
 

A peer-reviewed version of this preprint was published in PeerJ
on 9 February 2018.

View the peer-reviewed version (peerj.com/articles/4363), which is the
preferred citable publication unless you specifically need to cite this
preprint.

Kontopoulos D-G, García-Carreras B, Sal S, Smith TP, Pawar S. 2018. Use
and misuse of temperature normalisation in meta-analyses of thermal
responses of biological traits. PeerJ 6:e4363
https://doi.org/10.7717/peerj.4363

https://doi.org/10.7717/peerj.4363
https://doi.org/10.7717/peerj.4363


Use and misuse of temperature normalisation in

meta-analyses of thermal responses of biological traits

Dimitrios - Georgios Kontopoulos1,2,∗

Bernardo Garcı́a-Carreras2

Sofı́a Sal2

Thomas P. Smith2

Samraat Pawar2

3

1. Science and Solutions for a Changing Planet DTP;

2. Department of Life Sciences, Imperial College London, Silwood Park, Ascot, Berkshire SL5

7PY, UK;6

∗ Corresponding author; e-mail: d.kontopoulos13@imperial.ac.uk.

1

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3068v1 | CC BY 4.0 Open Access | rec: 3 Jul 2017, publ: 3 Jul 2017



Abstract

There is currently unprecedented interest in quantifying variation in thermal physiology9

among organisms in order to understand and predict the biological impacts of climate change.

A key parameter in this quantification of thermal physiology is the performance or value of

a trait, across individuals or species, at a common temperature (temperature normalisation).12

An increasingly popular model for fitting thermal performance curves to data – the Sharpe-

Schoolfield equation – can yield strongly inflated estimates of temperature-normalised trait

values. These deviations occur whenever a key thermodynamic assumption of the model is15

violated, i.e. when the enzyme governing the performance of the trait is not fully functional

at the chosen reference temperature. Using data on 1,758 thermal performance curves across

a wide range of species, we identify the conditions that exacerbate this inflation. We then18

demonstrate that these biases can compromise tests to detect metabolic cold adaptation, which

requires comparison of fitness or trait performance of different species or genotypes at some

fixed low temperature. Finally, we suggest alternative methods for obtaining unbiased esti-21

mates of temperature-normalised trait values for meta-analyses of thermal performance across

species in climate change impact studies.

Keywords: Sharpe-Schoolfield, model, thermal response, trait, rate, physiology, temperature.24

Introduction

A rapidly growing body of empirical and theoretical research shows that climate change is likely

to influence the dynamics of populations, communities and ecosystems by impacting the thermal27

physiology of individual organisms (Brown et al. 2004; Pörtner et al. 2006; Dell et al. 2011; Hoff-

mann and Sgrò 2011; Schulte et al. 2011; Garcia et al. 2014; Pawar et al. 2015). Therefore, to

be able to predict climate change impacts, it is important to understand how biological traits such30

as respiration, photosynthesis, and population growth rate respond to changes in environmental

temperature (the thermal performance curve, TPC; fig. 1).
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The TPCs of fundamental biological rates (traits) are unimodal, and trait-value versus temper-33

ature data are typically well-fitted by mathematical models that quantify four key features of the

response: the temperature where the performance peaks (Tpk), the trait performance at a reference

temperature (B0), typically well below Tpk within its operational temperature range (Pawar et al.36

2016), the rise of the trait up to Tpk (E), and the fall after Tpk (ED) (fig. 1). The normalised trait

value B0 is particularly important, as it allows trait performance to be standardised for comparison

across individuals and species (Gillooly et al. 2001). In particular, comparisons of normalised trait39

values at a reference temperature between species are key for studying metabolic cold adaptation

(MCA; e.g., see Seibel et al. 2007; White et al. 2012).

