A peer-reviewed version of this preprint was published in PeerJ on 12 January 2018.

<u>View the peer-reviewed version</u> (peerj.com/articles/4221), which is the preferred citable publication unless you specifically need to cite this preprint.

Erasmus DJ, Yurkowski EA, Huber DPW. 2018. DNA barcode-based survey of Trichoptera in the Crooked River reveals three new species records for British Columbia. PeerJ 6:e4221 https://doi.org/10.7717/peerj.4221

1 DNA barcode-based survey of Trichoptera in the Crooked River reveals three new species

2 records for British Columbia

- 3 Daniel J. Erasmus^{1*}, Emily A.Yurkowski¹, and Dezene P. W. Huber^{2*}
- ⁴ ¹Biochemistry and Molecular Biology and
- 5 ²Ecosystem Science and Management Program
- 6 University of Northern British Columbia, Prince George, British Columbia, Canada
- 7 *Corresponding authors: daniel.erasmus@unbc.ca, huber@unbc.ca
- 8

9 Abstract

10 Anthropogenic pressures on aquatic systems have placed a renewed focus on biodiversity of 11 aquatic macroinvertebrates. By combining classical taxonomy and DNA barcoding we identified 39 species of caddisflies from the Crooked River, a unique and sensitive system in the 12 13 southernmost arctic watershed in British Columbia. Our records include three species never 14 before recorded in British Columbia: Lepidostoma togatum (Lepidostomatidae), Ceraclea 15 annulicornis (Leptoceridae), and Cheumatopsyche harwoodi (Hydropsychidae). Three other 16 specimens may represent new occurrence records and a number of other records seem to be 17 substantial observed geographic range expansions within British Columbia. 18

19 INTRODUCTION

With accelerating anthropogenic climate change there is a renewed interest in assessing biodiversity in freshwater ecosystems (Parmesan 2006). Freshwater ecosystems are especially under cumulative threats as their summer temperatures rapidly warm, with increased demand for fresh water, and by industrial in riparian zones (Meyer *et al.* 1999). Assessing insect biodiversity

is a challenging, but vital, activity in the face of these changes in order to understand aquatic
food webs, ecosystem services, and for use in aquatic environmental monitoring (Burgmer *et al.*2007; Dobson and Frid 2009; Cairns and Pratt 1993).
Trichoptera taxonomy is primarily based male adult morphology, which often requires

28 experts for definitive identification. Taxonomy of the larvae is complicated and often 29 problematic as it is not always possible to distinguish between species of the same genus 30 (Burington 2011, Ruiter et al 2013). DNA barcoding and the use of sequence databases, 31 combined with classical taxonomy, can help to speed up this process by allowing rapid surveys 32 of novel regions (Ruiter et al 2013, DeSalle et al. 2005, Jinbo et al. 2011, Pauls et al. 2010, Zhou 33 et al 2007). The Barcode Of Life Database (BOLD) currently contains DNA barcodes for more 34 than 260, 000 species including ~4555 Trichoptera species, and facilitates the identification of 35 species based on subunit I of the cytochrome oxidase I (COI) DNA gene. In addition, recent 36 comprehensive work on barcode-assisted Trichoptera taxonomy (Zhou et al. 2009, 2010a,b, 37 2011, 2016) provides a solid foundation for biodiversity surveys of caddisflies in North America. 38 Trichoptera, Ephemeroptera (mayflies), Plecoptera (stoneflies), and often aquatic Diptera (true 39 flies) are used in well-developed protocols as indicators of aquatic ecosystem health (Lenat and 40 Barbour 1994). Due to their taxonomic richness, differential susceptibility to pollutants, and 41 abundance in almost all water bodies worldwide, shifts in their numbers, relative ratios, or 42 taxonomic diversity both temporally and/or geographically are used to observe stability and 43 disturbance of ecosystems (Houghton 2004; Pond 2012). Monitoring work is best accomplished 44 with good information on which species are present. Due to a lack of historical sampling in some 45 areas, managers often must rely on regional (often province- or state-level) checklists that may or 46 may not represent the taxonomic and functional diversity of smaller areas or specific sensitive

47 systems. The Crooked River (Figure 1) is the southernmost lotic system in British Columbia that 48 ultimately drains into the Arctic Ocean. It flows north from Summit Lake (which is just on the 49 north side of the continental divide) to McLeod Lake, connecting a series of lakes along the way. 50 From there its water flows via other systems to eventually end up in the Williston Reservoir – a 51 massive hydroelectric reservoir in the Rocky Mountain Trench that represents one of the largest 52 anthropogenic landscape modifications on earth.

