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Fish communities associated with coral reefs worldwide are threatened by overexploitation

and other human impacts such as bleaching events that cause habitat degradation. We

assessed the fish community on coral reefs on the Caribbean coast of Panama, as well as

those associated with mangrove and seagrass habitats, to explore the influences of habitat

cover, connectivity and environmental characteristics in sustaining biomass, richness and

trophic structure in a degraded tropical ecosystem. Overall, 94 % of all fishes across all

habitat types were of small body size (f11 cm), with communities dominated by fishes

that usually live in habitats of low complexity, such as Pomacentridae (damselfishes) and

Gobiidae (gobies). Moreover, total fish biomass was very low, small fishes from low trophic

levels were over-represented, and top predators were under-represented relative to other

Caribbean reefs. For example, herbivorous/omnivorous/detrivorous fishes (trophic level 2-

2.7) comprised 37 % of total fish biomass, with the diminutive parrotfish Scarus iseri

comprising 72 % of the parrotfish biomass. However, the abundance of sponges and

proximity of mangroves were found to be important positive drivers of reef fish richness,

biomass and trophic structure on a given reef, presumably by promoting functional

processes of ecosystems. The masked goby (Coryphopterus personata) was a strong

indicator of reef degradation, apparently benefiting from the reduced density of large

predators on local reefs. The damselfish Abudefduf saxatilis was more common on reefs

with high sponge cover, and also to proximity to mangroves. Our study suggests that a

diverse fish community can persist on degraded coral reefs, and that the availability of

habitat forming organisms other than corals, including sponges and mangroves, and their

arrangement on the landscape, is critical to the maintenance of functional processes in

these ecosystems.
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18 Abstract

19 Fish communities associated with coral reefs worldwide are threatened by overexploitation and 

20 other human impacts such as bleaching events that cause habitat degradation. We assessed the 

21 fish community on coral reefs on the Caribbean coast of Panama, as well as those associated 

22 with mangrove and seagrass habitats, to explore the influences of habitat cover, connectivity and 

23 environmental characteristics in sustaining biomass, richness and trophic structure in a degraded 

24 tropical ecosystem. Overall, 94 % of all fishes across all habitat types were of small body size 

25 (f11 cm), with communities dominated by fishes that usually live in habitats of low complexity, 

26 such as Pomacentridae (damselfishes) and Gobiidae (gobies). Moreover, total fish biomass was 

27 very low, small fishes from low trophic levels were over-represented, and top predators were 

28 under-represented relative to other Caribbean reefs. For example, 

29 herbivorous/omnivorous/detrivorous fishes (trophic level 2-2.7) comprised 37 % of total fish 

30 biomass, with the diminutive parrotfish Scarus iseri comprising 72 % of the parrotfish biomass. 

31 However, the abundance of sponges and proximity of mangroves were found to be important 

32 positive drivers of reef fish richness, biomass and trophic structure on a given reef, presumably 

33 by promoting functional processes of ecosystems. The masked goby (Coryphopterus personata) 

34 was a strong indicator of reef degradation, apparently benefiting from the reduced density of 

35 large predators on local reefs. The damselfish Abudefduf saxatilis was more common on reefs 

36 with high sponge cover, and also to proximity to mangroves. Our study suggests that a diverse 

37 fish community can persist on degraded coral reefs, and that the availability of habitat forming 

38 organisms other than corals, including sponges and mangroves, and their arrangement on the 

39 landscape, is critical to the maintenance of functional processes in these ecosystems.
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40 Introduction

41 Recent research has revealed ongoing degradation of coral reef fish communities from habitat 

42 destruction and other human impacts (Hughes et al. 2003; Knowlton and Jackson 2008; 

43 Wilkinson et al. 2008; Jackson et al. 2014). Human disturbances to coastal ecosystems, including 

44 pollution, sedimentation, degradation of water quality and climate change, are causing the 

45 decline of hard coral cover (Hughes 1994; Jackson et al. 2001; Aronson et al. 2003). In 

46 particular, the mass mortality of hard corals from regular coral bleaching, hypoxia events and 

47 storms has led to a structural collapse (Beukers and Jones 1998; Wilson 2006; Alvarez-Filip et 

48 al. 2009; Wilson et al. 2010; Altieri et al. 2017). Consequences for biodiversity and ecosystem 

49 functioning are visible in a declining fish density (Wilson et al. 2010) and diversity (Bell and 