Mechanistic models that explicitly link the trait’s value to the temperature-dependence of the42

underlying biochemical kinetics (e.g., Johnson and Lewin 1946; Sharpe and DeMichele 1977;

Schoolfield et al. 1981; Ikemoto 2005; Corkrey et al. 2012; Hobbs et al. 2013; DeLong et al. 2017)

are becoming increasingly popular for quantifying empirically observed TPCs (Hochachka and45

Somero 2002). Among these, the Sharpe-Schoolfield model (Schoolfield et al. 1981) has been

frequently used in recent studies to address both ecological and evolutionary questions about the

effects of temperature change on individuals, populations, and communities (Barmak et al. 2014;48

Barneche et al. 2014; Fand et al. 2014; Simoy et al. 2015; Barneche et al. 2016; Padfield et al.

2016; Vimercati et al. 2016). In particular, the B0 calculated from fitting this model to TPC data

has been used to compare the trait performance of different species (e.g., Wohlfahrt et al. 1999),51

treatments (e.g., Padfield et al. 2016), or developmental stages (e.g., Hopp and Foley 2001) at a

reference temperature, Tref. However, the implicit assumption made by these studies, that B0 is

exactly the normalised trait value at Tref, is only valid under certain conditions (see next section),54

and may in fact heavily overestimate the actual trait value at that temperature (Schoolfield et al.

1981) (fig. 1).

Here, we study the likely incidence of this overestimation of the normalised B0 obtained by57

fitting the Sharpe-Schoolfield model to data. To this end, we investigate the conditions under which

this overestimation becomes particularly pronounced by analysing 1,758 real thermal performance

3

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3068v1 | CC BY 4.0 Open Access | rec: 3 Jul 2017, publ: 3 Jul 2017



curves across diverse ectotherm species and traits. We then show how conclusions based upon60

biased B0 estimates can compromise the results of an important application of TPC models —

detecting metabolic cold adaptation. Finally, we present alternative methods for obtaining realistic

estimates of trait performance at a reference temperature under different scenarios of usage of the63

model.

The Sharpe-Schoolfield model

The Sharpe-Schoolfield model proposes that the effect of temperature on the performance of a66

biological rate largely reflects the thermal sensitivity of a single rate-limiting enzyme that becomes

deactivated at both extreme-high and low temperatures (Schoolfield et al. 1981). Because low-

temperature enzyme inactivation is hard to detect, a simpler version of the full model that ignores69

low-temperature enzyme inactivation is most often used (fig. 1):

B(T ) = B0 ·
e

−E

k
·

(

1

T
−

1

Tref

)

1+ e

ED

k
·

(

1

Th

−

1

T

) . (1)

Here, B is the value of the trait at a given temperature T (K), E is the activation energy (eV), which

controls the rise of the curve up to the peak, ED is the de-activation energy (eV), which sets the rate72

at which the trait falls after the peak, Th (K) is the temperature at which 50% of the enzyme units

are inactive, and k is the Boltzmann constant (8.617 ·10−5 eV · K−1). B0 is the value of the trait at

a reference (normalisation) temperature Tref – i.e., B0 ≈ B(Tref) – assuming enzyme units are fully75

operational at that temperature. The model can also be reformulated without normalisation, but

then B0 would lose any biological meaning (see section A2.1 in Appendix A).

Schoolfield et al. (1981) originally suggested using Tref = 25◦C, a choice they considered appro-78

priate for most poikilotherm species. This suggestion has frequently been followed (e.g., Ungerer

et al. 1999; Hopp and Foley 2001; Depinay et al. 2004; Barmak et al. 2014; Nealis and Régnière
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2014; Kang et al. 2015; Simoy et al. 2015; Padfield et al. 2016; see also table A1 and fig. A1 in81

Appendix A). However, when non-negligible loss of enzyme activity occurs at Tref – e.g., due to

denaturation or inactivation of some other component of the metabolic pathway – B0 overestimates

the real value of the trait at that temperature (B(Tref)) (Ikemoto 2005). This is particularly problem-84

atic for comparisons of B0 across diverse species, as significant temperature-mediated inactivation

may begin at very different temperatures, potentially leading to different degrees of inaccuracy in

the B0 estimates.87

The inflation of trait value at reference temperature (B0)

