td>Amaral-Zettler et al. (2009)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1510R</td>
<td>5’-CCTTCYGCAGTCCTAC-3’</td>
<td></td>
</tr>
</tbody>
</table>
Table 2. Average DNA concentrations and purities (A260/280) when the same samples were prepared by
two researchers (R and T) using two different kits (MO and MN).

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Masoho (A)</td>
<td>26°29'58.1"N - 127°51'13.9"E</td>
<td>42</td>
<td>1.81</td>
<td>13.60</td>
<td>1.85</td>
<td>106</td>
<td>1.81</td>
<td>77.73</td>
<td>1.77</td>
</tr>
<tr>
<td>Manzamo_1 (B)</td>
<td>26°30'13.8"N - 127°50'56.0"E</td>
<td>29</td>
<td>1.78</td>
<td>11.97</td>
<td>1.88</td>
<td>27</td>
<td>1.74</td>
<td>61.00</td>
<td>1.78</td>
</tr>
<tr>
<td>Manzamo_2 (C)</td>
<td>26°30'09.9"N - 127°50'57.7"E</td>
<td>131</td>
<td>1.83</td>
<td>66.83</td>
<td>1.82</td>
<td>206</td>
<td>1.87</td>
<td>170.17</td>
<td>1.82</td>
</tr>
<tr>
<td>Iriomote (D)</td>
<td>24°20'29.8"N - 123°48'59.7"E</td>
<td>17</td>
<td>1.78</td>
<td>7.27</td>
<td>1.79</td>
<td>4</td>
<td>1.40</td>
<td>32.37</td>
<td>1.50</td>
</tr>
<tr>
<td>Haemidanohama (E)</td>
<td>24°16'28.0"N - 123°49'49.7"E</td>
<td>54</td>
<td>1.79</td>
<td>37.60</td>
<td>1.78</td>
<td>122</td>
<td>1.82</td>
<td>124.03</td>
<td>1.81</td>
</tr>
<tr>
<td>Kohamajima (D)</td>
<td>24°20'16.2"N - 123°58'41.4"E</td>
<td>39</td>
<td>1.85</td>
<td>31.93</td>
<td>1.83</td>
<td>136</td>
<td>1.80</td>
<td>167.53</td>
<td>1.83</td>
</tr>
</tbody>
</table>
Table 3. Number of raw and final sequence reads and number of OTUs produced by Illumina-Miseq for each sample from four microbial communities.

