A peer-reviewed version of this preprint was published in PeerJ on 5 December 2017.

View the peer-reviewed version (peerj.com/articles/4116), which is the preferred citable publication unless you specifically need to cite this preprint.

Skin temperature and reproductive condition in wild female chimpanzees

Guillaume Dezecache Corresp., Claudia Wilke, Nathalie Richi, Christof Neumann, Klaus Zuberbühler

1 Institute of Biology, Université de Neuchâtel, Neuchâtel, Switzerland
2 Budongo Conservation Field Station, Masindi, Uganda
3 School of Psychology and Neuroscience, University of St. Andrews, Fife, United Kingdom
4 Department of Psychology, University of York, York, United Kingdom

Corresponding Author: Guillaume Dezecache
Email address: guillaume.dezecache@gmail.com

Infrared thermal imaging has emerged as a valuable tool in veterinary medicine, in particular in evaluating reproductive processes. Here, we explored differences in skin temperature of cycling and pregnant wild chimpanzee females in Budongo Forest, Uganda. Based on previous literature, we predicted increased skin temperature when approaching peak fertility at the area of the reproductive organs of cycling females. For pregnant females, we made the same prediction, mainly because it has been argued that chimpanzee females have evolved mechanisms to conceal pregnancy, including exaggerated sexual swelling and sexually conspicuous vocal behaviour, and to encourage male mating behaviour in order to decrease their infanticidal tendencies by confusing paternity. Overall, we found only small changes in cycling females, with slight temperature increases towards the end of the swelling cycles but no overall increase in skin temperature between oestrous and non-oestrous phases. Interestingly, however, pregnant and cycling females had very similar skin temperatures. These results suggest that males cannot use skin temperature to discriminate between pregnant and non-pregnant/cycling females during maximal swelling, when ovulation is most likely to occur in cycling females. This pattern may be linked to the evolution of physiological means to conceal reproductive state in pregnant females.
Skin temperature and reproductive condition in wild female chimpanzees

Guillaume Dezecache¹,², Claudia Wilke²,³,⁴, Nathalie Richi¹,², Christof Neumann¹ & Klaus Zuberbühler¹,²,³

¹Institute of Biology, University of Neuchâtel, Switzerland; ²Budongo Conservation Field Station, Masindi, Uganda; ³School of Psychology and Neuroscience, University of St Andrews, Scotland (UK); ⁴Department of Psychology, University of York (UK)

Corresponding author: Guillaume Dezecache guillaume.dezecache@gmail.com
ABSTRACT

Infrared thermal imaging has emerged as a valuable tool in veterinary medicine, in particular in evaluating reproductive processes. Here, we explored differences in skin temperature of cycling and pregnant wild chimpanzee females in Budongo Forest, Uganda. Based on previous literature, we predicted increased skin temperature when approaching peak fertility at the area of the reproductive organs of cycling females. For pregnant females, we made the same prediction, mainly because it has been argued that chimpanzee females have evolved mechanisms to conceal pregnancy, including exaggerated sexual swelling and sexually conspicuous vocal behaviour, and to encourage male mating behaviour in order to decrease their infanticidal tendencies by confusing paternity. Overall, we found only small changes in cycling females, with slight temperature increases towards the end of the swelling cycles but no overall increase in skin temperature between oestrous and non-oestrous phases. Interestingly, however, pregnant and cycling females had very similar skin temperatures. These results suggest that males cannot use skin temperature to discriminate between pregnant and non-pregnant/cycling females during maximal swelling, when ovulation is most likely to occur in cycling females. This pattern may be linked to the evolution of physiological means to conceal reproductive state in pregnant females.