We first consider why B0 can be biased. For this, in addition to the parameters in eq. (1) (B0, E,

ED, Th, Tref), two extra parameters need to be defined to capture all aspects of the shape of the TPC:90

the temperature at which the TPC peaks (Tpk), and the performance at that peak (Ppk; see sections

A2.2-3 in Appendix A for their derivations). Setting T = Tref in eq. (1) shows that the amount by

which B0 will deviate from B(Tref) is equal to the denominator of eq. (1):93

B(Tref) = B0 ·
1

1+ e

ED

k
·

(

1

Th

−

1

Tref

) (2)

When Tref is much lower than Th (the temperature at which 50% of the enzyme units become

inactive), B0 ≈ B(Tref) because the denominator ≈ 1. On the other hand, as the chosen Tref ap-

proaches Th, B0 will increasingly deviate from B(Tref). To explore this behavior numerically across96

real TPCs of a single biological rate (for consistency reasons), we compiled a dataset of phyto-

plankton growth rates versus temperature (a combination of the López-Urrutia et al. 2006, Rose and

Caron 2007, Bissinger et al. 2008, and Thomas et al. 2012 datasets), containing 672 species/strains.99

To each TPC in this dataset, we fitted the Sharpe-Schoolfield model across a range of Tref values

(−10◦C to 30◦C) using the nonlinear least-squares method (Levenberg-Marquardt algorithm; com-
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puter code available at https://github.com/dgkontopoulos/Kontopoulos et al temperature normali102

sation 2017). In order to eliminate less reliable fitted parameter estimates, we rejected fits with i)

an R2 below 0.5 or ii) fewer than four data points either before or after Tpk.

Plotting the fold increase of B0 from B(Tref) against the difference of Tref from Th for this dataset105

reveals a negative, nonlinear relationship (fig. 2A). Moreover, in many circumstances, the deviation

of B0 is extreme, becoming even greater than the trait value at or near optimum temperature, Ppk

(fig. 2B).108

Conditions leading to a severely overestimated B0

We next determine the characteristics of TPCs (parameter combinations of the Sharpe-Schoolfield

model) that lead to a severely overestimated B0. This is a complex problem and not just a matter of111

determining the difference between Th and Tref, because the denominator of eq. (2) also includes

the ED parameter. As ED influences the relationship between Th and Tpk (see section A2.2 in

Appendix A), it is necessary to take into account the interplay of Th and Tref with Tpk. To address114

this, we use a machine learning approach to determine the TPC model’s parameter combinations

that lead to strong overestimation, again using a large empirical dataset.

For maximising the power of the machine learning method we used a larger dataset — Biotraits117

(Dell et al. 2013) combined with additional data extracted from the published literature (see section

A4 in Appendix A). We first fitted the Sharpe-Schoolfield model to each empirical TPC in this

dataset. As the dataset is very diverse – including, among others, traits from bacteria, macroalgae,120

and terrestrial plants – we set Tref to 0◦C so that we could obtain reasonable estimates (i.e., at

a temperature below Tpk) of B0 and B(Tref) even for cold-adapted species with low Tpk values.

In total, 1,758 species/individual curves were produced from this dataset. We did not filter the123

results based on goodness of fit metrics because we are interested in all the different parameter

combinations regardless of how well they describe the data. Only curves which estimated B0 or

B(Tref) at values indistinguishable from zero were rejected.126

We then analysed this ensemble of fitted curves through the construction of a conditional in-
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ference tree (Hothorn et al. 2006) from the data. In short, conditional inference trees attempt

to classify a response variable based on combinations of other predictor variables. This is done129

through a tree-like structure (see fig. 3) where terminal nodes (or leaves) are the predicted clas-

sifications, whereas all other nodes up to the root of the tree correspond to predictor variables.