53 The Crooked River is named for all the oxbows due to its slow meandering flow. This 54 river is also fed by underground springs, such as Livingston Springs in Crooked River 55 Provincial. This well-known spring supplies the river with water year round and moderates 56 annual temperature shifts. An extinct volcano (Teapot Mountain) is situated at its headwaters, 57 and likely provides mineral nutrient inputs. As a bona fide spring creek, the Crooked River has a 58 very flat gradient with swamp and marshland along much of its shoreline. During freshet the 59 river floods these marshes bringing more nutrients into the system. These factors result in high 60 fertility and a fairly stable year-round temperature which make the Crooked River unique 61 compared to neighbouring systems. Nearby river systems are more typical of British Columbia – 62 they are best described as oligotrophic freestone rivers that are highly susceptible to drastic 63 changes in discharge from spring freshets and that show considerable annual temperature 64 variation.

The Crooked River has been heavily used by European settlers for transport and trade for much of their history in British Columbia (McKay 2000) – and it was doubtless used prior to that by First Nations groups for sustenance and as a settlement location. Human-caused impacts continue to this day and are, in fact, increasing. The river is in the direct path of planned pipelines originating from northeastern British Columbia and Alberta that will run toward the

Peer Preprints

70 Pacific coast. In addition the watershed has been logged for years resulting in a network of 71 resource roads and bridges. A major highway and a rail line also run along much of its length, 72 and are at times only a few meters from the river's main channel. However, even with its unique 73 nature and high levels of anthropogenic impacts, our searches have revealed no recorded 74 biodiversity surveys on the Crooked River. 75 Besides that, to our knowledge no comprehensive recent assessment has been done on 76 Trichoptera in central or northern British Columbia. As the Crooked River is such a unique and 77 nutrient-rich system we questioned whether it may provide habitat to species not yet reported for 78 British Columbia. The aims of this study were to: (1) provide a comprehensive list of the 79 Trichoptera biodiversity in a unique and vulnerable river as a baseline for future work and 80 management; (2) explore the Trichoptera biodiversity of an historically unstudied region; and (3) 81 determine if the Crooked River contains species not yet recorded for British Columbia. 82 83 84 **METHODS AND MATERIALS** 85 We collected specimens on a biweekly basis from eight locations (CR2 - 54.484°N, -86 122.721°W, CR2B – 54.484°N, -122.721°W, CR3 – 54.643°N, -122.743°W, CR4 – 54.388°N, -87 122.633°W, CR5 – 54.478°N, -122.719°W, CR6 – 54.328°N, -122.669°W, CR100BR – 54.446°N, -122.653°W, CR108 – 54.458°N, -122.722°W) along the edge of the Crooked River, 88 89 British Columbia between May and August 2014 using both hand and kick-net methods. This 90 study focused mainly on larvae to ensure that we collected caddisflies from the Crooked River 91 only and not from nearby water bodies. We completed collections under the British Columbia 92 Ministry of Environment Park Use Permit #107171 where required. We preserved specimens in 93 80% ethanol upon collection. We classified all 2204 caddisfly specimens that we collected to the

94	lowest possible taxonomic ranking (genus or family) based on published morphological keys
95	(Wiggins 1977; Clifford 1991; Schmid 1998). We selected morpho-species based on that visual
96	identification and 214 specimens were subsequently sent to the Biodiversity Institute of Ontario
97	(BIO) and its Barcode of Life Database (http://www.boldsystems.org) in Guelph, Ontario, to
98	have their barcode region (COI) sequenced for further classification. We received back 185
99	useable sequences (>400 bp., <5 miscalls, no contamination detected). We vouchered all
100	specimens set for sequencing at the Centre for Biodiversity Genomics at the University of
101	Guelph. Initial species identification was based on a 650 bp sequence in CO1 5' region using the
102	BOLD platform with MUSCLE sequence alignments and a Kimura-2-parameter distance model.
103	The data for all collected specimens is available as dataset DS-CRTRI
104	[http://www.boldsystems.org/index.php/Public_SearchTerms?query=CRTRI].
105	Neighbor joining (NJ) analyses were performed on Cheumatopsyche harwoodi,
106	Lepidostoma togatum and Ceraclea annulicornis specimens from the Crooked River compared
107	to con- and heterospecific sequence data from the Barcode Of Life Database (BOLD).
108	Evolutionary distances were computed using the Kimura 2-parameter method bootstrapped
109	(5000 replications) after a MUSCLE alignment and were visualized in MEGA6.0 (Saitou and
110	Nei, 1987; Felsenstein, 1985; Kimura, 1980; Tamura etal., 2013). We cross-referenced the
111	Crooked River Trichoptera species list that we obtained from analysis of our BOLD data using
112	checklists, museums records and databases from the following: Canadian National Collection of
113	Insect, Arachnids and Nematodes (http://www.canacoll.org/); Strickland Museum at the
114	University of Alberta; Beaty Biodiversity Museum at the University of British Columbia;
115	Electronic Atlas of the Wildlife of British Columbia
116	(http://ibis.geog.ubc.ca/biodiversity/efauna/); Natureserve (http://www.natureserve.org/);