Keywords: infra-red thermography, skin temperature, wild chimpanzees, oestrous cycle, pregnancy
INTRODUCTION

Infrared thermal imaging (IRT) has emerged as a promising tool for studying animal behaviour. For instance, research employing this methodology has helped cast light on affective processing in a variety of species, including macaques (*Macaca mulatta*) (Nakayama et al. 2005; Kuraoka and Nakamura 2011; Ioannou et al. 2015), chimpanzees (*Pan troglodytes*) (Kano et al. 2016; Dezecache et al. 2017) or dogs (*Canis lupus familiaris*) (Travain et al. 2015; Riemer et al. 2016; Travain et al. 2016). In these studies, IRT was deployed to detect changes in emissivity of the skin caused by shifts in blood flow at body surface, a physiological process controlled by the autonomic nervous system (see Ioannou et al. 2014 for a comprehensive review). One important asset of this technique is its non-invasive character, since measurements can be made at a reasonable distance from free-ranging animals and without hindering ongoing natural social interactions.

Other strands of research have benefited from IRT as a non-invasive technique to study reproductive processes of wild animals (Cilulko et al. 2013). For example, and in qualitative assessment, Hilsberg-Merz 2008 showed that female Asian elephants (*Elephas maximus*) and Black rhinoceroses (*Diceros bicornis*) showed increased surface temperature in the area of their reproductive organs during oestrous, a pattern associated with increased attractiveness to males. In pigs, vulvar skin temperatures were higher during oestral compared to dioestral phases (Sykes et al. 2012), a pattern caused by increased blood flow towards the vulva due to oestrogen secretion in the ovarian follicles (Stelletta et al. 2013). Heightened temperature of the area of the reproductive organs and can be used as a tool to detect oestrous in cows, with vulva temperature peak around 24 hours before ovulation, followed by a slight decrease towards ovulation (Talukder et al. 2014).
Overall, most research using IRT has been performed on domestic and cattle animals, usually with the aim of enhancing veterinary diagnosis (Cilulko et al. 2013), and we are not aware of systematic use of this technology on wild animals. This is despite the fact that IRT may help to shed light on fundamental questions in behavioural ecology, including sexual behaviour in mammalian females.

Here, we were interested in the thermal signature of female chimpanzees (Pan troglodytes) throughout the swelling cycle, in order to test theories in female reproductive behaviour. In chimpanzees and other catarrhine species living in multi-male societies, females tend to develop exaggerated swellings of the anogenital area during the periovulatory phase of their oestrous cycles (Nunn 1999). There has been considerable debate on the biological function of exaggerated swellings, and particularly on whether swelling size, or tumescence, constitutes a reliable indicator of fertility. In chimpanzees, males show most interest in females during maximal tumescence (Wallis 1992; Deschner et al. 2004) when ovulation is most likely to occur (Deschner et al. 2004). Gradual increase in swelling size is caused by increased oestrogen concentrations, while its sudden decrease is caused by increased progesterone secretion (Graham et al. 1972; Emery and Whitten 2003; Emery Thompson 2005). However, swelling size is only a probabilistic indicator of fertility in chimpanzees, because maximal swelling can last up to 21 days with a mean of about 13 days and thus maximal tumescence may exceed the phase of peak fertility (Emery Thompson 2005).

This has been interpreted as an evolved female strategy to prolong the period of sexual attractiveness and, by increasing the number of copulations with different males, confuse paternity (Nunn 1999; Alberts and Fitzpatrick 2012). Such a strategy is adaptive in species where males commit infanticide, as observed in several chimpanzee communities (Williams et al. 2008;
In a first step, we were interested whether this seemingly strategically extended period of maximum tumescence, if compared to earlier phases, can be associated with a particular temperature profile. In a second step, we were interested in the temperature profiles of pregnant females, for which it has been suggested that they conceal gestation in an attempt to remain attractive to males (Wallis 1982). In particular, pregnant chimpanzee females continue to be sexually active, display sexual swellings despite being no longer able to conceive, in some instances even more so than cycling females (Wallis 1982). One functional explanation of this behavioural pattern is that, in doing so, pregnant females attempt to confuse paternity, which may lower the infanticidal tendencies of males once an infant is born.

