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The advent of next-generation sequencing tools has made it possible to conduct fine-scale

surveys of population differentiation and genome-wide scans for signatures of selection in

non-model organisms. Such surveys are of particular importance in sharply declining coral

species, since knowledge of population boundaries and signs of local adaptation can

inform restoration and conservation efforts. Here, genome-wide surveys of single-

nucleotide polymorphisms in the threatened Caribbean elkhorn coral, Acropora palmata,

reveal fine-scale population structure and place the major barrier to gene flow that

separates the eastern and western Caribbean populations between the Bahamas and

Puerto Rico. The exact location of this break had been subject to discussion because two

previous studies based on microsatellite data had come to differing conclusions. We

investigate this contradiction by analyzing an extended set of 12 microsatellite markers

including the five previously employed and discovered that one of the original

microsatellite loci is apparently under selection. Exclusion of this locus reconciles the

results from the SNP and the microsatellite datasets. Scans for outlier loci in the SNP data

detected 12 candidate loci under positive selection. Together, these results suggest that

restoration of populations should use local sources and utilize existing functional variation

among populations in ex situ crossing experiments to improve stress resistance of this

species.
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15 Abstract

16 The advent of next-generation sequencing tools has made it possible to conduct fine-scale 

17 surveys of population differentiation and genome-wide scans for signatures of selection in non-

18 model organisms. Such surveys are of particular importance in sharply declining coral species, 

19 since knowledge of population boundaries and signs of local adaptation can inform restoration 

20 and conservation efforts. Here, genome-wide surveys of single-nucleotide polymorphisms in the 

21 threatened Caribbean elkhorn coral, Acropora palmata, reveal fine-scale population structure and 

22 place the major barrier to gene flow that separates the eastern and western Caribbean populations 

23 between the Bahamas and Puerto Rico. The exact location of this break had been subject to 

24 discussion because two previous studies based on microsatellite data had come to differing 

25 conclusions. We investigate this contradiction by analyzing an extended set of 12 microsatellite 

26 markers including the five previously employed and discovered that one of the original 

27 microsatellite loci is apparently under selection. Exclusion of this locus reconciles the results 

28 from the SNP and the microsatellite datasets. Scans for outlier loci in the SNP data detected 12 

29 candidate loci under positive selection. Together, these results suggest that restoration of 

30 populations should use local sources and utilize existing functional variation among populations 

31 in ex situ crossing experiments to improve stress resistance of this species. 

32

33
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34 Introduction

35 There is an ongoing debate about the importance of local recruitment and barriers to gene 

36 flow in marine species. Many marine species reproduce via planktonic larvae and strong ocean 

37 currents have the potential to carry propagules over long distances. However, genetic evidence 

38 has revealed a high degree of self-recruitment in a range of species with planktonic larval 

39 duration being a poor predictor of genetic structure (Selkoe & Toonen 2011). The development 

40 of cheap genome-scale genotyping is poised to open a new chapter in this discussion (Peterson et 

41 al. 2012a; Toonen et al. 2013; Wang et al. 2012). American eels for example show panmixia in 

42 their central breeding ground in the North Atlantic but single nucleotide polymorphism (SNP) 

43 genotyping of adults along the Eastern seaboard revealed local differentiation (Gagnaire et al. 

44 2012). Thus, a well-mixed pool of larvae sorted into environmental niches resulting in a 

45 structured adult population. 

46 Resolving significant population genetic structure indicative of predominantly local 

47 recruitment is of particular significance for in situ restoration efforts targeting declining 

48 populations of reef-building corals (Baums 2008 - 2011; Epstein et al. 2001; Griffin et al. 2015; 

49 Griffin et al. 2012; Rinkevich 2006; Schopmeyer et al. 2012). Restoration genetic best practices 

50 suggest that propagules should not be moved among genetically distinct populations to avoid 

51 outbreeding depression (Baums 2008 - 2011) and this approach has been adopted by some 

52 permitting agencies (e.g. the Florida Keys National Marine Sanctuary). On the other hand, 

53 crosses between genotypes from different populations may show heterosis with respect to 

54 environmental stressors as seen in the hybrid Acropora prolifera (Fogarty 2012) and therefore 

55 might be worth exploring in an ex situ setting. 

56 Diversity within functional regions of the genome that may be under selection (those 

57 regions that code for proteins or regulate transcription of genes), are not commonly surveyed 

58 even though it is these regions of the genome that are of interest to conservation managers who 

59 want to understand how much capacity there is in a species to adapt to changing conditions 

60 (Becks et al. 2010). Statistical methods have been developed that allow scanning of SNP loci for 

61 signatures of selection. Despite the risk of generating false positive results (Vilas et al. 2012), 

62 these methods yield candidate loci that should be substantiated by further testing to be of 

63 functional significance. The same methods can be used to scan microsatellite loci for signatures 

64 of selection, however, power is often limited by the small number of assayed loci. 
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65 SNPs are ubiquitous throughout the genome, located in coding and non-coding regions, 

66 and each locus has a maximum of four alleles (the four bases). This is in contrast to 

67 microsatellite loci that consist of tandem repeats, in which allelic variation is determined by the 

68 number of tandem repeats and thus can be large. The limited number of alleles at each SNP locus 

69 requires a larger number of loci to be assayed to achieve the same power of detecting population 

70 genetic structure as a panel of microsatellite loci (Morin et al. 2009; Ryman et al. 2006). The 

71 advent of reduced representation sequencing methods have made it possible to develop and assay 

72 a large number of SNP loci at a reasonable cost (Altshuler et al. 2000; Hoffberg et al. 2016).  

73 Recently, Genotyping by Sequencing (GBS) data including 4,764 SNPs in A cervicornis 

74 identified population structure within the Florida Reef tract (Drury et al. 2016b; Willing et al. 