Peer Preprints

- 117 Canadensys (http://www.canadensys.net/), Global Biodiversity Information Facility
- 118 (http://www.gbif.org/); the Royal Ontario Museum, and the Royal British Columbia Museum
- 119 (http://search-collections.royalbcmuseum.bc.ca/Entomology).
- 120

121 **RESULTS & DISCUSSION**

- 122 We used morphological keys to identify all 2204 collected specimens to family or genus,
- 123 after which we used successful barcodes and database searches to deduce the species identities of
- 124 185 individuals based on previous database annotations. In total we detected 41 caddisfly species
- 125 found in 20 genera within 11 families in the Crooked River system (Table 1). All barcode
- 126 data are publicly available at BOLD (DS-CRTRI,
- 127 http://www.boldsystems.org/index.php/Public_SearchTerms?query=CRTRI). Thirty five of the
- 128 41 species we identified were assigned to known species via database matches using a 2%
- 129 threshold for delineating species within Trichoptera, which is considered to be a reliable
- 130 approach (Zhou et al. 2009). COI sequences of specimens from the Crooked River with DNA
- 131 sequences matching 99.67% and 99.13% to *Lepidostoma cinereum* and *Neophylax rickeri*
- 132 respectively, were assigned to the aforementioned species.
- Among the 34 specimens identified to species with 100% database matches are
- 134 *Cheumatopsyche harwoodi, Lepidostoma togatum* and *Ceraclea annulicornis,* all three are new
- 135 species records for British Columbia.
- 136 There are currently six species with in the genus *Cheumatopsyche: C. analis, C. campyla,*
- 137 C. gracilis, C. oxa, C. pettiti and C. smithi (http://ibis.geog.ubc.ca/biodiversity/efauna, Cannings
- 138 2007). We found a larva of *Cheumatopsyche harwoodi* (synonym *C. enigma*) at CR4 on May
- 139 16th 2014. Based on morphological keys we were only able to classify our specimen to genus

140 level. This is not surprising as morphology-based taxonomy of C. harwoodi larvae is 141 exceedingly difficult (Wiggins 1996). In some cases C. harwoodi larvae are indistinguishable 142 from other species within the genus (Burington 2011). Based on our phylogenetic tree-based 143 analysis the Crooked River C. harwoodi sequence groups with C. harwoodi sequences from 144 Ontario (JF434099, JF434097), New Brunswick (KR146677), and Manitoba (HM102631); and 145 not with any of the known species of Cheumatopsyche in British Columbia (Figure 2). The 146 Crooked River specimen also aligns 100% with a DNA sequence of C. harwoodi from Alberta 147 (HM102632), but also with a C. gracilis sequence from Wyoming (HQ560573) (Figure 2). 148 Identifying species based on DNA sequence is that it requires accurate morphological 149 identification to species level of physical specimen that is then sequenced - and ideally 150 replicated a number of times. Currently BOLD has 178 barcodes for for specimens identified as 151 C. harwoodi and the Crooked River specimen aligns very closely to these with less than 0.6% 152 difference within the species as a whole, well below the 2% threshold suggested by Zhou and co-153 workers in 2009. There are currently only two barcodes for C. gracilis and both these barcodes 154 group with the various C. harwoodii sequences. And these two C. gracilis specimens have a 155 1.3% difference based on our analysis. The preponderance of evidence, then, points to one of 156 three possibilities. First, the two C. gracilis specimens in BOLD are actually misidentified C. 157 harwoodii and our specimen is also C. harwoodii. Second, the specimens represent different 158 species but that difference is not reflected in the DNA barcode. And third, the taxonomic status 159 of both species should be reconsidered as potentially being one species. A more definitive 160 identification might be possible as BOLD is populated with more C. gracilis sequences that 161 helps delineate the two species.