50 Galzin 1984; Jackson et al. 2001; Kuffner et al. 2007; Alevizon and Porter 2015; Mora 2015). 

51

52 At the same time, reef fish populations are apparently declining, as a result of unsustainable reef 

53 fisheries and the increasing demand for fish products for a growing population (Hodgson 1999; 

54 Jackson et al. 2001; Zaneveld et al. 2016). The negative effects of subsistence and commercial 

55 fisheries compound and affect fish population structure, growth, and reproduction, with indirect 

56 effects on non-target fish or invertebrate populations and their reef habitats also possible (Saila et 

57 al. 1993; Jennings and Lock 1996). The ultimate outcomes of these processes are 

58 overexploitation, trophic shifts in the food web, and a decline in reef fish biomass (Berkes 2001; 

59 McClanahan et al. 2009). The disproportionate targeting and depletion of larger size classes and 

60 high trophic levels can also contribute to trophic imbalance in the reef fish community (Pauly et 

61 al. 1998). These negative impacts on fish populations threaten livelihoods and food security, 
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62 given that reef fishes provide a major food source for coastal communities across the tropics 

63 (Cesar et al. 2003).

64

65 An additional important factor affecting the reef fish community is the connectivity to, and 

66 integrity of, other associated habitats. Nearshore estuarine and marine ecosystems (i.e. seagrass 

67 meadows, marshes and mangrove forests) have a very high primary and secondary productivity 

68 and support a great abundance of fish biodiversity (Beck et al. 2001). Mangroves and seagrass 

69 typically support greater densities of organisms than unvegetated substrates (Nagelkerken et al. 

70 2000; Mumby et al. 2004). The nursery-role concept suggests that many reef fishes (e.g. families 

71 Lutjanidae, snappers; Serranidae, groupers; Haemulidae, grunts) have life cycles that include 

72 seagrass meadows and mangroves as nursery and feeding grounds (Beck et al. 2001; 

73 Nagelkerken et al. 2002; Unsworth et al. 2008; Ley 2014; Serafy et al. 2015). 

74

75 Our study system, Bocas del Toro on the Caribbean coast of Panama, is affected by multiple 

76 threats within a strongly connected coastal reef-seagrass-mangrove habitat system (Rawlins et al. 

77 1998; Guzmán 2003; Cramer et al. 2012; Cramer 2013; Seemann et al. 2014). Bocas del Toro is 

78 a semi-lagoon system composed of six major islands and the mainland, which surround 

79 Almirante Bay with large coastal swamps and mangrove forests. Mangrove islands are also 

80 scattered across the bay (Collin 2005). Several rivers, creeks and oceanic inlets discharge 

81 sediments and nutrients into the bay (Collin 2005). Additionally, human population growth, 

82 which is strongly connected to agriculture (banana industry) and tourism (Seemann et al. 2014), 

83 exacerbates degradation of water quality and physical destruction (Guzmán and Jiménez 1992; 

84 Collin 2005; D9Croz et al. 2005; Aronson et al. 2014). Global impacts also cause degradation of 
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85 coral reefs, as described elsewhere across the world (Smith and Buddemeier 1992; Hughes 1994; 

86 Riegl et al. 2009; Sammarco and Strychar 2009). Bleaching and low oxygen events in 2010, in 

87 particular, killed up to 95% of the hard coral cover (Seemann et al. 2014; Altieri et al. 2017). 

88

89 The persistence of invertebrate communities on these degraded reefs suggests that some 

90 resilience mechanisms are operating (Nelson et al. 2016; Kuempel and Altieri 2017). Whereas 

91 most studies focus on documenting the negative drivers that cause the loss of fish biomass and 

92 diversity, our study takes the alternative perspective by investigating the positive factors that 

93 maintain fish communities in a degraded ecosystem. We investigated the extent to which the fish 

94 communities have been affected by over-exploitation, and how the remnant fish communities at 

95 degraded reef sites are supported by habitat quality and connectivity. Specific questions we 

96 address include: Does this southwestern Caribbean fish community show signals of reef 

97 degradation and over-fishing? Is the reef fish community affected by proximity to other biogenic 

98 coastal habitats (e.g. seagrass beds and mangroves)? Do reef organisms other than hard corals 

99 support the biomass and structure of the fish community? Which factors support fish species 

100 richness, biomass and trophic structure?

101 Answers to these questions are needed to improve future research and conservation efforts on 

102 degraded coral reefs in the Caribbean and beyond. 

103

104 Methods

105 In order to place results within the wider Caribbean context, visual fish surveys were conducted 

106 at reefs inside and outside marine protected areas with different management restrictions on 

107 fishing in five different ecoregions within the Caribbean. Additional fish surveys using the same 
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108 methodology were conducted in adjacent seagrass and mangrove fringe areas in Bocas del Toro, 

109 where benthic surveys were also conducted and water quality measured for all sites and habitat 

110 types.