To address these hypotheses, we investigated skin temperature of female chimpanzees in a wild group, the Sonso community of Budongo Forest, Uganda. To this end, we inspected the thermal patterns of pregnant and non-pregnant females to address the following predictions. First, for non-pregnant females we expected higher temperatures (particularly of the vulva) during estrous (when females show peak swelling sizes and when sexual proceptivity is higher (Wallis 1992)) compared to anoestral phases (when swelling is not maximally swollen and sexual proceptivity is comparably lower (Wallis 1992)). This was because, in farm animals, the skin temperature of the vulva is influenced by oestrogen secretion through increased blood. Related to this, we expected a gradual increase in skin temperature throughout the entire swelling cycle in the area of the reproductive organs, also because the ano-genital swelling relies on enhanced blood flow. Second, if pregnant females follow an evolved strategy to conceal their non-reproductive state when showing sexual tumescence, we predicted similarity in skin temperature at maximum tumescence between pregnant and non-pregnant females (when male mating efforts are typically
concentrated (Emery Thompson 2005)), compared to earlier swelling stages, when copulation is comparatively rare and ovulation unlikely.

METHODS

Study site The study was carried out in the Budongo Forest Reserve, a moist semi-deciduous tropical forest in western Uganda, covering 428 km² at an altitude of 1,100 m, between 1°35′ and 1°55′N and 31°08′ and 31°42′E (Eggeling 1947). Data were collected from the Sonso community between November 2011 and May 2012, and between August 2013 and June 2014. Habituation of this community to humans began in 1990, with the majority of individuals (approximate \(N = 70 \)) well habituated to human observers at the time of the study (Reynolds 2005). Permission to conduct the study was granted by the Ugandan Wildlife Authority (UWA) and the Uganda National Council for Science and Technology (UNCST). Ethics approval was given by the University of St Andrews’ ethics committee.

Materials Surface skin temperature measurements were taken with a Testo (881-2) thermal imager, which operates between 8 and 14 μm with a thermal sensitivity of <80 mK at 30°C. Emissivity was set at 0.98, a value typically used for human skin (Steketee 1973). A telephoto lens was used for all images (9° x 7° / 0.5 m). The device emits no light or sound and is thus ideal for working with wild animals.

Pregnancy status We initially used HCG pregnancy tests (which respond to the presence of >25 mIU/ml human chorionic gonadotropin in the urine, a hormone produced by the placenta about one week after fertilisation), but later decided to estimate pregnancy status depending on the presence or absence of offspring 229 days after the recording was taken (assuming a mean gestation period of 229 days in chimpanzees (Reynolds 2005)). This was done because it was
only possible to perform one or two pregnancy tests for each individual, over a short time frame, so it is possible that some females may have been pregnant temporarily before or after testing.

Thermography data collection Data collection took place between 07:00 and 16:30 local time. On a given morning, a focal female individual was selected and followed throughout the day, with surrounding individuals sampled ad libitum. Although we considered all females during data collection, we later excluded 64 images of females that still had a dependent infant (defined as having an infant below 4 years old of age) and that did therefore not qualify as being either potentially receptive or pregnant. All sampled individuals were sufficiently tolerant to observer presence within 10m. Each body part (face, ears, nose, hands and feet, and swelling/genitals) was sampled only once every half hour with females contributing differently to the dataset (see Table 1). For an image to be taken, the focal had to be within a distance of 15m (range: less than 1m–15m) and less than 5m above ground. They had to be in unobstructed view, in dry conditions (water alters the temperature and emissivity of skin) and not exposed to direct sunlight. Readings were taken from body parts that were exposed and free of fur. For each image, we estimated the distance to the focal individual (in metres). Ambient temperature and humidity were collected using an electronic recorder, as these may affect infra-red readings. Swelling size was determined by experienced field assistants from stage 0 (absence of tumescence) to stage 4 (maximum tumescence) as judged by the degree of wrinkling (Furuichi 1987); (adapted for chimpanzees: Townsend et al., 2008). Importantly, the field assistants were blind to the aims and hypotheses of the study.

Image analysis Thermal images were analysed using the Testo IRSoft analysis software. A polygon image selection tool was used on each image to select specific body parts of interest for subsequent thermal analysis. For each selected region of interest, we obtained the mean
temperature (see Figure 1 for examples). Two coders (GD and CW) performed the image analysis.