162 On 14 July 2014 we found a larva for Lepidostoma togatum {synonyms L. canadense 163 (Banks, 1899) L. pallidum (Banks, 1897) Mormomyia togatum (Hagen, 1861), Pristosilo 164 canadensis (Banks, 1899), Silo pallidus (Banks, 1897)} at CR3. The DNA sequence of this 165 specimen aligns clearly with L. togatum sequences (Figure 3). Based on museum and database 166 records in Canada L. togatum is known to be present in the Northwest Territories, Alberta and 167 the Maritime Provinces of Canada. Our report is the first for this species west of the Rocky 168 Mountains. 169 On 13 August 2014 we found a specimen of *Ceraclea annulicornis* {(synonyms: 170 Athripsodes annulicornis (Stephens, 1836), C. futilis (Banks, 1914), C. recurvata (Banks, 1908), 171 Leptocerus annulicornis (Stephens, 1836), L. futilis (Banks, 1914)} at CR3 (Figure 1). The

phylogenetic tree-based analysis using sequences from Manitoba, Ontario, and New Brunswick
strongly suggest our specimen is *C. annulicornis* (Figure 4).

We found specimens belonging to three genera that had no significant matches at the species level on either the Barcode of Life Database or at NCBI; therefore we only provide genus-level identifications (Table 1). A specimen we putatively assign as *Micrasema* had only one match in BOLD Genbank Accession# <u>KR145307</u> (Zhou et al., 2016), but much further south, on southern Vancouver Island. Images of this specimen are publicly available at BOLD (BIOUG18683-F08).

A specimen putatively belonging to the genus *Hydroptila* had a number of 100% matches to the Crooked River Hydroptila sp. in the BOLD database (Zhou et al., 2016), but none identified to species level. Sequence alignments revealed 86% and 84. 74% similarity to *H. rono* and *H. xera* respectively; both species are known to be present in British Columbia. The other two known *Hydroptila* spp. in British Columbia, *H. arctia* and *H. consimilis,* are substantially

185 dissimilar from our specimen (81% and 82% match, respectively). Images of our specimen are 186 publicly available at BOLD (BIOUG18683-A06). 187 A third specimen putatively assigned to *Lepidostoma* resides in a BIN with only two 188 members (BOLD:ACL5324) - the Crooked River specimen and one other from British Columbia 189 (Genbank Accession # KX142483). Images of this specimen (adult) are publicly available at 190 BOLD (BIOUG18683-G10). 191 These three specimens are thus most likely also new species records for British 192 Columbia. All known species in British Columbia belonging to Micrasema and Hydroptila have 193 DNA barcodes in BOLD, and ten of the 12 Lepidostoma species known to be in British 194 Columbia have DNA barcodes in BOLD. Only L. quercina and L. stigma do not, and it is 195 possible that our specimen belongs to one of these two species. 196 The presence of 41 species (20 genera, 11 families) of caddisflies in the Crooked River, 197 is comparable to to other rivers and regions. For instance sampling the Churchill, Manitoba area 198 - including the Churchill River, tundra ponds, lakes, and small streams - revealed 68 species 199 (Zhou et al. 2009). Sampling of the Ochre River, Manitoba revealed 33 species (8 families, 17 200 genera) (Cobb and Flannagan 1990). Broad-scale sampling across northern Canada from the 201 Ogilvie Mountains in the Yukon to Goose Bay in Newfoundland revealed 56 species (Cordero et 202 al 2017). To our knowledge there is no study that provides comprehensive species checklist of 203 caddisflies for a specific tributary in British Columbia to which we could compare our data more 204 regionally. 205 In summary, our assessment of the Trichoptera inhabiting the Crooked River revealed 206 three new species records for British Columbia. Specifically, to our knowledge this is the first 207 report of *Cheumatopsyche harwoodi*, *Lepidostoma togatum* and *Ceraclea annulicornis*. Our