75 2012). Other flavors of reduced representation sequencing methods (Toonen et al. 2013; Wang et 

76 al. 2012) have yielded information on population structure, loci under selection and genetic 

77 diversity in reef building corals (Drury et al. 2016b; Howells et al. 2016a) 

78 Acropora palmata is one of a few Caribbean coral species whose population genetic 

79 structure has been thoroughly investigated on local and range-wide scales (Baums et al. 2014a; 

80 Baums et al. 2005b; Baums et al. 2006a).  A range-wide survey of A. palmata population genetic 

81 structure using five coral specific polymorphic microsatellite markers showed that A. palmata 

82 stands are structured into two long-separated populations (Baums et al. 2005a). While most reefs 

83 are self-recruiting, A. palmata stands are not inbred and harbor high genetic diversity at the 

84 microsatellite loci (Baums et al. 2005b). Bio-physical modeling identified a transient feature in 

85 the Mona Passage important in restricting present-day gene flow between the eastern and 

86 western population (Baums et al. 2006b). However, it is unclear whether the eastern and western 

87 populations differentiated initially due to selection. Subsequent denser sampling of A. palmata 

88 along the Antilles Island Arc raised the possibility of a hybrid zone across Puerto Rico rather 

89 than a clear-cut break between the eastern and western Caribbean at the Mona Passage (Mège et 

90 al. 2014). 

91 The east-west population divide or possible finer scales of population differentiation were 

92 tested in this study by developing a large number of SNP markers to obtain a more 

93 comprehensive estimate of genetic differentiation across the genome and compare them to a set 

94 of microsatellite loci (Baums et al. 2009). The second goal was to screen SNP loci for signatures 

95 of selection.  We developed genome-wide SNPs and assayed them in archived samples from two 
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96 regions in the western A. palmata population (Bahamas and Florida) and two regions in the 

97 eastern population (Puerto Rico and the U.S. Virgin Islands (USVI)). We then compared the 

98 results to population structure derived from ten and eleven microsatellite loci. 

99

100 Materials & Methods

101 SAMPLE COLLECTION

102 Colonies of A. palmata were collected between 2002 and 2010 and previously genotyped 

103 (Baums et al. 2014a; Baums et al. 2005b).  Unique genets were selected from our database for a 

104 total of 24 samples from each of four regions; the Bahamas, Florida, Puerto Rico and the US 

105 Virgin Islands (USVI). The goal was to have eight samples from three different reefs within each 

106 region, however this was not always possible either due to a small sample sizes from a particular 

107 reef or low clonal diversity of a reef. In those cases, we selected additional unique genets from 

108 nearby reefs. See Table 1A for detailed sample information.

109 We used an extended set of samples to compare the population genetic structure 

110 ascertained via microsatellite genotyping to the SNP results. This extended set of samples 

111 included 260 samples from six regions; Belize, Florida, Puerto Rico, the USVI, and Curacao 

112 (Table 1B).

113 LIBRARY PREPARATION

114 Coral tissue samples were extracted from ethanol preserved samples using DNeasy Blood 

115 & Tissue Kit (QIAGEN, Hilden, Germany) with the following modifications. Time of incubation 

116 in the extraction buffer was increased to 16-20 hours and two 100 ¿l elutions were performed, 

117 the second of which was kept for library production as this fraction contained the high molecular 

118 weight DNA. Extracted DNA was then treated with 0.01 mg of RNase A (10 mg/ml, Amresco 

119 Solon, OH). Extraction concentrations ranging from 500 ng to 6 ¿g were double-digested with 

120 10 units of each of the restriction enzymes MluCI (^AATT) and NlaIII (CATG^) (New England 

121 Biolabs, Ipswich, MA) following the protocol described by Peterson et al. (2012a). Digestions 

122 were purified using 1.5X Ampure beads (Beckman Coulter Inc, Brea, CA) and quantified on a 

123 Qubit® fluorometer (Life Technologies, Carlsbad, CA). Digested DNA was standardized to 100 

124 ng for each sample before adaptor ligation. Samples were identified with eight 6-bp indices on 

125 the NlaIII (rare-cutter) P1 adapter (Supplementary Table 1).  Samples were pooled into 12 
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126 libraries and then size selected in the range of 200-800 bp on a Pippin-Prep (Sage Science, 

127 Beverly, MA). Next, Illumina flow-cell annealing sequences, unique multiplexing indices and 

128 sequencing primer annealing regions were added through PCR amplification to the MluCL cut 

129 end (See (Peterson et al. 2012b), Protocol S1, Figure 1). The libraries were enriched with 12 

130 amplification cycles in four separate PCR reactions for each library containing 10 ¿l of Phusion 

131 High-Fidelity PCR Master Mix with HF Buffer (New England Biolabs, Ipswich, MA), 2 ¿l of 

132 each amplification primer, 1 ¿l of library DNA and 5 ¿l of water (total 20 ¿l). Samples were 

133 pooled into four libraries each containing 24 samples (Table 2). Each library was sequenced on 

134 one lane of Illumina HiSeq 2000 sequencer (paired-end, 2x150 bp) at the Pennsylvania State 

135 Genomics Core Facility. There were two libraries sequenced on each chip. 

136 RAW SEQUENCE FILTERING

137 Raw sequence reads were filtered using the process_radtags in the pipeline STACKS 1.21 

138 (Catchen et al. 2013; Catchen et al. 2011). Barcodes and the RAD-Tag cut sites were identified 

139 to de-multiplex the pooled data into individual samples. Reads were discarded that had low 

140 quality (with an average raw phred score <10 within a 15-base pair sliding-window), adapter 

141 contamination, and uncalled bases. Since all indices differed by at least 2 bp, it was possible to 

142 correct and retain any index that differed by a single bp from an expected index. 