Statistical analysis We used a linear mixed model with Gaussian error structure and maximum likelihood estimation to assess how swelling stage and pregnancy affected skin temperature of female chimpanzees. In our initial model we fitted the two-way interaction between swelling stage and reproductive state. This also allowed us to specifically address the possibility that variation in temperature between swelling stages may show different patterns in pregnant and cycling females. In addition, we controlled for ambient temperature, humidity and distance between camera and subject. Because some images allowed simultaneous measurement of several body parts, we fitted image ID nested in subject ID as random intercept. In this way, we also accounted for multiple measurements of the same female. Furthermore, we fitted body part as random intercept. In addition, we allowed the effects of swelling stage and pregnancy state on surface temperature to vary between body parts by incorporating random slopes for these variables (Barr et al. 2013). Ideally, we would have incorporated similar random slopes for female ID, thereby allowing between subject variation in the effects of swelling and pregnancy on temperature. Unfortunately, we had to forego this step because the resulting model structure was too complex for our data set. Before model fitting, we inspected distributions of variables and transformed them to achieve symmetric distributions. In addition, we scaled all numeric variables to mean=0 and standard deviation=1 (Schielzeth 2010). We checked for homogeneity and normality of model residuals visually and calculated variance inflation factors (Fox and Weisberg 2010). Neither check indicated serious deviations from modelling assumptions. We then calculated Cook's distance as a measure for the influence of each single individual in our data set on our model results. Here we found a number of individuals with substantial influence
on our results. Specifically, Cook’s distance for all four females in our data set that were pregnant during the study exceeded the critical threshold (c.f. Nieuwenhuis et al. 2012). Furthermore, we tested full models against our null models (see below) in a leave-one-out fashion to assess the potential influence of single females: we fitted the full and null model with a data set from which one female was excluded per turn. Here, one female (OK – see Table 1) led to the full model not being significant (p > 0.05). Despite the consistency in the direction of this effect, the interaction must be interpreted with some caution, as their statistical significance hinges on one individual. However, the signs of our major result concerning the differences between pregnant and non-pregnant females remained consistent, regardless of which female we excluded.

To test the significance of our full model, we built an informed null model, which contained the random effect structure as described above and the three control fixed effects (ambient temperature, humidity, distance). We then tested our full model against this null model using a likelihood ratio test (LRT, Dobson and Barnett 2008). Similarly, we tested the interaction by comparing the model including the interaction (i.e. the full model) against a model without the interaction (swelling stage and reproductive state as main effects only). We calculated marginal and conditional R^2 following Nakagawa and Schielzeth 2013 and Johnson 2014, using the MuMIn package (Bartoń 2016). We fitted all models in R 3.3.0 (Team 2016), using the lme4 package (v. 1.1-12, (Bates et al. 2015)).

RESULTS

From the existing literature, we predicted an increase in temperature throughout the swelling cycle in non-pregnant chimpanzees, with a peak temperature at full tumescence, in particular at
the area of the reproductive organs, when females are in oestrous. Second, and following the hypothesis that chimpanzees have evolved physiological and behavioural strategies to conceal pregnancy, we predicted pregnant females to show similar patterns of skin temperature changes at peak tumescence when the probability of conception is at its highest for non-pregnant females.

To address the two predictions, we assessed skin temperature associated with swelling and reproductive state, at various body parts, controlling for ambient temperature, humidity and recording distance.

Our full model (containing swelling stage and reproductive state and their interaction plus the control terms: distance, humidity and ambient temperature) was significantly different from the null model (containing the control terms only) (LRT: $\chi^2_{9} = 19.48$, $p = 0.0214$, $R^2_m = 0.33$, $R^2_c = 0.90$, Table 2). Concerning our variables of interest, reproductive state and swelling stage, we found that the model containing the interaction between the two was significantly different from a model from which the interaction term was removed (LRT: $\chi^2_{4} = 9.72$, $p = 0.0455$).

