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Abstract 21 

Symbiotic interactions between insects and bacteria are ubiquitous and form a continuum from 22 

loose facultative symbiosis to greatly intimate and stable obligate symbiosis. In blood-sucking 23 

insects living exclusively on vertebrate blood, obligate endosymbionts are essential for hosts 24 

and hypothesized to supplement B-vitamins and cofactors missing from their blood diet. The 25 

role and distribution of facultative endosymbionts and their evolutionary significance as seeds 26 

of obligate symbioses are much less understood. Here, using phylogenetic approaches, we 27 

focus on the Hippoboscidae phylogeny as well as the stability and dynamics of obligate 28 

symbioses within this bloodsucking group. In particular, we demonstrate a new potentially 29 

obligate lineage of Sodalis co-evolving with the Olfersini subclade of Hippoboscidae. We also 30 

show several likely facultative Sodalis lineages closely related to Sodalis praecaptivus (HS 31 

strain) and suggest repeated acquisition of novel symbionts from the environment. Similar to 32 

Sodalis, Arsenophonus endosymbionts also form both obligate endosymbiotic lineages co-33 

evolving with their hosts (Ornithomyini and Ornithoica groups) as well as possibly facultative 34 

infections incongruent with the Hippoboscidae phylogeny. Finally, we reveal substantial 35 

diversity of Wolbachia strains detected in Hippoboscidae samples falling into three 36 

supergroups: A, B, and the most common F. Altogether, our results prove the associations 37 

between Hippoboscoidea and their symbiotic bacteria to undergo surprisingly dynamic, yet 38 

selective, evolutionary processes strongly shaped by repeated endosymbiont replacements. 39 

Interestingly, obligate symbionts only originate from two endosymbiont genera, Arsenophonus 40 

and Sodalis, suggesting that the host is either highly selective about its future obligate 41 

symbionts or that these two lineages are the most competitive when establishing symbioses in 42 

louse flies.   43 

Background 44 
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Symbiotic associations are widespread among animals and bacteria and often considered to 45 

undergo a common evolution as a holobiont (Zilber-Rosenberg & Rosenberg, 2008). The host 46 

and symbiont are either fully dependent on each other for reproduction and survival (obligate 47 

symbiosis) or not (facultative symbiosis), but in reality, there is a gradient of such interactions 48 

(Moran, McCutcheon & Nakabachi, 2008). Any establishment of a symbiotic association 49 

brings not only advantages, but also several challenges to both partners. Perhaps the most 50 

crucial is that after entering the host, the endosymbiont genome tends to decay due to 51 

population genetic processes affecting asexual organisms with small effective population sizes 52 

(Moran, 1996) and the host is becoming dependent on such a degenerating symbiont (Koga et 53 

al. 2007; Pais et al. 2008). Since symbionts are essential for the host, the host can try to escape 54 

from this evolutionary 'rabbit hole' by an acquisition of novel symbionts or via endosymbiont 55 

replacement and supplementation (Bennett & Moran, 2015). This phenomenon, known in 56 

almost all insect symbiotic groups, was especially studied in the sap-feeding group Hemiptera 57 

(Sudakaran, Kost & Kaltenpoth, 2017), while only few studies were performed from blood-58 

sucking groups.  59 

 Blood-sucking insects, living exclusively on vertebrate blood, such as sucking lice 60 

(Allen et al. 2007; Hypba & Kří~ek 2007; Fukatsu et al. 2009; Allen et al. 2016), bed bugs 61 

(Hypba & Aksoy, 1997; Hosokawa et al., 2010; Nikoh et al., 2014), kissing bugs (Ben-Yakir 62 

1987; Beard et al. 1992; Hypba & Dale 1997; aorfová et al. 2008; Pachebat et al. 2013), tsetse 63 

flies (Aksoy, 1995; Dale & Maudlin, 1999), bat flies (Trowbridge, Dittmar & Whiting, 2006; 64 

Hosokawa et al., 2012; Wilkinson et al., 2016), and louse flies (Trowbridge et al. 2006; 65 

Nováková & Hypba 2007; Chrudimský et al. 2012) have established symbiotic associations 66 

with bacteria from different lineages, mostly α-proteobacteria (Hosokawa et al., 2010) and γ-67 

proteobacteria (Aksoy 1995; Hypba & Aksoy 1997; Hypba & Dale 1997; Dale et al. 2006; 68 

Allen et al. 2007; Hypba & Kří~ek 2007; Nováková & Hypba 2007; Chrudimský et al. 2012; 69 
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Hosokawa et al. 2012; Wilkinson et al. 2016). Obligate symbionts of these blood-sucking hosts 70 

are hypothesized to supplement B-vitamins and cofactors missing from their blood diet or 71 

present at too low concentration (Akman et al., 2002; Kirkness et al., 2010; Rio et al., 2012; 72 

Nikoh et al., 2014; Nováková et al., 2015; Boyd et al., 2016, 2017), but experimental evidence 73 

supporting this hypothesis is scarce (Hosokawa et al., 2010; Nikoh et al., 2014; Michalkova et 74 

al., 2014; Snyder & Rio, 2015). The role played by facultative bacteria in blood-sucking hosts 75 

is even less understood, with metabolic or protective function as the two main working 76 

hypotheses (Geiger et al., 2005, 2007; Toh et al., 2006; Belda et al., 2010; Snyder et al., 2010; 77 