208	results also suggest at least two, and possibly three, new species records. This baseline
209	biodiversity data is vital for ongoing monitoring and management of this unique and highly
210	impacted located system and provides new data for managers and conservationists working in
211	this understudied system.
212	
213	ACKNOWLEDGEMENTS: We thank Claire Shrimpton for assistance in the field. Museum
214	databases were provided by the Beaty Biodiversity Museum at the University of British
215	Columbia (Karen Needham and Chris Ratzlaff), the Royal British Columbia Museum (Claudia
216	Copley and Joel Gibson), the Strickland Museum at the University of Alberta (Bryan Brunet and
217	Felix Sperling), and the Royal Ontario Museum (Doug Currie, Antonia Guidotti, Brad Hubley,
218	and Brenna Wells). This research was funded by the University of Northern British Columbia,
219	the Canada Research Chairs Program, and the Canada Foundation for Innovation.
220	
221	REFERENCES
222 223 224	Burgmer T., Hillebrand, H., and Pfenninger, M. 2007. Effects of climate-driven temperature changes on the diversity of freshwater macroinvertebrates. Oecologia 151:93–103
225 226 227 228	Burrington, Z. L. 2011. Larval Taxonomy, Phylogeny And Historical Biogeography Of The Genus <i>Cheumatopsyche</i> (Trichoptera: Hydropsychidae) In North America. MSc thesis, Clemson University, Clemson SC.
229 230 231	Cairns, J. Jr. and Pratt, J. R. 1993. A History of Biological Monitoring Using Benthic Macroinvertebrates. In -Freshwater Biomonitoring and Benthic Macroinvertebrates, D. M. Rosenberg and V. H. Resh, eds., Chapman & Hall, NY. p. 10-27
232	

233 Clifford, H. F. 1991. Aquatic Invertebrates of Alberta. The University of Alberta Press,

234 Edmonton, AB, 314-352.

235

- 236 Cobb, D.G., and Flannagan, J. F. 1990. Trichoptera and substrate stability in the Ochre River,
- 237 Manitoba. *Hydrobiologica* **206**: 29-38.

238

- 239 Cordero, R. D. Sánchez-Ramírez, S. and Currie, D. C. 2017. DNA barcoding of aquatic insects
- 240 reveals unforeseen diversity and recurrent population divergence patterns through broad-
- scale sampling in northern Canada .Polar Biology 40:1687-1695

242

243

- 244 DeSalle, R., Egan, M. G., and Siddall, M.2005. The unholy trinity: taxonomy, species
- 245 delimitation and DNA barcoding. *Philosophical Transactions of the Royal Society B: Biological*
- 246 Sciences 360: 1905-1916.

247

- 248 Dobson, M. and Frid, C. 2009. Rivers. In -Ecology of Aquatic systems. Oxford University Press,
- 249 Oxford, UK. p. 45-83

251	Felsenstein J. 1985. Confidence limits on phylogenies: An approach using the bootstrap.
252	Evolution 39:783-791.
253	
254	Houghton, D. C. 2004. Biodiversity of Minnesota caddisflies (Insect: Trichoptera): Delineation
255	and characterization of regions. Environmental Monitoring and Assessment 95: 153-181.
256	
257	JINBO, U. KATO, T. and Motomi ITO. 2011. Current progress in DNA barcoding and future
258	implicationsfor entomology. Entomological Science 14: 107-124
259	
260	Kimura M. 1980. A simple method for estimating evolutionary rate of base substitutions through
261	comparative studies of nucleotide sequences. Journal of Molecular Evolution 16:111-120.
262	
263	Lenat, D. R., and Barbour, M. T.1994. Using benthic macroinvertebrate community structure for
264	rapid, cost-effective, water quality monitoring: rapid bioassessment. In - Biological monitoring
265	of aquatic systems. Edited by S. L. Loeb and A. Spacie. Lewis Publishers, NY, USA
266	
267	McKay, B. 2000. Crooked River rats: The adventures of pioneer rivermen. Hancock House
268	Publishers Ltd., Surrey, British Columbia, Canada.
260	

270	Meyer, J., L., Sale, M. J., and Mulholland, P. J. 1999. Impacts of climate change on aquatic
271	ecosystem functioning and health. JAWRA 35: 1373-1386.
272	
273	Parmesan, C. 2006. Ecological and Evolutionary Responses to Recent Climate Change. Annu.
274	<i>Rev. Ecol. Evol. Syst.</i> 37 : 637-669.
275	
276	Pauls, S. U. Blahnik, R. J. Zhou, X. Wardwell, C. T. and Holzenthal, R. W. 2010, DNA barcode
277	data confirm new species and reveal cryptic diversity in Chilean Smicridea (Smicridea)
278	(Trichoptera:Hydropsychidae). J. N. Am. Benthol. Soc. 29(3):1058-1074
279	
280	Pond, G. J. 2012. Biodiversity loss in Appalachian headwater streams (Kentucky, USA):
281	Plecoptera and Trichoptera communities. Hydrobiologia 679: 97-117.
282	
283	Ruiter, D. E. Boyle, E. E. and Zhou X. 2013. DNA barcoding facilitates associations and
284	diagnoses for Trichoptera larvae of the Churchill (Manitoba, Canada) area. BMC Ecology 13: 5
285	
286	Saitou N. and Nei M. 1987. The neighbor-joining method: A new method for reconstructing
287	phylogenetic trees. Molecular Biology and Evolution 4:406-425.
288	

- 289 Schmid, F. 1998. The Insects and Arachnids of Canada. Part 7. Genera of the Trichoptera of
- 290 Canada and Adjoining or Adjacent United States. NRC Research Press, Ottawa, Ontario,
- 291 Canada. p.319.