143 ASSEMBLY

144 Processed sequences were then aligned to the Acropora digitifera genome (V1.0) 

145 (Shinzato et al. 2011) with BOWTIE2 (Langmead & Salzberg 2012) within the GALAXY (Bedoya-

146 Reina et al. 2013; Blankenberg et al. 2014) framework using end-end read alignment settings in 

147 order to remove symbiont and other associated microorganisms. After alignment, paired-end 

148 sequencing BAM files were assembled in the ref_map.pl pipeline in STACKS 1.30 with the 

149 following parameters. Each paired-end sequencing set was run separately through STACKS to 

150 compare results (designated Read1 and Read2). The number of raw reads required to report a 

151 stack was m=5. The number of mismatches allowed between loci when building the catalog was 

152 n=4. SNPs with a log-likelihood of less than -10 were removed as reads with poor log-

153 likelihoods tend to have sequencing error and/or low coverage. Two of the barcodes (TCGAT 

154 and CGATC) had a very low amount of sequence reads across all four populations, all Illumina 

155 lanes were affected, and those samples were removed before assembly in STACKS.
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156 GENOME COVERAGE

157 BEDTOOLS (Quinlan & Hall 2010) was used to create a histogram of genome coverage for 

158 each sample from the BOWTIE2 BAM format alignment files. All positions with a depth of 

159 coverage greater to or equal to 20 were combined into a single bin in the histogram. Regions 

160 were averaged (excluding samples with barcodes TCGAT and CGATC) and a cumulative 

161 distribution of sequencing coverage was then plotted in SIGMAPLOT v12. 

162 POPULATION GENETIC STATISTICS

163 More stringent filtering was implemented in the Populations module in STACKS 1.30 

164 where a locus had to be present in at least 60% of the individuals within a population and had to 

165 be present in all four populations in order to be processed for FST calculations and outlier 

166 analysis. A minor allele frequency (MAF) cutoff of 0.05 was applied. A p-value correction was 

167 applied to FST scores, so that if a FST score is not significantly different from 0 (according to 

168 Fisher's Exact Test) the value was set to 0. Additionally, only one random SNP from any RAD 

169 locus was written to the STRUCTURE export file in order to prevent linked loci from being 

170 processed. Read 1 and Read 2 STRUCTURE export files were combined and duplicate loci 

171 removed randomly between reads. An Analysis of Molecular Variance (AMOVA) corrected FST 

172 (p-value<0.05) was calculated within STACKS. 

173 CLUSTERING ANALYSES

174 Clustering analyses were performed in the program STRUCTURE 2.3.4 (Falush et al. 2003; 

175 Hubisz et al. 2009) using the admixture model with correlated allele frequencies. The analysis 

176 included the following parameters: 100,000 burn-in iterations and 1,000,000 Markov chain 

177 Monte Carlo repetitions, with and without a population prior, for a total of three replicates for 

178 each value of K. K values ranged from 2 to 5. The most likely value for K was determined by 

179 CLUMPAK (KOPELMAN ET AL. 2015B) BEST K  which uses LN(PR(X|K)  to identify the K for 

180 which PR(K=K) is the highest as described in STRUCTURE9s manual section 5.1. Results of the 

181 three structure runs were merged with CLUMPAK (Kopelman et al. 2015a).

182 Previously genotyped samples at 10 and 11 (n=260) microsatellite markers (181, 182, 

183 192, 207, 0585, 0513, 2637, 007, 9253, 5047, with and without locus 166) (Baums et al. 2009; 

184 Baums et al. 2005a) were also analyzed with STRUCTURE 2.3.4 (Falush et al. 2003; Hubisz et al. 

185 2009) using the admixture model with correlated allele frequencies (See Table 1 for sample 
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186 information). The analysis included the following parameters; 100,000 burn-in iterations and 

187 1,000,000 MCMC repetitions, with and without a population prior, for a total of 3 replicates for 

188 each value of K. K values tested ranged from 2 to 7.

189 MANTEL TESTS

190 Data on temperature, salinity, dissolved oxygen (ml/l), and phosphates was downloaded 

191 from the World Ocean Atlas 2013 (WOA13 V2). Silicates and nitrates were not used as there 

192 was not sufficient data for all locations.  For the Bahamas, Puerto Rico, and the USVI the 

193 geographic center point among several sampling sites was used because reefs were further apart 

194 than in Florida. For all data, the statistical mean of the annual average of years 1955-2012 and 

195 depths of 0-10 m was used. Grid sizes were 1/4° for temperature and salinity, and 1° for 

196 dissolved oxygen (ml/l), and phosphates (µmol/l) (Supplemental Table 2). SPSS V22 was used 

197 to calculate a dissimilarity matrix expressed as the Euclidean distances between regions based on 

198 the above environmental data. GenAlEx v6.501 (Peakall & Smouse 2006) was used to calculate 

199 a pairwise geographic distance matrix between the four regions and to perform a Mantel multi-

200 comparison test between the geographic distance matrix, FST pairwise matrix between regions 

201 from STACKS, and the environmental dissimilarity matrix. 

202 OUTLIER ANALYSIS

203 Two independent methods were used to identify putative loci under selection. The first 

204 program used was LOSITAN (Antao et al. 2008) which utilizes the method of Beaumont and 

205 Nichols (1996) to identify loci under selection based on the joint distributions of expected 

206 heterozygosity and FST under an island model of migration. The following settings were used for 

207 the SNP and the microsatellite datasets. The neutral mean setting was selected in which during 

208 an initial run (100,000 simulations), a candidate subset of selected loci (outside the 95 % 

209 confidence interval) were identified and removed. Then the distribution of neutral FST was 

210 computed using 100,000 simulations and a bisection approximation algorithm (Antao et al. 

211 2008), with the following options, force mean FST, infinite alleles mutation model, and a 

212 confidence interval 0.99. A FDR < 0.1 correction for multiple testing was applied. Loci outside 

213 the upper and lower confidence areas were identified as candidates affected by positive and 

214 balancing selection, respectively. All populations were analyzed together. The positive outlier 

215 loci were blasted against the NCBI nr, UniProt, and Trembl databases with parameters of 
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216 expected value = 0.00001, gap opening penalty = 11, gap extension penalty = 1, length of initial 

217 exact match (word size) = 6 and scoring matrix = BLOSUM62 using BLASTX 2.2.32+ (Altschul 

218 et al. 1997).

219 The STACKS exported GENEPOP dataset was also reformatted with PGDSPIDER version 

220 2.0.5.2 (Lischer & Excoffier 2012) to a GESTE file. The method of Foll and Gaggiotti (2008) 

221 was performed using BAYESCAN 2.0 (http://www-leca.ujf-grenoble.fr/logiciels.html). For each 

222 locus, the probability of being under selection was inferred using the Bayes factor (BF). Based 

223 on Jeffreys9 (1961) (Jeffreys 1961) scale of evidence, a log10 BF of 1.532.0 is interpreted as 

224 <strong evidence= of selection. For our analysis, the estimation of model parameters was set as 

225 20 pilot runs of 5,000 iterations each, followed by 50,000 iterations.