Weiss et al., 2013). 78 

 Due to their medical importance, tsetse flies (Diptera, Glossinidae) belong to the most 79 

frequently studied models of such symbioses (International Glossina Genome Initiative 2014). 80 

They harbour three different symbiotic bacteria: obligate symbiont Wigglesworthia glossinidia 81 

which is essential for the host survival (Pais et al., 2008), facultative symbiont Sodalis 82 

glossinidius which was suggested to cooperate with Wigglesworthia on thiamine biosynthesis 83 

(Belda et al., 2010), and reproductive manipulator Wolbachia (Pais et al., 2011). Considerable 84 

amount of information has till now been accumulated on the distribution, genomics and 85 

functions of these bacteria (Akman et al., 2002; Toh et al., 2006; Rio et al., 2012; Balmand et 86 

al., 2013; Michalkova et al., 2014; Snyder & Rio, 2015). In contrast to our understanding of 87 

tsetse fly symbioses, only scarce data are available on the symbioses in its closely related 88 

groups. Apart from Glossinidae, the superfamily Hippoboscoidea includes additional three 89 

families of obligatory blood-sucking flies, tightly associated with endosymbionts, namely 90 

Nycteribiidae, Streblidae, and Hippoboscidae. Monophyly of Hippoboscoidea has been 91 

confirmed by numerous studies (Nirmala, Hypba & }urovec, 2001; Dittmar et al., 2006; 92 

Petersen et al., 2007; Kutty et al., 2010), but its inner topology has not been fully resolved. The 93 

monophyletic family Glossinidae is considered to be a sister group to the three remaining 94 
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families together designated as Pupipara (Petersen et al., 2007). The two groups associated 95 

with bats probably form one branch, where Nycteribiidae seems to be monophyletic while 96 

monophyly of Streblidae was not conclusively confirmed (Dittmar et al., 2006; Petersen et al., 97 

2007; Kutty et al., 2010). According to several studies, Hippoboscidae is regarded to be a 98 

monophyletic group with not well-resolved exact position in the tree (Nirmala, Hypba & 99 

}urovec, 2001; Dittmar et al., 2006; Petersen et al., 2007). However, louse flies were also 100 

shown to be paraphyletic in respect to bat flies (Dittmar et al., 2006; Kutty et al., 2010). 101 

 Nycteribiidae, Streblidae (bat flies), and Hippoboscidae (louse flies) are often 102 

associated with Arsenophonus bacteria (Trowbridge, Dittmar & Whiting, 2006; Dale et al., 103 

2006; Nováková, Hypba & Moran, 2009; Morse et al., 2013; Duron et al., 2014). In some cases, 104 

these symbionts form clades of obligate lineages coevolving with their hosts, but some of 105 

Arsenophonus lineages are likely representing loosely associated facultative symbionts spread 106 

horizontally across the population (Nováková, Hypba & Moran, 2009; Morse et al., 2013; 107 

Duron et al., 2014). Bat flies and louse flies are also commonly infected with Bartonella spp. 108 

(Halos et al., 2004; Morse et al., 2012b). Wolbachia infection was found in all Hippoboscoidea 109 

groups (Pais et al., 2011; Hosokawa et al., 2012; Morse et al., 2012a; Nováková et al., 2015). 110 

Moreover, several Hippoboscidae species were also found to harbour distinct lineages of 111 

Sodalis-like bacteria (Dale et al. 2006; Nováková & Hypba 2007; Chrudimský et al. 2012) 112 

likely representing similar facultative-obligatory gradient of symbioses as observed for 113 

Arsenophonus. 114 

 Hippoboscoidea thus represent a group of blood-sucking insects with strikingly 115 

dynamic symbioses. Obligate symbionts from Arsenophonus and Sodalis clades tend to come 116 

and go, disrupting the almost flawless host-symbiont co-phylogenies often seen in insect-117 

bacteria systems. However, why are the endosymbiont replacements so common and what 118 

keeps the symbiont consortia limited to the specific bacterial clades remains unknown. Tsetse 119 
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flies as medically important vectors of pathogens are undoubtedly the most studied 120 

Hippoboscoidea lineage. However, their low species diversity (22 species), sister relationship 121 

to all other clades, and host specificity to mammals, do not allow to draw any general 122 

conclusions about the evolution of symbiosis in Hippoboscoidea. To fully understand the 123 

symbiotic turn-over, more attention needs to be paid to the neglected Nycteriibidae, Streblidae, 124 

and Hippoboscidae lineages. Here, using gene sequencing and draft genome data from all 125 

involved partners, we present phylogenies of Hippoboscidae and their symbiont lineages and 126 

try to untangle their relationship to the host. In particular, we ask if these are obligate co-127 

evolving lineages, facultative infections, or if they likely represent recent symbiont 128 

replacements just re-starting the obligate relationship. 129 

Methods 130 

Sample collection and DNA isolation 131 

Samples of louse flies were collected in seven countries (South Africa, Papua New Guinea, 132 