111 Research was conducted under a Scientific Permit from the Ministry of the Environment Panama 

112 (MiAmbiente) and Autoridad de los Recursos Acuáticos de Panamá (ARAP) with the Number: 

113 SE/APO-1-15 & 10b.

114

115 Fish surveys. Firstly, we conducted visual fish surveys from 2012 to 2015 using the Reef Life 

116 Survey (RLS) protocol method 1 (Edgar and Stuart-Smith 2014) at reefs in the southwestern 

117 Caribbean, Southern Caribbean, Greater Antilles, Floridian and Bahamian ecoregions (Spalding 

118 et al 2007) at 61 sites, including Bocas del Toro and Kuna Yala (Panama), Archipelago of San 

119 Andres, Providencia and Santa Catalina (Colombia), Bonaire (Netherlands Antilles), Florida 

120 (US), Turks and Caicos Islands and Cayman Islands (British Overseas Territory). Each survey 

121 was repeated 2-6 times in depth ranges between 1 and 35 m (see Appendix), with fish surveys 

122 conducted at the same time by two divers averaged. 

123

124 These data were used to identify the fisheries impacts in relation to protection status. Sites inside 

125 and outside marine protected areas with different management restrictions were described using 

126 the criteria of Edgar et al. (2014)  as NTZ (no take zones, n=27), RZ (restricted zones, which still 

127 allows local fishing, n=19) and OZ (open zones, n=8), and these data compared to data from 

128 Bocas del Toro (OZ, n=9). 

129
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130 At Bocas del Toro the same RLS method was applied in seagrass and mangrove habitats located 

131 adjacent to the reef sites (f250 m distance). Seagrass sites ranged in depth from 1 m to 4 m (see 

132 Appendix), whereas mangrove fringe root systems had maximal depth of 2 m. All individual fish 

133 sighted were counted, and their size was estimated along a 50 m x 5 m belt transect (250 m2). 

134 Mangrove surveys were conducted facing the mangroves prop roots at the uppermost fringe line 

135 to the water. All fishes were identified to the highest taxonomic resolution possible. If an 

136 individual could not be identified on-site, a photograph was taken for later identification. 

137 Abundance, size and species identity were used to estimate biomass in kg m-2 (Edgar and Stuart-

138 Smith 2014).

139

140 Fish community factors. The reef fish community was characterized using a variety of metrics 

141 including total abundance, abundance within size classes (10 cm size bin and below; 12.5-20 cm 

142 size bins; 25 cm size bin and above), total biomass, biomass of fishes f11 cm, and total species 

143 richness. 

144 We also calculated the mean trophic level (community trait) of the reef fish community by 

145 multiplying the trophic level of each species by their log abundance, summing these values 

146 across species recorded on a transect, and dividing by the log abundance of all fish on the 

147 transect. 

148  

149 The classification of the trophic level (2-5) for each species was based on the feeding strategies: 

150 herbivores and detritivores (2-2.1), omnivores (2.2-2.7), low-level carnivores (2.8-3.4), mid-level 

151 carnivores (3.5-3.9) and high-level carnivores (4-4.5) (values obtained from www.fishbase.org). 
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152 We also calculated the resilience factor (values obtained from www.fishbase.org) of each fish 

153 species, which was estimated from the population doubling time (low, medium, high). 

154

155 Habitat assessment.  Reef fish communities in Bocas del Toro (Fig.1) differed due to variation 

156 in structural complexity and other potentially-important factors, including amount of live coral 

157 cover, hard substrata, sponge cover and distance to nearest mangrove forest (Table 1). Reefs 

158 were typically dominated by Porites furcata in the shallow (1-4 m) and Agaricia spp. (>3 m) in 

159 the deeper areas. The associated seagrass meadows were dominated by Thalassia testudinum 

160 (turtlegrass). Mangrove fringes were exclusively shaped by Rhizophora mangle (red mangrove). 

161 To characterize the different habitats and their connectivity, benthic surveys were conducted for 

162 reefs and seagrass beds. In addition, the distance between reef sites surveyed and nearest 

163 mangrove was measured using GPS coordinates. Reef benthos was analyzed with 20 photo 

164 quadrats of 0.5 m2 along a 50 m transect at each sampling site. Photos were analyzed via point 

165 counting using the Coralnet annotation tool (coralnet.ucsd.edu). A total of 25 points were 

166 randomly distributed on each photo. Substratum categories for the analyses comprised: healthy 

167 hard coral, bleached hard coral, recently-dead coral, anemones, soft coral, sponges, worms, 

168 zoanthids, rubble, sand, rock, calcifying algae, seagrass and macroalgae. 