226

227 Results

228 Summary statistics

229 Illumina sequencing of the RAD libraries generated 49.3 million reads per pool of eight 

230 samples, averaging 6.2 million 150 bp reads per individual prior to quality filtering. After quality 

231 filtering, 4.99 million (81%) reads per individual were retained on average (Table 2). Pools had 

232 similar numbers of reads after processing (mean = 39.9 million per pool, SD = 4.95 million, one-

233 way ANOVA, F = 2.638, p > 0.1). The average % GC content for Read 1 and 2 was 41.7 and 

234 39.6, respectively. The percentage of polymorphic sites per region varied little among 

235 populations, from 0.150 to 0.173 % (Table 3). The observed heterozygosity in variant sites was 

236 22% on average. Overall FIS values, when considering all sites with a minor allele frequency 

237 cutoff a g 0.05, were close to 0 and hence provided no evidence of inbreeding (Table 3). 

238 However, when only considering variant positions within the region of Florida, FIS values were 

239 negative (Fis = -0.0086), indicating an excess of heterozygosity. Using the two paired-end read 

240 sets as replicates, a one-way ANOVA was performed for each variable (Table 4). Populations 

241 were found to be similar for all summary statistics. Alignment of A. palmata SNPs to the 

242 published A. digitifera genome indicated that on average, 2.5% percent of the A. digitifera 

243 genome had sequence coverage at a stack depth of 5 (Fig 1). All four populations produced 

244 similar sequence coverage.

245
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246 Population genetics 

247 A total of 390 SNPS were identified after filtering and including a minor allele frequency 

248 cutoff a g 0.05 (Table 3). This included 219 for Read1 and 176 for Read2 from the paired-end 

249 sequencing (5 SNPs were identical between reads and only considered once). Analysis of 

250 Molecular Variance (AMOVA) revealed patterns of genetic differentiation among populations 

251 (Table 4). This was also evident when the 307 SNPs (analysis included only one SNP per 150 bp 

252 locus) after combining Read1 and Read2, were subjected to a multi-locus clustering analysis in 

253 STRUCTURE. Individuals from Florida clustered first, followed by the Bahamas at K=3. Puerto 

254 Rico and the USVI were not distinguishable until K=4, (Fig 2). CLUMPAK BEST K (Kopelman et 

255 al. 2015b) indicated that K=3 was the most likely K-value regardless of whether the sampling 

256 region was used as a prior. 

257 To compare to the SNP analysis, microsatellite data from samples collected in six regions 

258 were analyzed in STRUCTURE using the sampling region as a prior. At K=2, a western (including 

259 Belize, Florida, Bahamas and Puerto Rico) and an eastern cluster (including the USVI and 

260 Curacao) was evident (Fig 3A). At K=3, an isolation-by-distance like pattern was apparent in the 

261 western cluster (Fig 3B). K=4 was the most likely K-value based on 11 microsatellite markers 

262 (Kopelman et al. 2015b) which grouped Florida and Belize as one cluster, and Puerto Rico and 

263 the Bahamas as the second, with the USVI as the third and Curacao as an admixed fourth cluster 

264 (Fig 3C).

265 According to the outlier analysis in Lositan, locus 166 was identified as a potential outlier 

266 and thus possibly under selection. It was therefore excluded from the analysis in STRUCTURE. 

267 This resulted in more comparable results to the SNP analysis with the most likely K-value being 

268 3 (Kopelman et al. 2015b). Again, the first separation was between a western and an eastern 

269 cluster, however this time Puerto Rico assigned to the eastern cluster with an isolation-by-

270 distance like pattern appearing between the west and east (Fig 3D). At the most likely K of 3, 

271 Curacao now formed a separate cluster. At K=4, the Bahamas started to separate from the 

272 remainder of the western regions similar to what was observed in the SNP clustering analysis 

273 (Fig 3E). 
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274 Environmental drivers of population structure

275 A Mantel test showed a significant positive relationship in the SNP dataset between 

276 pairwise FST values and geographic distance (R2= 0.65, p=0.05) consistent with the microsatellite 

277 results (10 loci) from the Florida, Bahamas, Puerto Rico, and Curacao samples only (Fig4C, 

278 Fig4D). Correlations between environmental factors including average temperature, salinity, 

279 dissolved oxygen, and pairwise FST values or geographic distance were not significant (Fig4A, 

280 Fig4B). However, it should be noted that the environmental data had a resolution of ¼ to 1 

281 degree latitude whereas the genetic data was collected on much smaller spatial scales (the reefs 

282 in each region are on average 66, 10, 106, and 68 km apart for the Bahamas, Florida, Puerto Rico 

283 and the U.S. Virgin Islands, respectively)(Supplemental Table 2). Therefore, landscape genetic 

284 approaches that may reveal environmental drivers of population differentiation (Manel et al. 

285 2003) must await higher resolution environmental data.

286

287 Loci under selection

288 BAYESCAN and LOSITAN identified 2 and 13 SNPs (Supplementary Table 3) that showed 

289 signs of positive selection when including all four populations, one of which was identified by 

290 both programs (a total of 12 unique loci identified between both programs). Outliers accounted 

291 for 3.3% of the total SNPs, consistent with other studies in which FST outlier loci have 

292 represented a substantial fraction of the total loci investigated (2-10%) (Nosil et al. 2009). 

293 Annotation of the candidate loci proved difficult as only 23% produced significant hits when 

294 queried against the NCBI NR database, Uniprot, and Trembl; with two of the hits being annotated 

295 as unconventional myosin-IXb isoform X7 and tyrosine-protein kinase transmembrane receptor 

296 ROR1-like. Screening of the microsatellite loci identified locus 166 as an outlier under positive 

297 selection, yet no annotation information of this locus is currently available.