Ecuador – Galapagos, Vietnam, France, Slovakia, and the Czech Republic; see Table S1 for 133 

details), the single sample of bat fly was collected in the Czech Republic. All samples were 134 

stored in 96% ethanol at -20°C. DNA was extracted using the QIAamp DNA Micro Kit 135 

(Qiagen; Hilden, Germany) according to the manufacturer′s protocol. DNA quality was 136 

verified using the Qubit High Sensitivity Kit (Invitrogen) and 1% agarose gel electrophoresis. 137 

 138 

PCR, cloning, and sequencing 139 

All DNA samples were used for amplification of three host genes (COI, 16S rRNA gene, EF) 140 

and symbiont screening with 16S rRNA gene primers (Table S2). Ten Wolbachia positive 141 

samples were used for MLST typing (coxA, fbpA, ftsZ, gatB, hcpA; see Table S2). PCR 142 

reaction was performed under standard conditions using High Fidelity PCR Enzyme Mix 143 

(Thermo Scientific) and Hot Start Tag DNA Polymerase (Qiagen) according to the 144 
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manufacturer′s protocol. PCR products were analysed using 1% agarose gel electrophoresis 145 

and all symbiont 16S rDNA products were cloned into pGEM®–T Easy vector (Promega) 146 

according to the manufacturer´s protocol. Inserts from selected colonies were amplified using 147 

T7 and SP6 primers or isolated from plasmids using the Plasmid Miniprep Spin Kit (Jetquick). 148 

Sanger sequencing was performed by an ABI Automatic Sequencer 3730XL (Macrogen Inc., 149 

Geumchun-gu-Seoul, Korea) or ABI Prism 310 Sequencer (SEQme, Dobříb, the Czech 150 

Republic). 151 

 In addition to sequencing, we also included in our analyses genomic data of 152 

Melophagus ovinus (Nováková et al., 2015), Lipoptena cervi (Nováková et al., 2016), 153 

Ornithomya biloba, and Crataerina pallida (E. aochová unpublished data) as well as their 154 

endosymbionts (see Table S1). 155 

 Although there is MLST available for Arsenophonus bacteria (Duron, Wilkes & Hurst, 156 

2010), we were not successful in amplifying these genes. 157 

    158 

Alignments and phylogenetic analyses 159 

The assemblies of raw sequences were performed in Geneious v8.1.7 (Kearse et al., 2012). 160 

Datasets were composed of the assembled sequences, extracted genomic sequences, sequences 161 

downloaded from GenBank (see Supplemental Table S4) or the Wolbachia MLST database. 162 

The sequences were aligned with Mafft v7.017 (Katoh, 2002; Katoh, Asimenos & Toh, 2009) 163 

implemented in Geneious using an E-INS-i algorithm with default parameters. The alignments 164 

were not trimmed as trimming resulted in massive loss of informative position. Phylogenetic 165 

analyses were carried out using maximum likelihood (ML) in PhyML v3.0 (Guindon & 166 

Gascuel, 2003; Guindon et al., 2009) and Bayesian inference (BI) in MrBayes v3.1.2 167 

(Huelsenbeck & Ronquist, 2001). The GTR+I+Γ evolutionary model was selected in 168 

jModelTest (Posada, 2009) according to the Akaike Information Criterion (AIC). The subtree 169 
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prunning and regrafting (SPR) tree search algorithm and 100 bootstrap pseudoreplicates were 170 

used in the ML analyses. BI runs were carried out for 10 million generations with default 171 

parameters, and Tracer v1.6 (http://tree.bio.ed.ac.uk/software/tracer/) was used for 172 

convergence and burn-in examination. Phylogenetic trees were visualised and rooted in 173 

FigTree v1.4.2 (http://tree.bio.ed.ac.uk/software/figtree/) and their final graphical adjustments 174 

were performed in Inkscape v0.91 (https://inkscape.org/en/).  175 

 Host phylogeny was reconstructed using single-gene analyses and a concatenated 176 

matrix of three genes (mitochondrial 16S rRNA, mitochondrial cytochrome oxidase I, and 177 

nuclear elongation factor). Concatenation of genes was performed in Phyutility 2.2.6 (Smith & 178 

Dunn, 2008). Phylogenetic trees were inferred for all species from the Hippoboscoidea 179 

superfamily, as well as for smaller datasets comprising only Hippoboscidae species. This 180 

approach was employed to reveal possible artefacts resulting from missing data and poor taxon-181 

sampling (e.g. short, ~ 360 bp, sequences of COI available for Streblidae and Nycteribiidae). 182 

 183 

Mitochondrial genomes 184 

Problems with reconstruction of host phylogeny based on mitochondrial genes (16S and COI) 185 

lead us to assemble mitochondrial genomes of four main louse fly lineages. Contigs of 186 

mitochondrial genomes were identified in genomic data of M. ovinus, L. cervi, O. biloba, and 187 

C. pallida using BLASTn and tBLASTn searches (Altschul et al., 1990). Open reading frame 188 

identification and preliminary annotations were performed using NCBI BlastSearch in 189 