292

- 293 Tamura K., Stecher G., Peterson D., Filipski A., and Kumar S. 2013. MEGA6: Molecular
- Evolutionary Genetics Analysis version 6.0. *Molecular Biology and Evolution* 30: 2725-2729.

295

296 Wiggins, G. B. 1977. Larvae of the North American Caddisfly Genera (Trichoptera). University

of Toronto Press, Toronto, Ontario, Canada. p. 381.

298

- 299 Zhou, X. Kjer, K. M. and Morse, J. C. 2007. Associating larvae and adults of Chinese
- 300 Hydropsychidae caddisflies (Insecta: Trichoptera) using DNA sequences. J. N. Am. Benthol. Soc.

301 26(4):719-742

302

- 303 Zhou, X, Adamowicz, S. L., Jacobus, L. M., DeWalt, R. E., and Hebert, P. D. N. 2009. Towards
- 304 a comprehensive barcode library for arctic life Ephemeroptera, Plecoptera, and Trichoptera of
- 305 Churchill, Manitoba, Canada. *Frontiers in Zoology* **6**:30.

307	Zhou, X., Jacobus, L. M., DeWalt, R. E., Adamowicz, S. J., Hebert, P. D. N. 2010a.
308	Ephemeroptera, Plecoptera, and Trichoptera fauna of Churchill (Manitoba, Canada): insights into
309	biodiversity patterns from DNA barcoding. J. N. Am. Benthol. Soc. 29: 814-837.
310	
311	Zhou, Xin; Jacobus, Luke M.; DeWalt, R. Edward; Adamowicz, Sarah J.; Hebert, Paul D. N.
312	2010b. The Ephemeroptera, Plecoptera, and Trichoptera fauna of Churchill (Manitoba, Canada):
313	insights into biodiversity patterns from DNA barcoding. J. N. Am. Benthol. Soc. 29(3):814-837
314	
315	Zhou, X., Robinson, J.L., Geraci, C.J., Parker, C.R., Flint Jr, O.S., Etnier, D.A., Ruiter, D.,
316	DeWalt, R.E., Jacobus, L.M. and Hebert, P.D. 2011. Accelerated construction of a regional
317	DNA-barcode reference library: caddisflies (Trichoptera) in the Great Smoky Mountains

318 National Park. J. N. Am. Benthol. Soc. 30(1), pp.131-162.

319	Zhou, X., Frandsen, P.B., Holzenthal, R.W., Beet, C.R., Bennett, K.R., Blahnik, R.J., Bonada,
320	N., Cartwright, D., Chuluunbat, S., Cocks, G.V. and Collins, G.E., 2016. The Trichoptera
321	barcode initiative: a strategy for generating a species-level Tree of Life. Phil. Trans. R. Soc. B,
322	<i>371</i> (1702), p.20160025.
323	
324	
325	
326	
327	
328	
329	
330	
331	
332	
333	
334	
336	
337	
338	
339 340	
341	
342	
343	

- 391 Evolutionary history is based on the Neighbour-Joining Method bootstrapped (5000 replicates)
- 392 and the Kimura-2 method to calculate distances. Each species is identified by the geographic
- region of collection, species, and Genbank accession number for the COI-5P DNA sequence.

394

397 398

Figure 3: Phylogenetic tree of *Lepidostoma* spp. collected from the Crooked River and