298 Discussion

299

300 Comparison with previous Acropora gene flow studies 

301 The previous range-wide survey of A. palmata population genetic structure using five, 

302 presumed neutrally evolving microsatellite markers showed that while most reefs are self-

303 recruiting, A. palmata stands are not inbred and harbor high microsatellite genetic diversity 

304 (Baums et al. 2005). Furthermore, A. palmata stands were structured into two long-separated 
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305 populations, one in the eastern and one in the western Caribbean (Baums et al. 2005). Here, we 

306 report that genome-wide SNPs (MAF g 0.05) resolved further population structure in the 

307 endangered reef-building coral, A. palmata from Florida to the USVI compared to previous 

308 microsatellite-based analyses.

309 It was recently suggested that the East-West divide of A. palmata lies not in the Mona 

310 Passage (Baums et al. 2005b; Baums et al. 2006b) but rather to the east of Puerto Rico (Mège et 

311 al. 2014). The 307 SNPs analyzed here confirm earlier findings that Puerto Rico and the USVI 

312 regions are more similar to each other than Puerto Rico is to either the Bahamas or Florida 

313 without imposing any priors in a STRUCTURE analysis (MAFg0.05). However, it is not always 

314 possible to determine, with confidence, the correct clustering solution that accurately reflects 

315 genetic population structure when there is an underlying isolation by distance pattern (Frantz et 

316 al. 2009). We show here that there is significant isolation by geographic distance from Florida to 

317 the USVI when using presumably neutrally evolving SNP and microsatellite loci. Interestingly, 

318 inclusion of microsatellite locus 166, flagged as being an outlier locus, obscured this isolation by 

319 distance pattern. Therefore, locus 166 is a strong candidate for a locus under selection (or it is 

320 linked to a locus under selection) and its functional significance might prove a fruitful subject for 

321 future studies. 

322 An east-west Caribbean divide was also evident in the corals Orbicella annularis (Foster 

323 et al. 2012) and Acropora cervicornis (Vollmer & Palumbi 2007). An additional barrier to gene 

324 flow in A. palmata was reported by Porto-Hannes et al. (2014) between Venezuela and the 

325 Mesoamerican Barrier Reef System utilizing four of the microsatellites markers.

326 The total number of SNPs (n=307) retained for population genetic analysis was lower 

327 than expected. This was due to a 10-fold increase in the number of fragments retrieved from 

328 the genome digest using the enzymes MluCI (^AATT) and NlaIII (CATG^) compared to what 

329 was predicted from an in-silico restriction of an incomplete draft genome of A. palmata 

330 (Baums, unpublished). A larger set of SNP loci may reveal additional finer scale structure 

331 across the Caribbean in A. palmata. However, model based clustering methods of 905,561 

332 SNPs failed to reveal population structure in A. digitifera collected from the Ryukyu 

333 Archipelago of Japan, although a principle component analysis clustered the 122 samples into 4 

334 groups identified as Okinawa, Kerama, Yaeyama-North, and Yaeyama-South, respectively 

335 (Shinzato et al. 2015). Low coverage, 5X in this study, is also a concern. Yet in the coral 
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336 Platygyra daedalea, 5x coverage was sufficient to assign samples to two distinct clusters based 

337 on their geographic origin, the Persian Gulf or Sea of Oman and was consistent with their 20x 

338 coverage data set (Howells et al. 2016b).

339 Genetic diversity indices in A. palmata

340 Several factors could account for negative FIS values including negative assortative 

341 mating, if a species is outcrossed and lacks selfed progeny or there is a selection pressure that 

342 favors the most heterozygous individuals.  Of our samples, 49 out of 96 were ramets of larger 

343 genets. A. palmata colonies fragment frequently; the branches regrow into new colonies resulting 

344 in stands of genetically identical colonies (Baums et al. 2006a). [Note that samples included here 

345 all represented distinct genets]. Asexual reproduction could explain the excess of heterozygosity 

346 in A. palmata within the Florida region (see (Balloux et al. 2003; Carlon 1999; Delmotte et al. 

347 2002). Excess hetereozygosity has been observed in other clonal organisms. For example, 

348 significant negative FIS values in a partially clonal but self-incompatible wild cherry tree was 

349 explained in part by asexual reproduction (Stoeckel et al. 2006). 

350 The nucleotide diversity Ã, describes the degree of nucleotide polymorphism in a 

351 population and can be calculated based on variant sites only or on variant and non-variant sites 

352 combined. In A. cervicornis, nucleotide diversity based on variant sites only ranged from 0.2393

353 0.44, with all means of reefs in Florida being higher than the Dominican Republic. (Drury et al. 

354 2016b). However, in A. palmata we find that Florida is the least genetically diverse region when 

355 comparing variant sites only (0.203, Table 3), as would be expected in a marginal environment 

356 (Arnaud-Haond et al. 2006; Baums 2008; Baums et al. 2014b; Cahill & Levinton 2016; Eckert et 

357 al. 2008). In Acropora austera populations in the south-west Indian Ocean, nucleotide diversity 

358 ranged from 0.007 to 0.022, with lower estimates in the south than north (Macdonald et al. 

359 2011). The nucleotide diversity estimate for A. cervicornis, including variant and non-variant 

360 SNP sites was 0.09 (Drury et al. 2016a). In the sea anemones, Aiptasia and Nematostella 

361 (Cnidaria) a genome-wide estimate of nucleotide diversity was 0.004 SNPs/bp surveyed (Bellis 

362 et al. 2016) and 0.0065 SNPs/bp (Putnam et al. 2007), respectively. In a survey of transcriptome 

363 derived SNPs in three gorgonian species synonymous nucleotide diversity ranged from 0.012 3 

364 0.020 (Romiguier et al. 2014). Average pairwise nucleotide diversity in other metazoans include 

365 Caenorhabditis elegans (~0.001 SNPs/bp, (Swan et al. 2002)), Drosophila 
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366 pseudoobscura [~0.002 SNPs/bp (Kulathinal et al. 2009), and homo sapiens [7.51)×)1024 

367 SNPs/bp (Sachidanandam et al. 2001)]. 

368 Our estimates of nucleotide diversity (including variant and non-variant sites) was 0.0004 

369 SNPs/bp for all populations, an order of magnitude lower than in other cnidarians. Based on a 

370 survey of 374 individual transcriptome derived SNPs from 76 non-model animal species, the 

371 level of nucleotide diversity found in A. palmata is well below that predicted for a long-lived 

372 species, with small propagule size and large adult size (Romiguier et al. 2014). This low 

373 nucleotide diversity could be due to either a relatively small long-term effective population size, 

374 a severe bottleneck associated with a selective sweep (Ellegren & Galtier 2016) or the small 

375 number of SNPs included in this study (Fischer et al. 2017). 