Geneious. For identification of Numts, raw sequences were mapped to mitochondrial data 190 

using Bowtie v2.2.3 (Langmead & Salzberg, 2012). Web annotation server MITOS 191 

(http://mitos.bioinf.uni-leipzig.de/) was used for final annotation of proteins and rRNA/tRNA 192 

genes. We selected 15 mitochondrial genes (Table S4) present in all included taxa for 193 

phylogenetic inference as described above. 194 
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 195 

Results 196 

Phylogenetic data 197 

We obtained 134 host sequences: 31 sequences of 16S rRNA of 370 - 545 bp, 47 sequences of 198 

EF of 207 - 922 bp, and 56 sequences of COI of 299 - 1,522 bp; and 70 symbiont 16S rRNA 199 

sequences of 777 - 1,589 bp. We also assembled and annotated 4 host mitochondrial genomes 200 

of 15,975 – 16,445 bp. For more details see Supplemental Table S3. All raw sequences can be 201 

found online in Supplemental Data S1 (their description is included in Supplemental Table S6).  202 

 203 

Hippoboscidae phylogeny 204 

We reconstructed host phylogeny using three markers: 16S rRNA, EF and COI; as well as 205 

mitochondrial genomes. Our analyses of draft genome data revealed that all analysed 206 

mitochondrial genomes of louse flies are also present as Numts (nuclear mitochondrial DNA) 207 

on the host chromosomes, especially the COI gene often used for phylogenetic analyses. The 208 

taxonomically restricted mitochondrial genome matrix verified monophyly of Hippoboscoidea 209 

(Supplemental Figure Fig. S1). Our three-gene dataset yielded only partially resolved and 210 

unstable inner Hippoboscoidea phylogeny. Glossinidae and Nycteribiidae formed a well-211 

defined monophyletic groups (only ML analysis of COI did not confirm monophyly of 212 

Nycteribiidae and also did not resolve its relationship to Streblidae), but monophyly of 213 

Hippoboscidae and Streblidae was not well supported and different genes/analyses frequently 214 

inferred contradictory topologies. Within Hippoboscidae, the position of the Hippoboscinae 215 

group and the genus Ornithoica were the most problematic (Fig. 1, Supplemental Figures Fig. 216 

S2-8).  217 

 218 

Arsenophonus and Sodalis phylogenies 219 
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In total, 72 endosymbiont 16S rRNA genes were sequenced in this study and six additional 220 

sequences of this gene were mined from our draft genomic data: four of Arsenophonus, one of 221 

Sodalis, and one of Wolbachia. Twenty eight symbionts were identified as members of the 222 

genus Arsenophonus, 13 symbionts were the most similar to Sodalis-allied species, and 31 223 

sequences were of Wolbachia origin. Despite of cloning, we did not obtain any sequences of 224 

Bartonella reported to occur in some Hippoboscoidea. Moreover, using only phylogenetic 225 

approach, we would not be able to decide whether Bartonella-Hippoboscidae interaction is 226 

mutualistic or pathogenic, therefore Bartonella symbiosis is not in the scope of this manuscript.  227 

Putative assignment to the obligate or likely facultative symbiont categories was based on GC 228 

content of their 16S rRNA gene and genomic data available (Supplemental Table S3), branch 229 

length, and the phylogenetic analyses.  230 

 Phylogenetic analyses of the genus Arsenophonus based on 16S rDNA sequences 231 

revealed several distinct clades of likely obligate Arsenophonus species congruent with their 232 

host phylogeny, partially within the Nycteribiidae, Streblidae, and several Hippoboscidae 233 

lineages (Fig. 2, Supplemental Figures Fig. S9 and Fig. S10). However, it is important to note 234 

that these clades do not form a single monophyletic clade of co-diverging symbionts, but rather 235 

several separate lineages. Within Hippoboscidae, the Arsenophonus sequences from the 236 

Ornithomyini group form a monophyletic clade congruent with Ornithomyini phylogeny. With 237 

the exception of Arsenophonus symbiont of Crataerina spp. which was probably recently 238 

replaced by another Arsenophonus bacteria. Other obligate Arsenophonus lineages were 239 

detected in the genera Lipoptena, Melophagus, and Ornithoica. All other Arsenophonus 240 

sequences from the Hippoboscidae either represent facultative symbionts or putatively obligate 241 

symbioses which are impossible to reliably detect by phylogenetic methods (but see the 242 

discussion for Hippobosca sp.). 243 
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 Most of the putatively facultative endosymbionts of the Hippoboscidae typically 244 

possess short branches and are also related with the previously described species Arsenophonus 245 

arthropodicus and Arsenophonus nasoniae. Interestingly, both obligate and likely facultative 246 

lineages were detected from several species, e.g. Ornithomya biloba, Ornithomya avicularia, 247 

and Ornithomya fringillina (Fig. 2). Phylogenetic analyses including symbionts from the 248 

genera Nycterophylia and Trichobius did not clearly place them into the Arsenophonus genus. 249 

Rather, they likely represent closely related lineages to the Arsenophonus clade as their position 250 

was unstable and changed with different taxon samplings and methods. 251 

 Within Sodalis, the phylogenetic reconstruction revealed a putatively obligate 252 

endosymbiont from the tribe Olfersini, including the genera Pseudolynchia and Icosta, and 253 

several facultative lineages. However, co-evolution with Icosta sp. seems to be imperfect and 254 

does not strictly follow the host phylogeny (Fig. 3).   255 

 256 

Wolbachia MLST analysis 257 

In Wolbachia, the 16S rDNA sequences were used only for an approximate supergroup 258 

determination (Fig. 4). The MLST analysis was performed with ten selected species (one of 259 

them was obtained from genomic data of O. biloba; see Table S3). Overall prevalence of 260 