169

170 Water quality monitoring. Water quality was assessed by quantifying temperature (°C), salinity 

171 (psu), water depth (m), total dissolved solids (TDS, mg L-1), dissolved oxygen (mg L-1), pH, 

172 turbidity (FNU), chlorophyll (µg L-1), blue-green alga concentrations (µg L-1), and dissolved 

173 organic matter (fDOM, RFU) with an Exo2 multiparameter sonde (YSI, Xylem brand) (Snazelle 

174 2015). The sonde was positioned ~10 cm above the bottom in each habitat (reef, seagrass and 
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175 mangrove fringe). Measurements were recorded at intervals of 1-6 min over a time period of at 

176 least 30 min during the habitat surveys.

177

178 Data analyses. First, we identified significant correlations across all sites between 

179 environmental factors (including coral reef and seagrass cover, distance to mangroves and water 

180 quality) and fish community metrics (biodiversity, fish traits, biomass, size structure, abundances 

181 of individual fish species). Data were analyzed using a scatterplot matrix (see appendix) based 

182 on a nonparametric test (Spearman's test) for pairwise correlation probabilities. For all statistical 

183 analyses, fish abundance data were log-transformed to down-weight the extremely high 

184 abundance of a few fish species (i.e. Coryphopterus personatus) at some sites (Edgar et al. 

185 2014).

186

187 Second, we performed multiple regression analyses to better understand the combined impact of 

188 several environmental parameter on particular fish community metrics. Our predictor variables 

189 were derived from the habitat assessment and water quality parameters, whereas the response 

190 variables were biodiversity metrics, fish traits, biomass and size structure of the fish community. 

191 Variables were included only if they showed a significant correlation (P f 0.05) with one of the 

192 fish community metrics identified in the scatterplot matrix.

193

194 Third, a principal component analysis (PCA) on correlations was used to identify fish species 

195 that were indicative of strong environmental trends in fish community structure. Fish were 

196 considered only if abundance >3 and abundances were significantly (P f 0.05) correlated with 

197 one of environmental factors identified in the scatterplot matrix (Appendix).
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198

199 Last, mean values for different fish metrics were compared using one-way ANOVA or a 

200 Student's t-test. All statistical analyses were conducted using JMP Software 13.01.

201

202 Results 

203 Characteristics of the fish community. A total of 61 fish species was recorded across all reef 

204 sites. This number was low compared to other Caribbean locations surveyed using RLS methods 

205 (total of 196 species) and also relative to coral reef locations world-wide (Stuart-Smith et al. 

206 2013; Edgar and Stuart-Smith 2014). Total fish biomass in Bocas del Toro was also lower than at 

207 other Caribbean reefs, in no-take zones and those with restriction status (ANOVA, P=0.02 and 

208 0.001, respectively) (Fig. 2a). The proportion of total biomass comprised by 

209 herbivores/omnivores/detrivores (2-2.7) was higher in Bocas del Toro, whereas the proportion of 

210 high-level carnivores (4-4.5) was generally lower than at other Caribbean reefs, albeit not 

211 significantly for either (Fig. 2b). The abundance of fishes within the smallest size class (f11 cm) 

212 was significantly higher in Bocas del Toro than other Caribbean reefs (ANOVA, P<0.0001), 

213 whereas the abundances of medium- (12-22 cm) and large- (g23 cm) sized fishes were 

214 significantly lower (ANOVA, P<0.0001) (Fig. 2c). 

215

216 The biomass of herbivorous/omnivorous/detrivorous fishes (trophic level 2-2.7) was 37% of the 

217 total biomass (76% of all fish counted, Fig. 2b), with herbivorous members comprising 27% ± 

218 3.5% (versus 10% ± 4% across the wider Caribbean), Pomacentridae (damselfishes) and 

219 Scarinae (parrotfishes) being predominant. Scarus iseri (striped parrotfish) contributed 72% of 

220 the parrotfish biomass. High-level carnivores contributed 22% ± 3.5% of total fish biomass, 
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221 versus 31 ± 4 % elsewhere in the Caribbean. Dominant high-level carnivores were Carangoides 

222 ruber (bar jack), Cephalopholis cruentata (graysby), Hyplopectrus nigricans (black hamlet) and 

223 Scomberomorus regalis (cero).

224

225 A total of 94% of all fishes observed across all habitat types (reef, seagrass, mangrove) were in 

226 the smallest size class (f11 cm length). Fishes f11 cm represented 59% of the total biomass 

227 within the reefs. 