376 Allelic richness of microsatellite data correlates better with genome-wide estimates of 

377 genetic diversity based on SNPs than heterozygosity (Fischer et al. 2017) and allelic richness is 

378 more sensitive to recent population bottlenecks than heterozygosity (Allendorf 1986). Average 

379 microsatellite-based allelic richness in 14 Indo-Pacific Acropora corals was 4.96 overall and 6.21 

380 in the five geographically widespread species (calculated based on Table 6 in Richards & Oppen 

381 2012) which compares favorably with an average allelic richness of 8.49 in A. palmata found 

382 here. Thus, allelic richness of microsatellite loci remains high in Caribbean A. palmata despite 

383 recent population declines and the documented loss of alleles in Florida (Williams et al. 2014). 

384 Future studies should include several thousand SNPs assayed in samples from across the 

385 species range to provide conclusive data on the impact of recent population declines on overall 

386 genetic diversity in A. palmata. 

387  

388 Genes under positive selection

389  One of the SNP loci identified as being under positive selection was annotated as a 

390 tyrosine-protein kinase transmembrane receptor ROR1-like. ROR receptor protein is associated 

391 with the nervous system in the fruit fly Drosophila (Wilson et al. 1993), nematode C. elegans 

392 (Francis et al. 2005), and sea slug Aplysia californica (McKay et al. 2001). Functional analysis 

393 of cam-1, a gene that encodes for a ROR kinase in C. elegans, demonstrated roles in both the 

394 orientation of polarity in asymmetric cell division and axon outgrowth, and the ability to guide 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3043v1 | CC BY 4.0 Open Access | rec: 22 Jun 2017, publ: 22 Jun 2017



395 migrating cells (Forrester et al. 1999). The role of ROR1 receptors in Cnidaria is unknown 

396 although studies in Hydra suggest a function in regulating cell specification and tissue 

397 morphogenesis (Bertrand et al. 2014; Krishnapati & Ghaskadbi 2014; Lange et al. 2014). 

398 Another SNP identified as being under positive selection was located in the gene 

399 annotated as unconventional myosin-IXb isoform X7, a Rho GTPase-activating protein 

400 (RhoGAP) that is essential for coordinating the activity of Rho GTPases. Invertebrates are 

401 thought to contain a single myosin class IX gene (the exception is Drosphilia which has none) 

402 whereas most vertebrates have two with fishes having four (Liao et al. 2010). In general, Rho 

403 GTPases control the assembly and organization of the actin cytoskeleton which includes many 

404 functions such as cell adhesion, contraction and spreading, migration, morphogenesis, and 

405 phagocytosis. Little is known about the function of myosin-IX in invertebrates. However, a 

406 recent study in which Orbicella faveolata were exposed to immune challenges identified 

407 Unconventional myosin-IXb  as a transcript that was significantly correlated with melanin 

408 protein activity (Fuess et al. 2016). In humans, Myosin-IXb is highly expressed in tissues of 

409 the immune system such as the lymph nodes, thymus, and spleen and also in immune cells like 

410 dendritic cells, macrophages and CD4 + T cells (Wirth et al. 1996). Myosin-IXb knockout mice 

411 showed impaired recruitment of monocytes and macrophages when exposed to a chemoattractant 

412 demonstrating that Myosin-IXb has an important function in innate immune responses in vivo 

413 (Hanley et al. 2010). Because statistical screens for loci under selection carry a high rate of false 

414 positive results, further experimental evidence is necessary before these loci can be considered 

415 targets of selection.  

416 Restoration implications

417 Restoration efforts should proceed under the assumption that A. palmata harbors a 

418 significant amount of population structure requiring close matches of collection and outplant 

419 sites. Hybridization of A. palmata from different regions may or may not result in heterosis 

420 depending on compatibility, but would be worth pursuing in an ex situ setting to enable close 

421 monitoring of offspring performance under elevated temperatures (van Oppen et al. 2015). With 

422 respect to the sharply declining Florida colonies, these findings underline the need to manage 

423 and restore Florida9s A. palmata as an isolated, genotypically depleted population (Williams et 

424 al. 2014).
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428 Figure legends

429

430 Figure 1 A Cumulative distribution of sequencing coverage of Bowtie2 aligned reads to the A. 

431 digitifera using Bedtools. On average 2.5% percent of the A. digitifera genome had sequence 

432 coverage at a stack depth of 5.

433 Figure 2 Bayesian cluster analysis with STRUCTURE. Reefs within regions 1-4 sorted by latitude: 

434 Florida, Bahamas, Puerto Rico, US Virgin Islands. Analysis of 307 SNPs (analysis included only 

435 one SNP per locus) after combining Read1 and Read2. Panels K=2 (A), and K = 3 (B), K=4 (C). 

436 The most probable K was 3 (B) for the minor allele frequency corrected SNPs based on the mean 

437 estimated log probability of the data at a given K (3 replicate runs per K, +/- 1 standard 

438 deviation). 

439 Figure 3 Bayesian cluster analysis with STRUCTURE. Panels (A-C). Analysis of 11 

440 microsatellites with the most probable K being 4. Panels (D-E). Exclusion of locus 166 that was 

441 identified as an outlier resulted in an analysis of 10 microsatellites with the most probable K 

442 being 3. 