Essentially, each internal node is a decision point in the model at which two alternative paths can132

be followed, depending on the value of the corresponding predictor. The topology of the tree is

constructed through a statistical significance approach, consisting of non-parametric tests for each

particular node, corrected for multiple testing to avoid overfitting. As a result, the predictors are135

unbiased and the model does not require cross-validation, often performed in other classes of mod-

els to prevent overfitting. Overall, conditional inference trees allow identification of complicated

nonlinear associations between a response variable and its predictors, which are otherwise quite138

difficult to distinguish.

In our case, we fitted a conditional inference tree model with a binary response variable: B0

is above or below Ppk. The choice of Ppk as the cutoff was due to the very high classification141

performance of the resulting model, especially when compared to other possible cutoffs (e.g.,

a three-fold increase from B(Tref)) which performed poorly. The predictor variables were the

differences between i) Tpk and Th, ii) Tpk and Tref, and iii) Th and Tref for each fit. The model144

was constrained by setting the maximum allowed p-value at each internal node below 10−10. Its

quality was evaluated with the Matthews correlation coefficient (MCC; Matthews 1975), a metric

often used for machine learning models with a binary response. This metric takes values from −1147

(complete disagreement with data) to 1 (complete agreement with data) and is considered reliable

even when the different response states of the model (in this case B0 > Ppk and B0 < Ppk) are not

evenly sampled. To further ensure that the model was accurate and generalisable, we also estimated150

its performance against a distinct dataset of 405 TPCs (testing dataset). The data for these curves

originated from the literature - similarly to the 1,758 curves - but were not used for training the

model.153

The resulting conditional inference tree consisted of four terminal nodes, with B0 being nearly
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exclusively below or above Ppk in each one of them (fig. 3). The model exhibited high performance

both on the training dataset (MCC = 0.954) and the testing dataset (MCC = 0.824; section A3 in156

Appendix A). The sets of thermal response parameters in which B0 was greater than Ppk almost

always had either a Th − Tref difference that was less than 0.6 (relatively narrow curves), or a

Tpk −Tref difference of 49.1 or lower (relatively wide curves).159

Implications of the inflation for investigations of thermal adap-

tation

Among other ecological and evolutionary questions, the effects of adaptation to different ther-162

mal environments on the shape of the TPC (e.g., see Huey and Kingsolver 1989; Angilletta et al.

2003; Angilletta 2009; Angilletta et al. 2010) can be investigated using estimates from the Sharpe-

Schoolfield model. For example, a study may aim to uncover whether there are any trade-offs165

between performance at lower and higher temperatures by correlating B0 and Tpk (e.g., a negative

correlation would suggest that high performance at warmer temperatures would come at the cost

of lower performance at colder temperatures). Overestimating B0 – especially for cold-adapted168

species with a Th value close to Tref – may potentially introduce such correlations where none

existed, serving as false-positive evidence for the MCA hypothesis.

To explore this possible issue, we generated a synthetic dataset of 1,000 negatively skewed171

TPCs, in which MCA was absent. While a real-world dataset of a trait could also be used for this

purpose (e.g., the phytoplankton growth rates dataset in fig. 2), we resorted to a simulation in order

to obtain a bigger sample and, more importantly, to ensure that the input data were not even in the174

slightest an outcome of MCA. To this end, each curve was obtained by sampling from a distinct

realisation of the beta distribution, with shape parameters that were in turn sampled from normal

distributions (table 1). Curves that were not negatively skewed were removed and new ones were177

produced in their place. We also randomly varied the width and the height of the curves. In this

population of curves, there was no significant association between the performance at a Tref of 7◦C
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(Tref was set below the minimum Tpk of 8.23◦C, but could be set even lower), and the thermal180

optimum (r =−0.03, 95% CI = −0.09 to 0.03, p = 0.35).