- 400 congeneric COI-5P DNA sequences of *Lepidostoma* species with DNA barcodes. Evolutionary
- 401 history is based on the Neighbour-Joining Method bootstrapped (5000 replicates) and the
- 402 Kimura-2 method to calculate distances. Each species is identified by the geographic region of
- 403 collection, species, and Genbank accession number for the COI-5P DNA sequence.
- 404 405
- Crooked River BC -L. unicolor -KX144588 Crooked River BC -L. unicolor -KX140945 Crooked River BC-L. unicolor -KX144346 Crooked River BC -L. unicolor -KX143673 Crooked River BC -L, unicolor -KX144426 British Columbia -L. unicolor -KM531210 Crooked River BC -L. unicolor -KX142787 British Columbia -L. roafi -JF891123 British Columbia -L. cascadense -KR140806 British Columbia -L. hoodi -GU668002 Crooked River BC -L. cinereum -KX142572 British Columbia -L. cinereum -KR147308 British Columbia -L. rayneri -KM534561 Alberta -L. pluviale -KM535534 Crooked River BC -L. pluviale -KX141075 Crooked River BC -L. pluviale -KX140718 Crooked River BC -L. pluviale -KX143090 Crooked River BC -L. pluviale -KX142857 British Columbia -L. jewetti -KM537319 Manitoba -L. togatum -GU712157 Newfoundland and Labrador -L. togatum -KR378357 New Brunswick -L. togatum -JN658854 Nova Scotia -L. togatum -HM906531 Crooked River BC -L. togatum -KX144002 Manitoba -L. togatum -GU114794 Manitoba -L. togatum -GU114779

406

0.02

- 407
- 408
- 409

410 **Figure 4:** . Phylogenetic tree of *Ceraclea* spp. collected from the Crooked River and congeneric

411 COI-5P DNA sequences of *Ceraclea* species with DNA barcodes. Evolutionary history is based

- 412 on the Neighbour-Joining Method bootstrapped (5000 replicates) and the Kimura-2 method to
- 413 calculate distances. Each species is identified by the geographic region of collection, species, and
- 414 Genbank accession number for the COI-5P DNA sequence.
- 415

416 417

- 421 **Table 1:** Trichoptera collected along the Crooked River, British Columbia and associated COI
- 422 DNA barcode-assigned identifications along with date ranges of collection. Locations of
- 423 collection sites are given in the footnotes. All sequence data are available in public repositories
- 424 as listed, and all specimens are vouchered at the University of Guelph Centre for Biodiversity
- 425 Genomics.

F a m i	Genus ¹	Species ¹	Sample IDs ²	BIN	NCBI accession ³	Collection site(s) ⁴	Collection date range ⁵	Notes
l Y 1								

Brachycentridae	Brachycentrus	americanus	BIOUG18684-B11 and 22 others	BOLD:ABX6535	KX144627	CR2, CR2B, CR4, CR108	11-JUN to 13-AUG	
		occidentalis	BIOUG18683-H05 and 5 others	BOLD:AAE0281	KX144012	CR3, CR100BR	04-JUN to 13-AUG	
	Micrasema	bactro	BIOUG18683-F09.1	BOLD:AAC4650	KX143689	CR4	11-JUN	
		sp.	BIOUG18683-F08	BOLD:ACC4912	KX142261	CR2	18-JUN	Potential new B record
Hydropsychidae	Arctopsyche	grandis	BIOUG18683-A11.1 and 6 others	BOLD:AAB3049	KX143192	CR2, CR108	09-JUL to 13-AUG	
	Cheumatopsyche	analis	BIOUG18684-B10	BOLD:AAA5695	KX144608	CR100BR	28-JUL	
		harwoodi	BIOUG18684-B09	BOLD:AAA2316	KX141182	CR4	16-MAY	New BC record
		sp.	BIOUG18684-E05	BOLD:ACE5262	KX142965	CR108	09-JUL	
		sp.	BIOUG18684-E08 and 4 others	BOLD:AAA3891	KX142829	CR3	29-JUL to 13-AUG	
	Hydropsyche	alhedra	BIOUG18683-H03 and 2 others	BOLD:AAC1650	KX143172	CR4, CR108	04-JUN to 11-JUN	
		alternans	BIOUG18683-C12 and 14 others	BOLD:AAA3236	KX140968	CR3, CR100BR	10-JUN to 13-AUG	