228

229 Relationships between environmental factors and fish community composition 

230 Eight environmental and habitat factors were found to be significantly correlated with fish 

231 community metrics (Table 2, Appendix): sponge cover, distance to mangroves, the cover of 

232 recently-dead corals, calcifying algae, seagrass cover, sand cover in seagrass, chl a values, and 

233 fDOM values. These factors were not independent, as sponge cover was negatively correlated to 

234 the distance to mangroves and positively to chl a (R²=0.60 and R²=0.70, respectively, P<0.01).  

235 Mangrove fish richness was positively correlated to reef fish richness (R²=0.76, P=0.02), and 

236 mean trophic level of the reef fish community was significantly correlated with sponge cover and 

237 mangrove fish richness (R²=0.91 P=0.0007, multiple-regression analysis). The three sites without 

238 mangroves in close proximity and low sponge cover (Salt Creek, Popa, Hospital Point) showed 

239 lower biomass and fish richness (Table 1). The proportion of carnivores was significantly higher 

240 at the sites closer to the mangroves (ANOVA, P<0.01). However, the sites with a medium 

241 distance to mangroves (STRI, Juan Point, Coral Cay) revealed a significantly higher proportion 

242 of top-level carnivores (Fig. 3, ANOVA, P<0.01). The site (Hospital Point) without either 

243 mangroves or seagrass nearby showed the lowest fish diversity. 
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244 The highest abundances of all fish observed were recorded for Pomacentridae (damselfishes) and 

245 Gobiidae (gobies). However, Gobiidae were only abundant at the sites connected to mangroves. 

246 Coryphopterus personatus (masked goby) dominated these sites, with abundances up to 13 

247 individuals m-2. RLS surveys conducted in other places i.e. the close by San Andres Achipelago, 

248 Colombian Caribbean, revealed much lower densities (0.2 individuals m-2). Abudefduf saxatilis 

249 (sergeant major) was significantly correlated to sponge cover (R²=0.62, p=0.0027).

250

251 Generally, fishes with life cycles closely associated with hard corals (Lewis 1997), such as 

252 Pomacanthidae (angelfishes), were present in very low numbers (<1 per transect). Other reef 

253 fishes typically associated with hard substrates with a high complexity such as Balistidae 

254 (triggerfishes), Apogonidae (cardinalfishes), Muraenidae (moray eels), Sciaenidae (drums), 

255 Pseudochromidae (dottybacks) and Serranidae (grouper) were scarce within the bay (<1 per 

256 transect). Fishes of low and very low resilience, including those at higher trophic levels, such as 

257 Diodon hystrix (porcupinefish), Ginglymostoma cirratum (nurse shark), Gymnothorax funebris 

258 (moray eel), Lutjanus jocu (dog snapper), Ocyurus chrysurus (yellowtail snapper), Pomacanthus 

259 arcuatus (gray angelfish) were only found in reefs with mangroves in closer proximity (f 250 

260 m), a result associated with the higher biomass of high-level carnivores at sites closely associated 

261 with mangroves (Fig. 3).

262

263 The PCA revealed a clustering of fishes based on the identified environmental factors (Fig. 4). 

264 Component 1 was primarily influenced by sponge cover, distance to mangrove, chl a and fDOM. 

265 Component 2 was influenced by recently dead corals (Table 3).  Sampling sites characterized by 

266 high sponge cover, high seagrass cover, high fDOM and low distance to mangroves were 
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267 associated with fishes such as Abudefduf saxatilis, Hypoplectrus nigricans, Coryphopterus 

268 personatus and Coryphopterus glaucofraenum.  Fishes such as Thalassoma bifascicatum and 

269 Acanthurus chirurgus were associated with greater distances from mangroves and calcifying 

270 algae. Fishes as Scarus iseri, Stegastes partitus and Cephalopholis cruentatus were associated 

271 with recently dead corals. However, the cover of dead coral was negatively correlated with the 

272 abundance of most fish species. 

273

274 Discussion

275 Our surveys revealed that the local fish fauna is depauperate in richness and biomass by 

276 Caribbean standards. We found further evidence that the fish community is representative of a 

277 degraded ecosystem as the fish community was dominated by small fishes typical of habitats of 

278 low complexity, such as Pomacentridae and Gobiidae, with few representatives of fish families 

279 more closely associated with high-relief coral reefs. Nevertheless, sponges and close proximity 

280 of mangroves were found to be positively correlated with fish richness, biomass and trophic 

281 level, suggesting that these habitat -forming organisms underpin resilience through presence on 

282 reefs and connectivity across the landscape. 