We then fitted the Sharpe-Schoolfield model to each synthetic curve and obtained parameter

estimates where possible. To assess the impact of the deviation of B0 from B(Tref), we performed183

two different tests for MCA using B0 and B(Tref) estimates, and compared their results. For the

first test, the estimates were split into two groups: i) those originating from curves with a Tpk less

than 15◦C (from hypothetical cold-adapted species) and ii) those with higher Tpk values. We next186

investigated whether the normalised trait distributions varied between the two groups using the

two-sample Kolmogorov-Smirnov test (Corder and Foreman 2014). The second test was a simple

correlation of normalised trait values with the corresponding Tpk values.189

In total, we were able to obtain thermal response parameter estimates for 968 simulated curves,

as the nonlinear least-squares algorithm failed to converge on solutions for the remaining 32. In

the first test for MCA the distributions of B0 estimates differed between the two groups (D = 0.18,192

p = 1.7 · 10−6), with species adapted to colder temperatures having a higher median value of

B0 (fig. 4A, light blue violin plots). In contrast, the two distributions of B(Tref) estimates were

statistically indistinguishable (D = 0.07, p = 0.21), as expected (fig. 4A, orange violin plots). The195

overestimation of B0 also affected the second MCA test, as a negative correlation between B0 and

Tpk was detected, but not between B(Tref) and Tpk (fig. 4B). These results indicate that the inflation

of B0 can provide false support for the MCA hypothesis, even for datasets with complete absence198

of this pattern.

Discussion

In this paper we have addressed the consequences of estimating the value of a trait at a reference201

temperature, B0, using the Sharpe-Schoolfield model, but without satisfying one of its fundamental

assumptions: that the key enzyme – which is responsible for the temperature dependence of the

trait – is fully functional at the reference temperature. When this assumption is not met, B0 will204
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overestimate the real trait performance at the reference temperature, B(Tref).

We explain how this discrepancy arises and determine the conditions under which it becomes

particularly pronounced using a machine learning approach (fig. 3). This shows that B0 estimates207

will generally exceed the trait performance at the peak of the curve (Ppk) as long as: i) Tpk −Th is

less than ∼ 37.58◦C and Th −Tref is less than ∼ 0.6◦C, or ii) Tpk −Th is greater than ∼ 37.58◦C

and Tpk −Tref is less than ∼ 49.11◦C. In any other case, B0 would most likely be smaller than Ppk,210

although its inflation may well still be of concern.

Using a synthetic dataset, we then demonstrate that wrongly assuming B0 = B(Tref) can lead

to erroneous conclusions in analyses of thermal adaptation, as the overestimation of B0 can mimic213

the effects of metabolic cold adaptation (fig. 4) (a Type I error).

As mentioned before, previous studies have tended to set the Tref – usually at a value of 25◦C

– while fitting the Sharpe-Schoolfield model without considering the potential inflation of B0 (ta-216

ble A1 and fig. A1, Appendix A). Whether results of these studies have been compromised by

an inappropriate use of Tref is impossible to determine definitively because most of these studies

report either Th or Tpk estimates, whereas the machine learning model depends on both (see the219

‘Conditions leading to a severely overestimated B0’ section), along with the value of Tref. If these

data were available, using the machine learning model that we generated would provide a straight-

forward procedure to identify cases where B0 is highly likely to be extremely overestimated (i.e,222

greater than Ppk). In fact, the only study where all necessary parameter estimates were reported

for all fitted curves was that by Padfield et al. (2016). In that study, the maximum difference of Th

from Tpk is 2.49◦C, and the minimum difference of Tref from Th is 5.79◦C, which, according to the225

machine learning model (see fig. 3), are sufficient for the B0 estimates to be below the Ppk ones.

Having said that, as we showed in this paper, the fact that the overestimation of B0 is not extreme

does not necessarily rid any drawn conclusions of bias.228

Based on all the aforementioned results, we provide the following suggestions for future studies

that will be using the Sharpe-Schoolfield model.
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Comparisons of temperature-normalised rates of diverse species231

When data span the entire TPC

For studies in which the end goal is to compare the performance of different species at a com-

mon temperature, the simplest approach would be to fit the Sharpe-Schoolfield model - with or234

without normalising B0 at a reference temperature - and compare estimates of B(Tref), calculated a

posteriori. The confidence intervals around B(Tref) can then be estimated by bootstrapping. Other

models could also be considered, such as the macromolecular rates model (Hobbs et al. 2013) or237

the enzyme-assisted Arrhenius model (DeLong et al. 2017).