443

444 Figure 4 MANTEL matrix correlation test between genetic and geographic distances, and 

445 environmental parameters as calculated by a dissimilarity matrix expressed as the Euclidean 

446 distances between regions based on measured environmental data. Acropora palmata samples 

447 from four regions (Florida, Bahamas, Puerto Rico and USVI) were genotyped with 307 SNP (a, 

448 c) or 10 neutral microsatellite markers (d). Panel (a) y = 0.0107x + 0.0104, R² = 0.6104, p = 

449 0.09. Panel (b) y=0.002x + 0.4175, R2= 0.1012, p = 0.21. Panel (c) y=0.000007x + 0.0098. R2= 

450 0.6483, p-value=0.05. Panel (d) y=0.000007x + 0.0027. R2= 0.69, p = 0.04.

451

452 Supplemental Figure MANTEL matrix correlation test between genetic and geographic 

453 distances. Acropora palmata samples from four regions (Florida, Bahamas, Puerto Rico and 

454 USVI) were genotyped with 11 microsatellite markers, including the 166 outlier locus. y= 5E-

455 06x + 0.0137. R² = 0.1147, p-value=0.1.

456

457
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458

459 Tables

460

461 Table 1 Acropora palmata colonies included in SNP analysis. Samples were obtained from four 

462 regions in the Caribbean and 3 3 6 reefs per region. Given are latitude and longitude in decimal 

463 degrees. 

464 Table 2 RAD-tag sequencing summary table of Acropora palmata samples.  

465 Table 3 Summary statistics for Read 1 and Read 2 combined. % PL = percent polymorphic loci, 

466 Obs Hom = observed homozygosity, Obs Het = observed heterozygosity, StdErr = standard 

467 error, Exp = expected. FIS calculations with and without minor allele frequency restrictions. 

468 Calculated by STACKS 1.30.

469 Table 4 Pairwise FST calculated from STACKS 1.3. Read 1 and 2 combined (duplicated stacks 

470 between reads removed, MAFg0.05) calculated on the AMOVA corrected (p-value <0.05) FST  

471 measurements. Considered were loci present in all populations. 

472 Supplementary Table 1 DD-Rad sequencing. There were 12 pools with 8 unique barcodes in 

473 each. The Database ID is a unique identifier for each coral specimen. Given is also the total 

474 number of ramets for each genet that was included in the RAD sequencing. The indices are short 

475 DNA sequences that uniquely identify products in the final libraries.  

476 Supplemental Table 2 GPS coordinates in decimal degrees for the World Ocean Atlas 

477 2013 (WOA13 V2) environmental data averaged for a region.  

478 Supplementary Table 3 Outlier SNPs identified by programs LOSITAN and BAYESCAN. Stacks 

479 locus_bp is the STACKS program locus ID with the SNP location basepair after the underscore. 

480 Read category indicates whether the outlier SNP was found in read 1 or 2 or the paired-end 

481 sequencing run. Digitifera scaffold identifies the scaffold where the Stacks locus aligned to, 

482 followed by the basepair location in the next column. S start= sequence start. S end = Sequence 

483 end. 

484

485

486
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728  

729 Table 1 Acropora palmata colonies included in SNP analysis. Samples were obtained from four 

730 regions in the Caribbean and 3 3 6 reefs per region. Given are latitude and longitude in decimal 

731 degrees. 

732 A)

Region Reef Count of Samples Latitude Longitude

Sand Island 6 25.018093 -80.368472

French 8 25.03393 -80.34941

Little Grecian 1 25.118433 -80.31715

Horseshoe 1 25.139467 -80.29435

Florida

Elbow 8 25.143628 -80.257927

Little Ragged Island 1 22.15375 -75.687208

Adelaine Cay 8 22.173372 -75.703016

Elkhorn Cay 2 22.328253 -75.783228

Johnson Cay 3 22.33312 -75.77892

Nairn Cay 8 22.35199 -75.79612

Bahamas

Middle Beach 2 23.781199 -76.10391

San Cristobal 8 17.56493 -67.04515

Rincon 6 18.21007 -67.15849

Tres Palmas 2 18.350133 -67.266333
Puerto Rico 

La Cordillera 8 18.368522 -65.571678

Tague Bay 8 17.763867 64.613397

Hawksnest Bay 8 18.347183 -64.780775USVI

Johnsons Reef 8 18.361733 -64.7743

Grand Total  96   
733  

734 B)

735

Region Reef
Count of 

Samples
Latitude Longitude

Horseshoe 1 25.1395 -80.294

Little Grecian 1 25.1184 -80.317

Sand Island 6 25.0179 -80.369

Western Sambo 6 24.4799 -81.719

Rock Key 4 24.456 -81.86

Dry Tortugas 1 24.6209 -82.868

Marker 3 1 25.3733 -80.16

Boomerang Reef 1 25.3525 -80.179

Florida

Carysfort 4 25.2219 -80.211

Great Iguana 19 26.7075 -77.154
Bahamas

Middle Beach 2 23.7812 -76.104
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Region Reef
Count of 

Samples
Latitude Longitude

Charlies Beach 1 23.7808 -76.104

Black Bouy 1 23.8022 -76.146

Bock Cay 1 23.8075 -76.16

Little Darby 2 23.8474 -76.209

Rocky Dundas 1 24.2788 -76.539

Halls Pond 2 24.3539 -76.57

LSI 3 23.7691 -76.096

Little Ragged 

Island
1 22.1538 -75.687

Adelaine Cay 1 22.1734 -75.703

Johnson Cay 1 22.3331 -75.779

Nairn Cay 4 22.352 -75.796

San Cristobal 14 17.5649 -67.045

Rincon 24 18.2101 -67.159

Aurora 3 17.9425 -66.871

Puerto 

Rico

Paraguera 1 17.997 -67.052

Hawksnest Bay 6 18.3472 -64.781

Johnsons Reef 12 18.3617 -64.774

Haulover Bay 13 18.3489 -64.677

Buck Island 14 18.2774 -64.894

Flat Key 4 18.317 -64.989

Hans Lollik 4 18.4019 -64.906

Sapphire 6 18.3333 -64.85

USVI

Botany 3 18.3572 -65.036

unknown 3   

Bugle Caye 1   

Curlew 5 -68.896 -88.083

Gladden 1 16.4401 -88.192

Glovers Atoll 3   

GSTF1 5 16.5499 -88.05

GSTF12 7 16.5499 -88.05

LarksCaye 1   

Laughing Bird 

Caye
4 16.4367 -88.199

Loggerhead 2   

Belize

Sandbores 3 16.7791 -88.118
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Region Reef
Count of 