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Bacteria</th>
<th>Archaea</th>
<th>Fungi</th>
<th>Other eukaryotes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Raw Reads</td>
<td>Final Reads</td>
<td>OTUs</td>
<td>Raw Reads</td>
</tr>
<tr>
<td>MNR_A</td>
<td>58,682</td>
<td>9,529</td>
<td>3,200</td>
<td>74,411</td>
</tr>
<tr>
<td>MNT_A</td>
<td>32,719</td>
<td>10,199</td>
<td>3,002</td>
<td>36,113</td>
</tr>
<tr>
<td>MOR_A</td>
<td>63,502</td>
<td>11,992</td>
<td>3,561</td>
<td>48,996</td>
</tr>
<tr>
<td>MOT_A</td>
<td>58,667</td>
<td>7,399</td>
<td>2,118</td>
<td>48,851</td>
</tr>
<tr>
<td>MNR_B</td>
<td>58,981</td>
<td>11,050</td>
<td>2,798</td>
<td>45,601</td>
</tr>
<tr>
<td>MNT_B</td>
<td>32,719</td>
<td>10,199</td>
<td>3,002</td>
<td>36,113</td>
</tr>
<tr>
<td>MOR_B</td>
<td>63,502</td>
<td>11,992</td>
<td>3,561</td>
<td>48,996</td>
</tr>
<tr>
<td>MOT_B</td>
<td>58,667</td>
<td>7,399</td>
<td>2,118</td>
<td>48,851</td>
</tr>
<tr>
<td>MNR_C</td>
<td>44,271</td>
<td>8,415</td>
<td>2,504</td>
<td>46,674</td>
</tr>
<tr>
<td>MNT_C</td>
<td>35,861</td>
<td>9,623</td>
<td>2,793</td>
<td>38,853</td>
</tr>
<tr>
<td>MOR_C</td>
<td>50,662</td>
<td>8,958</td>
<td>2,666</td>
<td>47,424</td>
</tr>
<tr>
<td>MOT_C</td>
<td>42,661</td>
<td>3,388</td>
<td>1,532</td>
<td>43,081</td>
</tr>
<tr>
<td>MNR_D</td>
<td>52,920</td>
<td>8,459</td>
<td>2,588</td>
<td>53,194</td>
</tr>
<tr>
<td>MNT_D</td>
<td>37,575</td>
<td>12,216</td>
<td>3,418</td>
<td>30,354</td>
</tr>
<tr>
<td>MOR_D</td>
<td>50,016</td>
<td>8,845</td>
<td>2,733</td>
<td>47,615</td>
</tr>
<tr>
<td>MOT_D</td>
<td>40,872</td>
<td>6,922</td>
<td>2,030</td>
<td>28,914</td>
</tr>
<tr>
<td>MNR_E</td>
<td>49,085</td>
<td>9,420</td>
<td>2,519</td>
<td>66,897</td>
</tr>
<tr>
<td>MNT_E</td>
<td>34,320</td>
<td>12,379</td>
<td>2,840</td>
<td>21,081</td>
</tr>
<tr>
<td>MOR_E</td>
<td>64,427</td>
<td>25,205</td>
<td>1,091</td>
<td>43,969</td>
</tr>
<tr>
<td>MOT_E</td>
<td>48,553</td>
<td>8,239</td>
<td>2,236</td>
<td>34,350</td>
</tr>
<tr>
<td>MNR_F</td>
<td>59,352</td>
<td>10,475</td>
<td>3,161</td>
<td>44,781</td>
</tr>
<tr>
<td>MNT_F</td>
<td>31,802</td>
<td>7,923</td>
<td>2,649</td>
<td>32,555</td>
</tr>
<tr>
<td>MOR_F</td>
<td>58,397</td>
<td>8,275</td>
<td>2,714</td>
<td>58,488</td>
</tr>
<tr>
<td>MOT_F</td>
<td>36,092</td>
<td>4,621</td>
<td>1,856</td>
<td>53,440</td>
</tr>
</tbody>
</table>

MN; NucleoSpin® Soil Kit, MO; PowerSoil® DNA Isolation Kit, R; Researcher R, T; Researcher T, and A-F samples id.
Figure 1 (on next page)

Figures
Fig. 1. Relative abundance of OTUs of bacterial microbial communities (phyla). MN; NucleoSpin® Soil Kit, MO; PowerSoil® DNA Isolation Kit, R; Researcher R, T; Researcher T, B; Bacteria and A-F sample locations.
Fig. 2. Relative abundance of OTUs for classes of archaeal microbial communities. MN; NucleoSpin® Soil Kit, MO; PowerSoil® DNA Isolation Kit, R; Researcher R, T; Researcher T, A; Archaea A-F sample locations.
Fig. 3. Relative abundance of OTUs of fungal microbial communities (classes). MN; NucleoSpin® Soil Kit, MO; PowerSoil® DNA Isolation Kit, R; Researcher R, T; Researcher T, F; Fungi and A-F sample locations.
Fig. 4. Relative abundance of OTUs among classes of other eukaryotic microbial communities. MN; NucleoSpin® Soil Kit, MO; PowerSoil® DNA Isolation Kit, R; Researcher R, T; Researcher T, E; Eukaryotes and A-F sample locations.
Fig. 5. Alpha rarefaction plots between Kits (MN and MO) and researchers (R and T) among four microbial communities. MN; NucleoSpin® Soil Kit, MO; PowerSoil® DNA Isolation Kit, R; researcher R, T; researcher T.
Fig. 6. Principal component analysis (PCA) plots of OTUs among kits and researchers. MN; NucleoSpin® Soil Kit, MO; PowerSoil® DNA Isolation Kit, R; Researcher R, T; Researcher T.