When data only cover the rising part of the TPC240

While the previous solutions are applicable to thermal response datasets that capture either the

rise of the curve or its entirety, few studies report temperature performance measurements after

the unimodal peak of the response. Therefore, to obtain an estimate of baseline performance from243

a dataset that only covers the exponential rise component, one could instead fit the Boltzmann-

Arrhenius model (e.g., see Gillooly et al. 2001),

B(T ) = B0 · e

−E

k
·

(

1

T
−

1

Tref

)

, (3)

which does not suffer from the problems of the Sharpe-Schoolfield model, as B(Tref) indeed sim-246

plifies to B0.

A second alternative model is the one that includes the Q10 factor (see Gillooly et al. 2001), i.e.

the rate of change in trait performance after a temperature rise of 10◦C:249

Q10 =

(

B(T2)

B(T1)

)

10

T2 −T1 . (4)

In this case, one would first estimate the value of Q10 from known trait values at two temperatures,
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and use it to calculate the trait value at the reference temperature:

B(Tref) = B(T1) ·Q

Tref −T1

10
10 . (5)

Regardless of which of these two models is chosen, careful attention must be paid to ensure252

that the biological rate increases exponentially across the entire temperature range, without signs

of a plateau being reached. Otherwise, the estimates may yet again be biased.

Using the ‘intrinsic optimum temperature’ instead of Tref255

Alternatively, baseline performance could be defined as the height of the curve at the temperature

where the population of the key enzyme is fully active, which should be characteristic for each

individual or species. In the Sharpe-Schoolfield model, the denominator indicates the percentage258

of enzymes that are active. Therefore, the intrinsic optimum temperature could be estimated as the

temperature at which this percentage is 100 (or, at least, sufficiently high). Otherwise, this tem-

perature can also be obtained from the Sharpe-Schoolfield-Ikemoto (SSI) model (Ikemoto 2005).261

This model integrates the law of total effective temperature - often used in studies of arthropod

or parasite development - within the Sharpe-Schoolfield model, replacing Tref with the intrinsic

optimum temperature. However, this model introduces an extra parameter and is more challeng-264

ing to fit compared to the original Sharpe-Schoolfield model. To mitigate this problem, software

implementations have been developed that reduce the computation time from often more than 3

hours (Ikemoto 2008) down to less than a second (Shi et al. 2011; Ikemoto et al. 2013).267

Conclusions

Obtaining accurate estimates of temperature-normalised trait performance is of crucial importance

– especially in the face of climate change – for comparisons of the same trait across different organ-270

isms, or different traits within an individual. In this context, our study explains why temperature-
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normalised trait estimates can be strongly exaggerated when one of the assumptions of the Sharpe-

Schoolfield model is violated, and gives an example of possible consequences of this exaggeration.273

The suggestions that we provide to address this issue should be useful to the burgeoning studies

on ectotherm thermal performance and climate change, both for performing meta-analyses and for

determining appropriate temperature ranges in laboratory experiments.276
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change and their implications for biodiversity. Science 344:1247579.321

Gillooly, J. F., J. H. Brown, G. B. West, V. M. Savage, and E. L. Charnov. 2001. Effects of size

and temperature on metabolic rate. Science 293:2248–2251.

Hobbs, J. K., W. Jiao, A. D. Easter, E. J. Parker, L. A. Schipper, and V. L. Arcus. 2013. Change324

in heat capacity for enzyme catalysis determines temperature dependence of enzyme catalyzed

rates. ACS Chemical Biology 8:2388–2393.

Hochachka, P. W., and G. N. Somero. 2002. Biochemical Adaptation: Mechanism and Process in327

Physiological Evolution. Oxford University Press.