283

284 Some fish species could be identified as indicator species. Extremely high abundances of a goby 

285 which forms schools above the bottom (Coryphopterus personatus) suggest that predation rates, 

286 and therefore predator abundances, are depleted in our study system. Coryphopterus personatus 

287 had 65-fold higher abundances than at sites 500 km distant in the San Andres Achipelago. 

288 Moreover, fish surveys in our study area in 2002 revealed densities an order of magnitude lower 

289 at 1.2 individuals m-2 (Dominici-Arosemena and Wolff 2005). We suggest this species represents 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3062v1 | CC BY 4.0 Open Access | rec: 1 Jul 2017, publ: 1 Jul 2017



290 an indicator species for degraded reefs in the Caribbean by benefiting from loss of predatory 

291 fishes that historically kept their local densities lower. Scarus iseri was considered as a keystone 

292 species given its role as the predominant herbivore, and is likely important for supporting the 

293 growth of sponges by cropping competing macroalgae. These functional roles of S. iseri had 

294 little redundancy in terms of other species potentially filling the same role if populations decline.  

295 Abudefduf saxatilis was identified as an indicator for sponge cover, a factor that could be 

296 positively correlated to fish richness, biomass and relatively high mean community trophic 

297 levels. 

298

299 A degraded fish community in Bocas del Toro is evidenced by overrepresentation of biomass at 

300 low trophic levels and high abundance of small fishes, both classic symptoms of over-fishing 

301 (Pauly et al. 1998; Myers and Worm 2003). Exploitation thus appears to have contributed 

302 substantially to the patterns observed in the fish community at Bocas del Toro (Guzmán et al. 

303 2005; Cramer 2013). 

304

305 Herbivores, detritivores and omnivores were overrepresented in the fish community, with the 

306 proportion of herbivorous fishes much higher than at other Caribbean reef sites (Fig. 2b). Even 

307 though most herbivorous fish were in the smallest size category (<11 cm), this group has the 

308 potential to control the growth of macroalgae (Kuempel and Altieri 2017).

309

310 Another plausible reason for low total fish biomass is the degradation of hard corals (Turner et 

311 al. 1999; Wilson et al. 2010), which reduced fish species that are known to associate with hard 

312 substrata. This was indicated by significant correlations between the proportions of recently-dead 
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313 corals and the biomass of fishes. The trophic imbalance of the fish community in Bocas del Toro 

314 furthermore can be related to the degradation and loss of coastal habitats, with associated loss of 

315 shelter, and nursery and feeding grounds (Turner et al. 1999; Alevizon and Porter 2015). Instead, 

316 fishes known to live on habitats of low complexity (particularly Pomacentridae and Gobiidae) 

317 occurred in very high abundances. 

318

319 Sponges covered up to 20% of substrata, and thus provide considerable physical structure on the 

320 Bocas del Toro reefs (Diaz and Rützler 2001).  In the absence of high cover of hard corals, 

321 sponges probably play an important role in supporting richness and biomass of the depauperate 

322 fish community in our study system. They are major determinants of the rugosity and height of 

323 the reef (Diaz and Rützler 2001), which in turn were found to be the most important predictors 

324 for fish abundance and species richness in a prior study (Gratwicke and Speight 2005). Sponges 

325 also comprise an important food source for spongivorous reef fishes, such as some members of 

326 Pomacentridae (Sammarco et al. 1987; Souza et al. 2011), Pomacanthidae and Scarinae (Dunlap 

327 and Pawlik 1996; Pawlik 1998). The pomacentrid A. saxatilis has been identified to have a 

328 functional dependency with sponges, through either shelter or other aspects of habitat complexity 

329 that sponges provide (Gratwicke and Speight 2005).  

330

331 Connectivity to mangroves was another important positive factor associated with fish 

332 communities, as the biomass and richness of fish were greater on coral reefs that were closer to 

333 mangroves. Mangroves are well known to provide a nursery ground, shelter and food sources for 

334 reef fishes (Laegdsgaard and Johnson 2001; Mumby et al. 2004). Our study suggests that the 

335 positive effect of mangroves as nursery and feeding grounds can overcome and compensate 
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336 some aspects of reef degradation in an ecosystem that has suffered multiple stressors. There are, 

337 however, non-linearities in mangrove influences on reefs, with negative influences at distances 

338 below 100 m. The reef-mangrove distance driving the highest abundance of carnivores was 

339 identified to be between 100 and 250 m. 