Our results indicate that, overall, body temperature was more variable in pregnant than non-pregnant females. Generally, pregnant females had lower surface temperatures than cycling females when deflated and during smaller swelling stages (stages 0 – 2, Figure 2), of less than 1°C overall. This pattern changed later in the cycle, with pregnant females having higher skin temperature compared to cycling females (stage 3, Figure 2), again with a magnitude of less than 1°C. During maximum tumescence (swelling stage 4), temperatures of cycling and pregnant females appeared most similar compared to all other swelling stages. This was true for all body parts measured (Figures 3 and 4).
Finally, and contrary to our predictions, we did not find a clear increase in temperature throughout the swelling cycle (Figure 2), at the area of the reproductive organs and elsewhere (Figure 3). There was a modest increase in body temperature between stages 1-2 and stages 3-4, in both pregnant and cycling females, in particular around (but yet no restricted to) the vulvar area (Figure 3). Yet, we did not find a clear difference between the surface temperature at maximal swelling (where female proceptivity is higher (Wallis 1992)) and reduced swelling stages. Finally, skin temperature seems comparable or even slightly higher during detumescence than at maximum tumescence.

DISCUSSION

Our aim was to assess whether skin temperature may reveal the reproductive state of female chimpanzees, using IRT, a well-developed technique in veterinary medicine, with yet little application so far in the field of behavioural ecology. In this study, we compared wild female chimpanzees throughout their swelling cycle and predicted that, (i) cycling females should show higher skin temperature when oestral than when anoestral, as well as an increase in skin temperature (with maximal temperature at the end of the swelling cycle, particularly at the area of the reproductive organs), following what had been found in the literature (Hilsberg-Merz 2008; Scolari 2011; Sykes et al. 2012; Talukder et al. 2014). We also predicted that (ii) pregnant females should match the temperature patterns exhibited by cycling females, despite their different hormonal state, at maximum swelling (stage 4) when male efforts are concentrated. This second prediction is based on the hypothesis that pregnant females will indeed have evolved gestation concealing strategies, as they incur an adaptive advantage in concealing pregnancy, to enhance the benefits of paternity confusion by promiscuous mating as long as possible.
Regarding prediction (i), our results showed slightly higher temperatures of the anogenital regions when transitioning from stages 1-2 to 3-4 (Figure 2), a pattern which may appear consistent with what as previously been found in other mammal species when approaching the periovulatory period (Hilsberg-Merz 2008; Scolari 2011; Sykes et al. 2012; Stelletta et al. 2013; Talukder et al. 2014). However, this pattern was true for most body parts considered, not solely for the anogenital region (Figure 3). Although it is hard to directly compare our results to previous studies using IRT because of definitions and study timeframes, we find that our estimated differences are similar or somewhat smaller in magnitude (about 1°C) to other studies (Scolari 2011; Sykes et al. 2012). In human and non-human female primates, skin colour and tone can change during the fertile period (Roberts et al. 2004; Dubuc et al. 2009), and such variation may be perceived by males (Higham et al. 2011). Consequently, the thermal signature associated with fertility may not be restricted to the periovulatory area but may also be visible within the facial and limbs regions. However, we did not find any difference in skin temperature between measures taken from anoestral and oestral stages in cycling females. This is inconsistent with the existing literature, and casts some doubt on the possibility that fertility is associated with a general thermal signature in female chimpanzees.