15

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3068v1 | CC BY 4.0 Open Access | rec: 3 Jul 2017, publ: 3 Jul 2017
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Tables399

Parameter name Estimation

α α ∼ N (µ = 10, σ = 3)

β α − i, i ∼ N (µ = 4, σ = 2)

Final curve width original width · j, j ∼ N (µ = 25, σ = 4)

Final curve height original height + k, k ∼ N (µ = 3, σ = 0.8)

Table 1: Parameters for the generation of simulated curves. α and β are shape parameters of the

beta distribution, whereas the two other parameters generate variation in the width and the height of

the curves. β is constrained to be smaller than α , in order for the resulting curves to be negatively

skewed, similarly to the observed thermal response curves of biological traits.
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Figure 1: A typical example of the four-parameter Sharpe-Schoolfield model fitted to a thermal

performance curve of Prochlorococcus marinus strain MIT9515 (Johnson 2006). As depicted, the

model assumes that the activity of a single rate-controlling enzyme controls the apparent temper-

ature dependence of the trait. Th is defined as the temperature (before or after the peak) at which

50% of enzyme units are made inactive. Beyond Th, an increasing proportion of the enzyme pop-

ulation is deactivated, to the point where all of them become non-functional, and the curve falls to

zero. B0 accurately represents the real trait performance at a reference temperature (Tref), only if

the enzyme population is fully functional at this particular Tref, i.e., Tref � Th; otherwise, B0 will

necessarily be greater than the real trait value at Tref (B(Tref)).
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Figure 2: The effect of choice of reference temperature Tref on the deviation of B0 from B(Tref)

(panel A) and its relationship with Ppk (panel B). Data points were obtained by fitting the Sharpe-

Schoolfield model to a dataset of phytoplankton growth rate measurements versus temperature (see

main text) across a range of Tref values. The colour depth of each hexagon is proportional to the

number of data points at that location in the graph. At the vertical axis of panel A, a value of zero

indicates that B0 is double the real B(Tref) value, and is used here as a reference point around and

above which B0 becomes non-negligibly exaggerated. As expected from eq. (2), the deviation of

B0 from B(Tref) decreases nonlinearly with the difference between Th and Tref, to the point where

the former asymptotically approaches zero (in linear scale). Towards the left end of the horizontal

axis, the values of the estimates of B0 even exceed those of the trait value at or close to optimum,

Ppk.
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Figure 3: The conditions under which B0 is highly overestimated (above the peak of the curve; dark

grey bars and curves) or less so (below the peak; light grey bars and curves), determined using a

conditional inference tree algorithm. Representative examples of thermal performance curves,

along with their B0 estimates (crossed circles; normalised at 0◦C for consistency), are shown under

each terminal node. The curves are not drawn on the same axes, as their trait performance values

are at different orders of magnitude. For a few very wide – and possibly biologically unrealistic –

curves (right half), the difference between Tpk and Tref determines whether B0 > Ppk. In contrast,

for the remaining curves, a Th value that is greater than Tref by more than 0.599◦C will always lead

to B0 estimates that are below Ppk.
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Figure 4: Impacts of exaggerated B0 estimates on tests for metabolic cold adaptation. A: Violin

plots of trait performance at Tref = 7◦C, as estimated using B0 (light blue) and B(Tref) (orange),

for hypothetical cold-adapted species (Tpk < 15◦C; left half) and species adapted to higher tem-

peratures (right half). Horizontal lines indicate the median of each distribution. The statistical

significance of the difference in performance between the two temperature groups was evaluated

according to the two-sample Kolmogorov-Smirnov test. Based purely on the B0 estimates – which

get increasingly inflated at low temperatures as Th approaches Tref – one would mistakenly con-

clude that metabolic cold adaptation is present in this dataset. B: Correlations of B0 with Tpk, and

B(Tref) with Tpk. The color surfaces represent the local density of data points. A similar pattern to

the previous panel emerges, as the inflated B0 estimates – in contrast to the true values – suggest

that cold adaptation is present, albeit weakly.
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