340

341 One possible reason for a negative feedback with distance <100 m is that mangroves increase 

342 run-off of nutrients and detritus, providing a food resource for filter feeders (Lee 1995), which 

343 can then dominate and flatten the reef substratum. High cover of filter feeders in turn decreases 

344 hard coral cover (Granek et al. 2009), resulting in a reduction in fish species associated with high 

345 complexity reefs and that depend on hard corals (Beck et al. 2001; Nagelkerken et al. 2002; 

346 Unsworth et al. 2008; Ley 2014; Serafy et al. 2015). Nevertheless, lowest fish biodiversity and 

347 biomass was found on reefs without seagrass and mangroves in near proximity, presumably 

348 because many reef fish species may depend on interconnectivity between habitat types (Ley 

349 2014). Also, the mean trophic level of the fish community declines at locations with no adjacent 

350 mangrove forest, probably because of the lack of food sources and nurseries for reef fish in 

351 general, and pelagic carnivores in particular (Ley 2014). 

352

353 Further information on optimal habitat connectivity is critically needed for improved fisheries 

354 management and to ensure protection of diversity hotspots in marine protected areas (Linton and 

355 Warner 2003; Unsworth et al. 2008). Although fish biomass can be increased through fishing 

356 restrictions (Fig. 2a), habitat factors and connectivity of coastal habitats need to be considered to 

357 maintain the resilience of fish communities. 

358
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Figure 1

Sampling sites in Bocas del Toro

Three reef sites (Punta Caracol, Casa Blanca, Almirante) possess close connectivity with

mangrove habitat (within 100m), three sites (STRI, Juan Point, Coral Cay) represent reef sites

further away from mangroves (100 - 250m), and three reef sites (Popa, Salt Creek, Hospital

Point) are not closely connected to mangroves (> 750 m). Yellow areas are reefs and green

areas are mangroves islands, gray is island, white is ocean, blue is river and blue polygon is

poorly enforced MPA.
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Figure 2

Biomass and composition of the fish community in the Caribbean and Bocas del Toro.

A) The comparison of the total biomass from RLS conducted across the Caribbean, divided in

no take zones, restricted zone and open zones, and open zones in Bocas del Toro, Groups

with different letters are significantly different. B) Distribution of trophic guilds based on total

biomass: high-level carnivores (trophic level 4-4.5), low and mid-level carnivore 2.8-3.9,

herbivores, omnivores and detrivores (trophic level 2-2.7). C) The abundance of fish

subdivided in size classes (AVR ± SD), which are indicative of fishing pressure (skew towards

smaller body size implies fishing). Asterisk represents significant differences between size

abundance data from Bocas and the Caribbean.
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Figure 3

Biomass of trophic guilds pooled by sites with a similar distance to mangroves.

Sites in distance to mangrove < 100 m (Punta Caracol, Casa Blanca, Almirante), 100 - 250 m

(STRI, Juan Point, Coral Cay) and > 700 m (Popa, Salt Creek, Hospital Point) (compare Table

1).
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Figure 4

Principal Component Analyses

Principal components by site. The PCA showing clustering of sites with similar fish

communities, with overlay vector plot showing major correlations of fish species with defined

habitat characteristics. Sites are grouped in close (light green), medium (dark green), and far

(black) distance to mangroves. Each site point represents the average of two transects at

one timepoint. The strongest environmental trigger for component 1 is sponge cover (-0.96)

and distance to mangroves (0.81). For component2 it is calcifying algae (-0.31) and recently

killed corals (0.28).
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1 Table 1: Major habitat characteristics and location of monitoring sites. Sites 7 8 and 9 did not have mangroves in close proximity (f 250m); site 9 also did not have a 

2 seagrass meadow close to the reef

Site Coordinates

Lat

Coordinates

Long

Depth 

Reef

(m)

Depth 

Seagrass

(m)

Distance

Reef-

Mangrove

(m)