Wolbachia in louse flies is 54.55 %; 30 positive individuals out of 55 diagnosed. The 261 

supergroup A was detected from 4 species (4 individuals), the supergroup B from 5 species (9 262 

individuals), and the supergroup F from 7 species (17 individuals) (Fig. 4). Additionally, 263 

Nycteribia kolenatii (one individual) was infected with the supergroup F.  264 

 265 

Discussion 266 

Hippoboscidae phylogeny: an unfinished portrait 267 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3057v1 | CC BY 4.0 Open Access | rec: 29 Jun 2017, publ: 29 Jun 2017



12 

 

Although closely related to the medically important tsetse flies, the other hippoboscoids have 268 

only rarely been studied and their phylogeny is still unclear. Based on our concatenated matrix, 269 

we obtained the topology which to some extent resembles the one presented Petersen et al. 270 

(2007), although with slightly different taxon sampling (Fig. 1; Supplemental Figure Fig S2). 271 

However, our three single-gene datasets implied only poor phylogenetic signal available 272 

carried by the hippoboscoid sequences. Therefore, we took an advantage of the four complete 273 

mitochondrial genomes reconstructed in this study to test the reliability of the previous 274 

phylogenetic reconstructions. The phylogenetic reconstruction based on the mitochondrial 275 

matrix correspond to the three-gene concatenated matrix phylogeny suggesting that 276 

mitochondrial genomes would be valuable for further phylogenetic analyses of this group (Fig. 277 

1; Supplemental figure Fig. S1). According to our results, Glossinidae, Nycteribiidae and 278 

Hippoboscidae were retained as monophyletic groups, but monophyly of Streblidae was not 279 

supported using the complete matrix (Supplemental Figure Fig. S2). Streblidae lineage appears 280 

to be paraphyletic with respect to Nycteribiidae and clusters into two groups, the Old World 281 

and the New World species, as previously reported (Dittmar et al., 2006; Kutty et al., 2010). 282 

Within Hippoboscidae, the groups Lipopteninae, Hippoboscinae, Ornithomyini and Olfersini 283 

(nomenclature was adopted from Petersen et al. (2007)) are well-defined and monophyletic, 284 

but their exact relationships are still not clear. The most problematic taxa are Hippoboscinae 285 

and also the genus Ornithoica with their positions depending on the used genes/analyses (Fig. 286 

1; Supplemental figures Fig. S2-8). A possible explanation for these inconsistencies in the 287 

topologies can be a hypothetical rapid radiation from the ancestor of Hippoboscoidea group 288 

into main subfamilies of Hippoboscidae leaving in the sequences only very weak phylogenetic 289 

signal for this period of Hippoboscidae evolution. The most difficulties in reconstructing 290 

Hippoboscoidea phylogeny is caused by missing data (only short sequences of COI are 291 

available especially for Nycteribiidae and Streblidae in the GenBank; Supplemental Figure Fig. 292 
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S3). Moreover, COI phylogenies are known to be affected by numerous pseudogenes called 293 

Numts (Black IV & Bernhardt 2009). The Numts, we found to be common in louse fly 294 

genomes, can thus also contribute to the intricacy of presented phylogenies. On the other hand, 295 

EF seems to provide plausible phylogenetic information (Supplemental Figure Fig. S4). The 296 

biggest drawback of this marker however lies in the data availability in public databases, 297 

restricting an appropriate taxon sampling for the Hippoboscoidea superfamily. 298 

 299 

Hidden endosymbiont diversity within the Hippoboscidae family 300 

Among the three most commonly detected Hippoboscidae endosymbionts, attention has been 301 

predominantly paid to Arsenophonus as the supposedly most common obligate endosymbiont 302 

of this group. Our data show that several different lineages of Arsenophonus have established 303 

the symbiotic lifestyle within Hippoboscidae (Fig. 2). According to our results supported by 304 

genomic data, there are at least four lineages of likely obligate endosymbionts: Arsenophonus 305 

in Ornithomyini (genomes of Arsenophonus from Ornithomya biloba and Crataerina pallida 306 

will be published elsewhere), Arsenophonus in Ornithoica spp., previously described 307 

Arsenophonus melophagi (Nováková et al., 2015) and Arsenophonus lipopteni (Nováková et 308 

al., 2016). All these possess reduced genomes with low GC content as a typical feature of 309 

obligate endosymbionts (McCutcheon & Moran, 2012). Interestingly, within Ornithomyini, the 310 

original obligate Arsenophonus endosymbiont of Crataerina spp. was recently replaced by 311 

another Arsenophonus bacterium with ongoing genome reduction (E. aochová unpublished 312 

data). Apart from these potentially obligate lineages, there are other hippoboscid associated 313 

Arsenophonus bacteria distributed in the phylogenetic tree among Arsenophonus 314 

endosymbionts with likely facultative or free-living lifestyle (Supplemental Figure Fig. S10). 315 