Regarding our second prediction, we found smaller changes in skin temperature in non-pregnant (cycling) compared to pregnant females. Crucially, for stage 4, we observed more similar skin temperatures between pregnant and non-pregnant females, compared to the other swelling stages (Figure 2), a pattern true for all body parts considered (Figure 3). Our data may therefore appear consistent with the prediction that, during gestation, chimpanzee females seek to approximate chimpanzee females. This could be part of an evolved strategy to remain sexually attractive to adult males and so to confuse paternity and
lower infanticide risk after parturition. It is also worth mentioning that pregnant females appear to show less clear transition in swelling stage patterns from swelling stages 1 to 4 if compared to cycling females. Instead, swelling sizes appear to change more erratically, and hence a probably simpler means for males would be to attend to gradation of swelling changes. Sexual swellings during pregnancy have also been reported in other non-human primates, such as sooty mangabeys (*Cercocebus torquatus atys*) (Gordon et al. 1991) or Barbary macaques (*Macaca sylvanus*) (Möhle et al. 2005), but in these species the swelling patterns between pregnant and non-pregnant females also seem to differ. Whether males are responsive to non-monotonic changes in swelling and, if so, whether this affects their mating behaviour and future infanticidal tendencies would be worth exploring.

It is also worth mentioning that other cues may help males approximate fertility during females’ sexual swelling cycle. Olfactory signals are notably likely to play a role in helping males detect fertility in females (Michael and Zumpe 1982). In humans (*Homo sapiens*), female body odour close to ovulation is preferred by males (Gildersleeve et al. 2012), a pattern also present in some non-human primates (Ziegler et al. 1993; Converse et al. 1995; Clarke et al. 2009); however so far there is no evidence of this in chimpanzees (Fox 1982). Visual signals may also play a role. In human and non-human female primates, skin colour and tone can change during the fertile period (Roberts et al. 2004; Dubuc et al. 2009), and such variation may be perceived by males (Higham et al. 2011). Finally, female sexual behaviour itself can reveal the most fertile period of the swelling cycle (e.g., Engelhardt et al. 2005). Future studies should also investigate whether cycling vs. pregnant females may show difference in those behaviours.

We see a number of limitations to this research. First, we did not find a clear increase in skin temperature when comparing the oestrous and the anoestral stages. Second, only four pregnant
females contributed to our dataset, so it would be important to replicate these findings with a larger sample of pregnant females. Third, we did not collect any hormonal data and were therefore unable to determine the point of likely ovulation. A validation study clearly is necessary, and seems largely feasible in captive settings, where hormonal measurements can be more easily collected. Fourth and finally, we had no behavioural data to show that males are directly responsive to changes in skin temperature, and can be deceived by pregnant females who may have similar skin temperature profiles as fertile individuals. Nevertheless, we consider this a likely possibility, mainly because shifts in blood flow, and their corresponding changes in skin temperature, may affect skin colouration in the face and elsewhere, which can be perceived by recipients (Hiramatsu et al. 2017).

In sum, our data appear consistent with the prediction that, during gestation, chimpanzee females not only approximate behavioural and visual cues that characterise non-pregnant females, but also physiological cues. However, we offer inconclusive evidence of a thermal pattern associated with fertility, as skin temperature indeed seems to increase throughout the swelling cycle, but with no clear differences in skin temperature compared to when females are anoestral. Our research yet offers a tentative exploration of changes in skin temperature associated with fertility and pregnancy in wild female chimpanzees, which future research can build on, using a technology, which has not or seldom been used to tackle fundamental questions in the field of behavioural ecology.

ETHICAL STATEMENT
The research was supported by a Fyssen fellowship awarded to GD, and has received funding from the European Union’s Seventh Framework Programme for research, technological development and demonstration under grant agreement no 283871.

The authors declare no conflict of interest.

Permission to conduct the study was granted by the Ugandan Wildlife Authority (UWA) and the Uganda National Council for Science and Technology (UNCST). Ethics approval was given by the University of St Andrews’ ethics committee.

Informed consent: non-applicable

ACKNOWLEDGMENTS

We thank UWA and UNCST for permission to conduct the study. Our gratitude goes to Geoffrey Muhanguzi, Caroline Asiimwe, Geresomu Muhumuza, Bosco Chandia and Sam Adue for their support in the field. We further thank Cat Hobaiter, Roman Wittig, Dave Perrett, William Paterson, Dominic McCafferty, Ross Whitehead, Amanda Hahn and Brittany Fallon for helpful discussions. We are grateful to the Royal Zoological Society of Scotland for providing core funding to the Budongo Conservation Field Station.