Sponge 

Cover

%

Live 

Hard 

Coral 

Cover

%

Hard 

Substrate

%

Reef 

Fish

Biomass

kg ha-1

Seagrass 

Fish

Biomass

kg ha-1

Mangrove 

Fish

Biomass

kg ha-1

Reef Fish 

Abundance

ha-1

Seagrass 

Fish 

Abundance 

ha-1

Mangrove 

Fish 

Abundance

ha-1

Reef 

Fish 

Richness

Seagrass 

Fish 

Richness

Mangrove 

Fish

Richness

1 Punta Caracol 9.3757° -82.2997° 3 2 65 9.5 41.5 33 201 25 111 12929 2820 17423 38 12 21

2 Casa Blanca 9.3588° -82.2737° 3 1 70 17.5 2.5 71 67 32 47 18741 67660 17570 30 9 16

3 Almirante 9.2900° -82.3429° 3 2 90 19.5 36.5 71 206 2 202 11105 2560 1202510 28 6 15

4 STRI Point 9.3483° -82.2625° 3 4 120 19.5 3.0 57 257 24 15 71076 73153 42390 35 15 19

5 Juan Point 9.3003° -82.2921° 4 1 170 17.6 46.4 69 94 14 32 24045 31760 200660 30 11 10

6 Coral Cay 9.2435° -82.1478° 5 2 230 2.0 16.0 51 25 12 11 1717 50850 42060 25 7 9

7 Popa 9.2336° -82.1120° 3 1 700 1.1 26.9 61 60 2 2608 560 17423 24 9

8 Salt Creek 9.2815° -82.1012° 6 2 950 0.5 24.8 99 13 0 1688 1290 15 12

9 Hospital Point 9.3326° -82.2220° 5.5 900 0.5 96.0 33 12 1946 16

3
4
5

6

7 Table 2: Major fish families (only considering >10 counts ha-1 in average in one of the size bins)

Caribbean Bocas del Toro

Reef Reef Seagrass Mangrove Reef Seagrass Mangrove Reef Seagrass Mangrove

f11 cm 12.5-20 cm g25 cm f11 cm f11 cm f11 cm 12.5-20 cm 12.5-20 cm 12.5-20 cm g25 cm g25 cm g25 cm

Acanthuridae 317 351 127 113 127 120 233 0 20 0 0 0

Balistidae 100 380 145 0 0 0 0 0 0 0 0 0

Carangidae 296 1078 145 321 20 2593 330 80 100 40 0 0

Clupeidae 11500 0 0 0 46000 278080 0 0 0 0 0 0

Ephippidae 0 80 280 0 0 0 30 0 0 0 0 0

Gerreidae 0 30 20 0 600 155 0 0 20 0 0 0

Gobiidae 6239 0 0 18182 30 80 0 0 0 0 0 0

Grammatidae 434 0 0 0 0 0 0 0 0 0 0 0

Haemulidae 1959 1395 160 379 752 823 457 300 70 20 0 0
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Holocentridae 253 441 50 0 0 0 20 0 0 0 0 0

Inermiidae 300 3444 0 0 0 0 0 0 0 0 0 0

Kyphosidae 463 733 160 0 0 0 0 0 0 0 0 0

Labridae 1749 659 96 254 568 580 252 180 80 0 0 0

Loliginidae 0 240 0 0 0 0 0 0 0 0 0 0

Lutjanidae 263 800 279 80 137 559 80 20 350 0 0 20

Mullidae 245 429 229 50 20 0 20 0 0 0 0 0

Pomacentridae 2145 414 20 618 325 123 110 0 0 0 0 0

Scaridae 741 252 196 494 753 979 333 20 173 80 0 0

Sciaenidae 532 176 40 60 0 0 60 0 0 0 0 0

Serranidae 855 107 208 297 72 40 93 0 0 0 0 0

Sphyraenidae 120 2100 180 0 0 40 0 20 40 0 0 100

Tetraodontidae 247 0 0 193 100 20 0 0 0 0 0 0

8

9

10 Table 3: The most significantly correlated environmental factors found to influence characteristics of the reef fish community using a multivariate pairwise correlation 

11 (Spearman's test).

12

Environmental factors Fish community factors P

Sponge cover Reef fish biodiversity 0.05*

Mangrove fish biodiversity 0.023*

Trophic level 0.0003*

Total biomass 0.050*

Size class f11cm 0.001*

Distance reef-mangroves Reef fish biodiversity 0.003*

Mangrove fish biodiversity 0.001*

Trophic level 0.011*

% fish that live in medium 0.0001*
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substrate complexity

% fish that live in low 

substrate complexity

0.047*

Biomass f11cm 0.050*

Size class f11cm 0.013*

Size class f12.5-g20 cm 0.046*

Seagrass cover % Seagrass fish biodiversity 0.0009*

Seagrass sand cover % % fish that live in low 

substrate complexity 

0.016*

Recently killed corals Biomass f11cm 0.033*

Calcifying algae % fish that live in medium 

substrate complexity

0.030*

fDOM Total biomass 0.050*

13
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