Samples
Latitude Longitude

Carrie Bow 13 16.8021 -88.082

Blue Bay 7 12.1352 -68.99

Boka Patrick 8 12.2873 -69.043

Directors Bay 2  12.0664  -68.8603

East Point 4 12.0407 -68.783

PuntuPicu 9 12.0831 -68.896

Red Bay 2 12.1355 -68.99

Sea Aquarium 9 12.0838 -68.896

Curacao

Water Factory 3  12.1085  -68.9528

736   

737
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738

739 Table 2 RAD-tag sequencing summary table of Acropora palmata samples.  

740  

Region  Pool Coral 

colonies

Lane Total Reads Retained 

Reads after 

processing 

Average 

number of 

retained 

sequence 

reads per 

sample 

Standard 

Deviation

B1 8 2 50,900,230 41,199,646 5,149,956 1,915,875

B2 8 2 56,097,984 45,237,633 5,654,704 1,853,265

Bahamas

B3 8 2 58,379,852 47,706,860 5,963,358 2,734,261

F1 8 1 50,925,548 39,750,070 4,968,759 1,681,820

F2 8 1 48,752,776 42,036,153 5,254,519 4,422,737

West 

Florida

F3 8 1 49,942,322 38,611,895 4,826,487 2,518,097

P1 8 1 43,979,338 36,237,997 4,529,750 4,166,551

P2 8 1 55,267,402 47,235,081 5,904,385 4,096,287

Puerto 

Rico

P3 8 1 47,324,190 34,835,445 4,354,431 3,117,707

U1 8 2 40,616,766 33,170,324 4,146,291 2,187,597

U2 8 2 43,215,386 34,291,498 4,286,437 1,187,166

East 

USVI

U3 8 2 45,849,098 38,439,719 4,804,965 1,555,938

  Grand 

Total

96  591,250,892 478,752,321   

741  

742  

743
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744 Table 3 Summary statistics for Read 1 and Read 2 combined. % PL = percent polymorphic loci, 

745 Obs Hom = observed homozygosity, Obs Het = observed heterozygosity, StdErr = standard 

746 error, Exp = expected. FIS calculations with and without minor allele frequency restrictions. 

747 Calculated by STACKS 1.30.

748

Bahamas Florida Puerto Rico USVI

Total Sites 200425 200425 200425 200425

Variant Sites 390 390 390 390

Private 

Alleles

2 1 0 2

% PL 0.1732 0.1497 0.1694 0.1668

Fis 0.00005 0 0 0.00005

All 

positions: 

variant and 

fixed

Nucleotide 

diversity (Ã)
0.0004 0.0004 0.0004 0.0004

Obs Hom 0.7728 0.7874 0.7791 0.7815

Std Err 0.0164 0.0164 0.0154 0.0154

Obs Het 0.2273 0.2126 0.2210 0.2186

Std Err 0.0164 0.0164 0.0154 0.0154

Exp Hom 0.7832 0.8050 0.7919 0.7916

Exp Het 0.2169 0.1951 0.2081 0.2085

Fis 0.02235 -0.0086 0.0035 0.02065

Variant 

positions 

only

Nucleotide 

diversity (Ã)
0.2254 0.2034 0.2174 0.21705

749
750
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751
752 Table 4 Pairwise FST calculated from STACKS 1.3. Read 1 and 2 combined (duplicated stacks 

753 between reads removed, MAFg0.05) calculated on the AMOVA corrected (p-value <0.05) FST  

754 measurements. Considered were loci present in all populations. 

755 A)

 Bahamas Florida Puerto 

Rico

USVI

Bahamas  

Florida 0.018

Puerto 

Rico

0.013 0.022

USVI 0.018 0.022 0.009
756
757  

758 B)

Belize Florida Bahamas Puerto Rico USVI Curacao

Belize

Florida 0.0040

Bahamas 0.0115  0.0097

Puerto Rico 0.0206  0.0153  0.0063

USVI 0.0206  0.0174  0.0098  0.0037

Curacao 0.0240  0.0138  0.0181  0.0173  0.0208
759
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760

761

Figure 1 A Cumulative distribution of sequencing coverage of aligned reads to the A. 

digitifera genome using Bedtools. On average, 2.5% percent of the A. digitifera 

genome had sequence coverage at a stack depth of 5.
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763      

764

Figure 2 Bayesian cluster analysis of 307 Acropora palmata SNP loci from four regions 

(Pritchard et al. 2000).  Reefs within the regions (Florida, Bahamas, Puerto Rico, US Virgin 

Islands) are sorted by latitude: Only one SNP per locus were included, after combining Read1 

and Read2. Panels show the combined results of 3 replicate run per K. K=2 (a), and K = 3 (b), 

K=4 (c). The most probable K was 3 (B) for the minor allele frequency corrected SNPs based 

on the mean estimated log probability of the data at a given K. 

765

766

767
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768

Figure 3 Bayesian cluster analysis of 11 (a-c) and 10 (d-f) Acropora palmata microsatellite 

loci (Pritchard et al. 2000).  Analysis of 11 microsatellites with the most probable K being 4. 

Panels (D-E). Exclusion of locus 166 that was identified as an outlier resulted in an analysis 

of 10 microsatellites with the most probable K being 3. 
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769

770

Figure 4 MANTEL matrix correlation test between genetic and geographic distances, and environmental 

parameters as calculated by a dissimilarity matrix expressed as the Euclidean distances between regions 

based on measured environmental data. Acropora palmata samples from four regions (Florida, Bahamas, 

Puerto Rico and USVI) were genotyped with 307 SNP (a, c) or 10 neutral microsatellite markers (d). Panel 

(a) y = 0.0107x + 0.0104. Panel (b) y=0.002x + 0.4175. Panel (c) y=0.000007x + 0.0098. Panel (d) 

y=0.000007x + 0.0027.

R² = 0.6104, p = 0.09 R² = 0.1012, p = 0.21

R² = 0.6483, p = 0.05 R² = 0.69, p = 0.04
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