REFERENCES

FIGURE CAPTIONS

Figure 1 Example of IRT measurements for the ear (A) and anogenital swelling (B).

Figure 2 Model results for differences in body surface temperature. Shown is the interaction between swelling stage and pregnancy status, using back-transformed model estimates and associated 95% confidence intervals.

Figure 3 Model predictions for surface temperature of female chimpanzees per body part for cycling and pregnant females.

Figure 4 Median surface temperature with 25% and 75% quartiles, of female chimpanzees per body part for cycling and pregnant females.

TABLES

Table 1 Distribution of images per female (ID) and by reproductive condition (Cycling and Pregnant)
<table>
<thead>
<tr>
<th>Female ID</th>
<th>Cycling</th>
<th>Pregnant</th>
</tr>
</thead>
<tbody>
<tr>
<td>AN</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>HL</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>IN</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>JN</td>
<td>61</td>
<td>58</td>
</tr>
<tr>
<td>JT</td>
<td>39</td>
<td>0</td>
</tr>
<tr>
<td>KA</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>KL</td>
<td>24</td>
<td>55</td>
</tr>
<tr>
<td>KM</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>KN</td>
<td>19</td>
<td>0</td>
</tr>
<tr>
<td>KR</td>
<td>40</td>
<td>0</td>
</tr>
<tr>
<td>KU</td>
<td>4</td>
<td>72</td>
</tr>
<tr>
<td>KW</td>
<td>52</td>
<td>0</td>
</tr>
<tr>
<td>KY</td>
<td>38</td>
<td>0</td>
</tr>
<tr>
<td>ML</td>
<td>38</td>
<td>0</td>
</tr>
<tr>
<td>MN</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>NB</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>NT</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>OK</td>
<td>68</td>
<td>91</td>
</tr>
<tr>
<td>RH</td>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td>RS</td>
<td>29</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>655</td>
<td>276</td>
</tr>
</tbody>
</table>

Table 2 Results of full model. Reference level for pregnancy was `not pregnant' (i.e. cycling) and for swelling stage `0'. t values for main effects comprised in interactions are omitted.
<table>
<thead>
<tr>
<th></th>
<th>Swelling stage 1:</th>
<th>Swelling stage 2:</th>
<th>Swelling stage 3:</th>
<th>Swelling stage 4:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambient temperature</td>
<td>29.65</td>
<td>2.17</td>
<td>13.69</td>
<td></td>
</tr>
<tr>
<td>Distance</td>
<td>-4.66</td>
<td>1.38</td>
<td>-3.37</td>
<td></td>
</tr>
<tr>
<td>Humidity</td>
<td>-4.89</td>
<td>2.21</td>
<td>-2.21</td>
<td></td>
</tr>
<tr>
<td>Swelling stage 1:</td>
<td>2.36</td>
<td>8.98</td>
<td>0.26</td>
<td></td>
</tr>
<tr>
<td>pregnancy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Swelling stage 2:</td>
<td>-19.81</td>
<td>10.82</td>
<td>-1.83</td>
<td></td>
</tr>
<tr>
<td>pregnancy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Swelling stage 3:</td>
<td>17.62</td>
<td>10.32</td>
<td>1.71</td>
<td></td>
</tr>
<tr>
<td>pregnancy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Swelling stage 4:</td>
<td>9.98</td>
<td>9.30</td>
<td>1.07</td>
<td></td>
</tr>
<tr>
<td>pregnancy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>446</td>
</tr>
</tbody>
</table>
Figure 1 (on next page)

Example of IRT measurements for the ear (A) and anogenital swelling (B).
Model results for differences in body surface temperature. Shown is the interaction between swelling stage and pregnancy status, using back-transformed model estimates and associated 95% confidence intervals.
Figure 3 (on next page)

Figure 3

Model predictions for surface temperature of female chimpanzees per body part for cycling and pregnant females
Figure 4 (on next page)

Figure 4

Median surface temperature with 25% and 75% quartiles, of female chimpanzees per body part for cycling and pregnant females.