This pattern suggests Arsenophonus is likely being repeatedly acquired from the environment. 316 

It has been hypothesized that obligate endosymbionts often evolve from facultative symbionts 317 
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which are no longer capable of horizontal transmission between the hosts (Moran, McCutcheon 318 

& Nakabachi, 2008). Due to their recent change of lifestyle, endosymbionts with an ongoing 319 

genome reduction in many ways resemble facultative symbionts, e.g. their positions in 320 

phylogenetic trees are not stable and differ with the analysis method and taxon sampling (Fig. 321 

2, Supplemental Figures Fig. S9 and S10). Such nascent stage of endosymbiosis was indicated 322 

for the obligate Arsenophonus endosymbiont of C. pallida (E. aochová unpublished data) and 323 

similar results can be expected for Arsenophonus endosymbionts of Hippobosca species. 324 

  325 

Within bat flies, we found obligate Arsenophonus lineages in both Nycteribiidae and Streblidae 326 

as well as several presumably facultative Arsenophonus infections in both groups 327 

(Supplemental Figures Fig. S9 and S10). Similar results were reported in several previous 328 

studies (Morse et al., 2013; Duron et al., 2014; Wilkinson et al., 2016). Members of the 329 

Arsenophonus clade were also reported from Nycterophyliinae and Trichobiinae (Streblidae) 330 

(Morse et al., 2012a) and Cyclopodia dubia (Nycteribiidae) (Wilkinson et al., 2016). However, 331 

our results do not support their placement within the clade, as these sequences were attracted 332 

by the long branches in the ML analyses. The endosymbiont of Nycterophyliinae and 333 

Trichobiinae probably represents an ancient lineage closely related to Arsenophonus clade 334 

(Supplemental Figure Fig. S9) while the endosymbiont of Cyclopodia dubia is more likely 335 

related with Pectobacterium spp.; therefore, we excluded this bacterium from our further 336 

analyses. These findings indicate that bat flies established the endosymbiotic lifestyle several 337 

times independently with at least three bacterial genera.  338 

 339 

In contrast to Arsenophonus, only a few studies reported Sodalis-like endosymbiotic bacteria 340 

from Hippoboscidae (Nováková & Hypba 2007; Chrudimský et al. 2012; Nováková et al. 341 

2015). Dale et al. (2006) detected a putative obligate endosymbiont from Pseudolynchia 342 
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canariensis which was suggested to represent Sodalis bacterium. We detected this symbiont in 343 

several members of the Olfersini group and according to our results, it is obligate Sodalis-like 344 

endosymbiont forming a monophyletic clade, but its congruence with the Olfersini phylogeny 345 

is somewhat imperfect (Fig. 3). This incongruence might be a consequence of phylogenetic 346 

artefacts likely affecting long branches of Sodalis symbionts from Icosta. Similar to 347 

Arsenophonus, Sodalis bacteria also establish possible facultative associations, e. g. with 348 

Melophagus ovinus (Chrudimský et al., 2012; Nováková et al., 2015), Ornithomya avicularia 349 

(Chrudimský et al., 2012) or Ornithomya biloba (this study). Sodalis endosymbiont from 350 

Crataerina melbae was suggested to be obligate (Nováková & Hypba 2007), but our study did 351 

not support this hypothesis since it clusters with free-living Sodalis praecaptivus. Interestingly, 352 

Sodalis endosymbiont of Microlynchia galapagoensis was inferred to be closely related to 353 

Sodalis-like co-symbiont of Cinara cedri, which underwent rapid genome deterioration after a 354 

replacement of former co-symbiont (Meseguer et al., 2017). These results suggest that there 355 

are several loosely associated lineages of Sodalis bacteria in louse flies. On one hand, the 356 

endosymbiont of Microlynchia galapagoensis probably represents a separate (or ancient) 357 

Sodalis infection, but on the other hand, other Sodalis infections seem to be repeatedly acquired 358 

from the environment as implied by their relationship to e.g. Sodalis praecaptivus (Clayton et 359 

al., 2012) (Fig. 3). 360 

 361 

Coinfections of obligate and facultative Arsenophonus strains in Hippoboscidae (or potentially 362 

Sodalis in Olfersini) are extremely difficult to recognize using only PCR-acquired 16S rRNA 363 

gene. Facultative endosymbionts retain several copies of this gene and thus their 16S rRNA 364 

tend to be amplified more likely in PCR than from reduced obligate endosymbionts due to its 365 

higher copy number and lower frequency of mutations in primer binding sites. Even though 366 

there is a MLST available for Arsenophonus bacteria (Duron, Wilkes & Hurst, 2010), it was 367 
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shown that it is effective only partially (Duron et al., 2014). Since our data are probably also 368 

influenced by this setback, we do not speculate which of the detected potentially facultative 369 

Arsenophonus lineages represent source of 'ancestors' for several distinct obligate lineages or 370 

which of them were involved in the recent replacement scenario. However, the 371 

replacement/independent-origin scenario is well illustrated by endosymbionts from Olfersini 372 