		cockerelli	BIOUG18683-A03	BOLD:AAC3057	KX143078	CR4	16-MAY	
		morosa	BIOUG18684-E01 and 5 others	BOLD:AAA3679	KX143491	CR3	28-JUL	
		slossonae	BIOUG18684-E06 and 12 others	BOLD:AAA2527	KX143429	CR2, CR4, CR100BR, CR108	11-JUN to 13-AUG	
Hydroptilidae	Hydroptila	arctia	BIOUG18683-F10.1	BOLD:AAE5200	KX141605	CR108	25-JUN	
		sp.	BIOUG18683-A06	BOLD:AAK3416	KX142062	CR2	18-JUN	Potential new B record
Lepidostomatidae	Lepidostoma	pluviale	BIOUG18684-D07.1 and 3 others	BOLD:ACF2295	KX142857	CR100BR	18-JUN to 13-AUG	
		sp.	BIOUG18683-G10	BOLD:ACL5324	KX144650	CR2	4-AUG	Potential new B record
		togatum	BIOUG18684-D02	BOLD:AAA2325	KX144002	CR3	14-JUL	New BC record
		cinereum	BIOUG18683-C07.1 and 3 others	BOLD:AAK7943	KX142572	CR2, CR2B, CR4	25-JUN to 4-AUG	
		unicolor	BIOUG18684-H04 and 8 others	BOLD:AAC5923	KX142875	CR4, CR108	11-JUN to 4-AUG	
Leptoceridae	Ceraclea	alagma	BIOUG18683-F06 and two others	BOLD:AAA5876	KX143301	CR6, CR100BR, CR108	16-MAY to 14-JUL	
		annulicornis	BIOUG18683-B02	BOLD:AAA5429	KX142035	CR3	13-AUG	New BC record
		cancellata	BIOUG18684-A01	BOLD:ABZ0710	KX143326	CR4	4-AUG	

		nigronervosa	BIOUG18683-H09 and 1 other	BOLD:AAC3781	KX141154	CR100BR	10-JUN
		resurgens	BIOUG18683-F07.1 and 2 others	BOLD:ACG9704	KX142221	CR3	14-JUL to 28-JUL
Limnephilidae	Amphicosmoecus	canax	BIOUG18683-D09 and 5 others	BOLD:AAE2491	KX143314	CR2B, CR4, CR100BR	11-JUN to 9-JUL
	Clistoronia	magnifica	BIOUG18683-F05 and 1 other	BOLD:AAC1848	KX141495	CR3, CR4	28-JUL to 13-AUG
	Dicosmoecus	atripes	BIOUG18683-G05 and 2 others	BOLD:AAC5045	KX140940	CR4	11-JUN
		gilvipes	BIOUG18684-H07 and six others	BOLD:AAI9526	KX142636	CR2B, CR4, CR100BR	16-MAY to 9-JUL
	Limnephilus	externus	BIOUG18683-F12 and 1 other	BOLD:AAA2803	KX141731	CR2B, CR6	11-JUN to 18-JUN
	Onocosmoecus	unicolor	BIOUG18684-H04 and 8 others	BOLD:AAC5923	KX142875	CR4, CR108	11-JUN to 4-AUG
	Psychoglypha	alascensis	BIOUG18683-G07 and 7 others	BOLD:ACH0278	KX141905	CR4, CR5	9-MAY to 4-AUG
		subborealis	BIOUG18683-D11.1 and 2 others	BOLD:AAE0945	KX144814	CR4	9-JUL to 4-AUG
Philopotamidae	Wormaldia	gabriella	BIOUG18684-C03 and 4 others	BOLD:AAC1539	KX143731	CR2, CR108	21-JUL to 13-AUG
Phryganeidae	Agrypnia	improba	BIOUG18683-C01	BOLD:ACK0044	KX143489	CR2	13-AUG
Polycentropodidae	Neureclipsis	bimaculata	BIOUG18683-A08 and 3 others	BOLD:AAE2683	KX141945	CR3	14-JUL to 28-JUL
	Plectrocnemia	cinerea	BIOUG18684-A08	BOLD:AAA3441	KX141515	CR6	14-JUL

Rhyacophilidae	Rhyacophila	brunnea	BIOUG18683-B12 and 11 others	BOLD:AAB3088	KX141430	CR4, CR100BR, CR108	18-JUN to 2-AUG
		sp.	BIOUG18684-A07 and 3 others	BOLD:ACL4744	KX140935	CR2, CR100BR	13-AUG
Uenoidae	Neophylax	rickeri	BIOUG18683-G08	BOLD:AAG9543	KX144032	CR4	4-JUN

1- determined from morphological keys and BOLD database match.

2- if more than one specimen, longest sequence from BOLD with an NCBI accession number; other sample data are available at BOLD dataset CRTRI.

3- for the sample specified in the fourth column.

4- CR2 - 54.484°N, -122.721°W; CR2B - 54.484°N, -122.721°W; CR3 - 54.643°N, -122.743°W; CR4 - 54.388°N, -122.633°W; CR5 - 54.478°N, -122.719°W; CR6 - 54.328°N, -122.669°W;

CR100BR - 54.446°N, -122.653°W; CR108 - 54.458°N, -122.722°W

5- first collection date and (if applicable) last collection date in 2014.