(Fig. 2, Fig. 3). 373 

 374 

To complement the picture of Hippoboscidae endosymbiosis, we also reconstructed Wolbachia 375 

evolution. We found three different supergroups: A, B and F (see Table S3). Apparently, there 376 

is no coevolution between Wolbachia and Hippoboscidae hosts suggesting horizontal 377 

transmission between species (Fig. 4) as common for this bacterium (Schilthuizen & 378 

Stouthamer, 1997; Gerth et al., 2014). Since Wolbachia seems to be one of the most common 379 

donors of genes horizontally transferred to insect genomes, including tsetse flies (Husník et al. 380 

2013; Brelsfoard et al. 2014; Sloan et al. 2014), we cannot rule out that some of Wolbachia 381 

sequences detected in this study represent HGT insertions into the respective host genomes. 382 

The biological role of Wolbachia in Hippoboscidae was never examined in spite of its relatively 383 

high prevalence in this host group (55%). The F supergroup was detected as the most frequent 384 

lineage in Hippoboscidae which is congruent with its common presence in blood-sucking 385 

insects such as Streblidae (Morse et al., 2012a), Nycteribiidae (Hosokawa et al., 2012), 386 

Amblycera (Covacin & Barker, 2007), and Cimicidae (Hosokawa et al., 2010; Nikoh et al., 387 

2014). 388 

 389 

Besides the three main Hippoboscidae symbionts we paid attention to, Bartonella spp. that are 390 

also widespread among louse flies and bat flies. The infection seems to be fixed only in 391 

Melophagus ovinus suggesting a mutualistic relationship (Halos et al., 2004), but additional 392 
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functional data are needed to confirm this hypothesis (Nováková et al., 2015). Nevertheless, 393 

deer ked and sheep ked are also suspected of vectoring bartonellosis (Maggi et al., 2009; de 394 

Bruin et al., 2015). According to the recent findings, Bartonella spp. used to be originally gut 395 

symbionts which adapted to pathogenicity (Hid Segers et al., 2016; Neuvonen et al., 2016).  396 

 397 

What is behind dynamics of Hippoboscidae-symbiont associations? 398 

According to our results, symbiosis in the Hippoboscidae group is very dynamic and influenced 399 

by frequent symbiont replacements. Arsenophonus and Sodalis infections seem to be the best 400 

resources for endosymbiotic counterparts, but it remains unclear why just these two genera. 401 

Both are endowed with several features of free-living/pathogenic bacteria enabling them to 402 

enter new host which can be crucial in establishing novel symbiotic association. Sodalis 403 

glossinidius possesses modified outer membrane protein (OmpA) which is playing an 404 

important role in the interaction with the host immune system (Weiss et al., 2008; Weiss, Maltz 405 

& Aksoy, 2012). Both Sodalis and Arsenophonus bacteria retain genes for the type III secretion 406 

system (Dale et al., 2001; Wilkes et al., 2010; Chrudimský et al., 2012; Oakeson et al., 2014) 407 

allowing pathogenic bacteria to invade eukaryotic cells. Moreover, several strains of these 408 

bacteria are cultivable under laboratory conditions (Hypba & Dale 1997; Dale & Maudlin 1999; 409 

Dale et al. 2006; Darby et al. 2010; Chrudimský et al. 2012; Chari et al. 2015) suggesting that 410 

they should be able to survive horizontal transmission. For instance, Arsenophonus nasoniae 411 

is able to spread by horizontal transfer between species (Duron, Wilkes & Hurst, 2010), while 412 

Sodalis-allied bacteria have several times successfully replaced ancient symbionts (Conord et 413 

al., 2008; Koga et al., 2013; Meseguer et al., 2017). 414 

 415 

Whereas the facultative endosymbionts of Hippoboscoidea are widespread in numerous types 416 

of tissues such as milk glands, bacteriome, haemolymph, gut, fat body, and reproductive organs 417 
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(Dale & Maudlin, 1999; Dale et al., 2006; Balmand et al., 2013; Nováková et al., 2015), the 418 

obligate endosymbionts are restricted to the bacteriome and milk glands (Aksoy, 1995; Attardo 419 

et al., 2008; Balmand et al., 2013; Morse et al., 2013; Nováková et al., 2015). Entering the milk 420 

glands ensures vertical transmission of facultative endosymbiont to progeny and better 421 

establishment of the infection. Vertical transmission also enables the endosymbiont to hitch-422 

hike with the obligate endosymbiont and because the obligate endosymbiont is inevitably 423 

degenerating (Moran, 1996; Wernegreen, 2002), the new co-symbiont can eventually replace 424 

it if needed. For instance, Sodalis melophagi was shown to appear in both milk glands and 425 

bacteriome and to code for the same full set of B-vitamin pathways (including in addition the 426 

thiamine pathway) as the obligate endosymbiont Arsenophonus melophagi (Nováková et al., 427 

2015). This suggests that it could be potentially capable of shifting from facultative to 428 

obligatory lifestyle and replace the Arsenophonus melophagi endosymbiont. 429 

 430 

We suggest that the complex taxonomic structure of the symbiosis in Hippoboscoidea can be 431 

result of multiple replacements, similar to that already suggested for the evolution of symbiosis 432 

in Columbicola lice (Smith et al., 2013) or mealybugs (Husník & McCutcheon 2016). Based 433 

on the arrangement of the current symbioses in various species of Pupipara, the ancestral 434 

endosymbiont was likely either an Arsenophonus or Sodalis bacterium (given our finding of 435 

the potential obligate Sodalis lineage in Olfersini). In the course of Pupipara evolution and 436 

speciation, this symbiont was repeatedly replaced by different Arsenophonus (or Sodalis in 437 

Olfersini if not ancestral) lineages, as indicated by the lack of phylogenetic congruence and 438 

differences in genome reduction, gene order, and GC content in separate Arsenophonus 439 

lineages (Nováková et al. 2015, 2016; E. aochová unpublished data). This genomic diversity 440 

across the Arsenophonus bacteria from distinct Hippoboscidae thus likely reflects their 441 

different age correlating with the level of genome reduction in symbiotic bacteria. 442 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3057v1 | CC BY 4.0 Open Access | rec: 29 Jun 2017, publ: 29 Jun 2017



19 

 

 443 

Conclusions 444 

Despite the considerable ecological and geographical variability, the Hippoboscoidea families 445 

surprisingly share some aspects of their association with symbiotic bacteria. Particularly, they 446 

show high affinity to two bacterial genera, Arsenophonus and Sodalis. This affinity is not only 447 

reflected by frequent occurrence of the bacteria but mainly by their multiple independent 448 

acquisitions. Comparisons between the hippoboscid and bacterial phylogenies indicate several 449 

independent origins of the symbiosis, although more precise evolutionary reconstruction is still 450 

hampered by the uncertainties in hippoboscid phylogenies. 451 
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Figure 1 Host phylogeny derived from concatenation of three genes: 16S rRNA, EF, and COI. The 

phylogeny was reconstructed by BI analysis. Posterior probabilities and bootstrap support are printed 

upon branches, respectively (asterisk was used for very low or missing bootstrap branch support). Taxa 

labelled with voucher are newly sequenced in this study. Genomic COI sequences are labelled with 

rRNA. Three smaller trees on the top of the figure represent outlines of three separate phylogenetic trees 

based on BI analyses of 16S rRNA, EF, and COI genes. Full versions of these phylogenies are included 

in Supplemental Figures (Fig. S6-8). Three main families of Hippoboscidae are colour coded: yellow 

for Lipopteninae (one group), brown for Hippoboscinae (one group), and orange for Ornithomiinae 

(three groups). Colour squares label branches where are placed main Hippoboscidae groups. This 

labelling corresponds with labelling of branches at smaller outlines, which are in addition to this 

highlighted with the same colour. All host trees are included in Supplemental Figures (Fig. S1-8).  
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Figure 2 16S rRNA phylogeny of Arsenophonus in Hippoboscidae inferred by BI analysis. 

Posterior probabilities and bootstrap support are printed upon branches, respectively (asterisk was used 

for very low or missing bootstrap branch support). Taxa labelled with voucher are newly sequenced in 

this study. Genomic sequences are labelled with rRNA. Taxa in dark purple represent Arsenophonus 

bacteria which genome was sequenced. Numbers behind these taxa correspond to their GC content of 

16S rRNA, GC content of genome, and genome size, respectively. Numbers behind other taxa 

correspond to GC content of their 16S rRNA. Smaller picture on the right side represents host phylogeny 

to which symbiont phylogeny was compared. Red lineages correspond to obligate symbionts while 

orange lineage is symbiont of recent origin. Blue A represent likely facultative Arsenophonus infection. 

To achieve this, we also used the information available on groEL gene by Morse et al. (2013) and Duron 

et al. (2014). Phylogenetic reconstructions of Arsenophonus of entire Hippoboscoidea and all 

Arsenophonus bacteria are included in Supplemental Figures (Fig. S9 and Fig. S10). 
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Figure 3 16S rRNA phylogeny of Sodalis in Hippoboscidae inferred by BI analysis. Posterior 

probabilities and bootstrap support are printed upon branches, respectively (asterisk was used for very 

low or missing bootstrap branch support). Taxa labelled with voucher are newly sequenced in this study. 

Taxa in dark purple represent Sodalis-like bacteria which genome was sequenced. Numbers behind 

these taxa correspond to their GC content of 16S rRNA, GC content of genome, and genome size, 

respectively. Numbers behind other taxa correspond to GC content of their 16S rRNA. Red lineages 

correspond to obligate symbionts while orange lineage is symbiont of recent origin. Red dashed line 

shows that co-evolution between Icosta spp. and their obligate endosymbiont imperfect.  
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Figure 4 Wolbachia phylogeny inferred from 16S rRNA and MLST genes by BI analysis. Posterior 

probabilities and bootstrap support are printed upon branches, respectively (asterisk was used for very 

low or missing bootstrap branch support). Colour letters upon branches correspond to Wolbachia 

supergroups. Taxa in red represent Wolbachia bacteria from Hippoboscidae and Nycteribidae which 

are newly sequenced in this study. Taxa labelled with # in the 16S tree represent taxa which were used 

for the MLST analysis. Wolbachia from O. biloba, which was obtained from genomic data, is labelled 

with rRNAob. Supergroup E was used for rooting both trees. 
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