
 

A peer-reviewed version of this preprint was published in PeerJ
on 2 September 2014.

View the peer-reviewed version (peerj.com/articles/551), which is the
preferred citable publication unless you specifically need to cite this
preprint.

Silva PJ. 2014. With or without light: comparing the reaction mechanism
of dark-operative protochlorophyllide oxidoreductase with the energetic
requirements of the light-dependent protochlorophyllide
oxidoreductase. PeerJ 2:e551 https://doi.org/10.7717/peerj.551

https://doi.org/10.7717/peerj.551
https://doi.org/10.7717/peerj.551


With or without light: comparing the reaction mechanism of 

dark-operative protochlorophyllide oxidoreductase with the 

energetic requirements of the light-dependent 

protochlorophyllide oxidoreductase

The addition of two electrons and two protons to the C
17
=C
18
 bond in protochlorophyllide is 

catalyzed by a light-dependent enzyme relying on NADPH as electron donor, and by a light-

independent enzyme bearing a (Cys)
3
Asp-ligated [4Fe-4S] cluster which is reduced by 

cytoplasmic electron donors in an ATP-dependent manner and then functions as electron 

donor to protochlorophyllide. The precise sequence of events occurring at the C
17
=C
18
 bond 

has not, however, been determined experimentally in the dark-operating enzyme. In this 

paper, we present the computational investigation of the reaction mechanism of this enzyme 

at the B3LYP/6-311+G(d,p)// B3LYP/6-31G(d) level of theory. The reaction mechanism begins

with single-electron reduction of the substrate by the (Cys)
3
Asp-ligated [4Fe-4S], yielding a 

negatively-charged intermediate. Depending on the rate of Fe-S cluster re-reduction, the 

reaction either proceeds through double protonation of the single-electron-reduced substrate, 

or by alternating proton/electron transfer. The computed reaction barriers suggest that Fe-S 

cluster re-reduction should be the rate-limiting stage of the process. Poisson-Boltzmann 

computations on the full enzyme-substrate complex, followed by Monte Carlo simulations of 

redox and protonation titrations revealed a hitherto unsuspected pH-dependence of the 

reaction potential of the Fe-S cluster. Furthermore, the computed distributions of protonation 

states of the His, Asp and Glu residues were used in conjuntion with single-point ONIOM 

computations to obtain, for the <rst time, the in=uence of all protonation states of an enzyme 

on the reaction it catalyzes. Despite exaggerating the ease of reduction of the substrate, 

these computations con<rmed the broad features of the reaction mechanism obtained with 



the medium-sized models, and a>orded valuable insights on the in=uence of the titratable 

amino acids on each reaction step. Additional comparisons of the energetic features of the 

reaction intermediates with those of common biochemical redox intermediates suggest a 

surprisingly simple explanation for the mechanistic di>erences between the dark-catalyzed 

and light-dependent enzyme reaction mechanisms.
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Introduction 

 

All life on Earth depends on the availability of reduced forms of carbon. As the reduction of simple 

carbon-containing molecules like CO2 is a strongly endergonic process, additional sources of energy are 

needed to overcome this high thermodynamic hurdle. Although several organisms (collectively known 

as lithoautotrophs) are able to obtain that energy from the conversion of inorganic substances, the 

overwhelming majority of carbon reduction is performed by photosynthetic organisms, which obtain the 

necessary energy by capturing photons from visible light. These photons are used to excite 

chromophores, which then become highly efficient reducing species, ultimately providing both the low-

potential electrons needed to reduce carbon and the ATP used by cells as energy-transfer molecule. The 

most abundant photosynthetic pigments, chlorophylls, are obtained from the tetrapyrrole protoporphyrin 

IX through a series of reactions that includes Mg2+ complexation, methylation by an S-

adenosylmethionine-dependent methyltransferase and six-electron oxidation, yielding an highly-

unsaturated molecule, protochlorophyllide (PChlide), which absorbs mainly in the low-energy region of 

the spectrum and is therefore unable to drive the necessary charge separation in the photosynthetic 

reaction centers(Masuda & Fujita, 2008). Two different enzymes are able to increase the saturation of 

the PChlide ring and generate chlorophyllide (Chlide), a pigment that absorbs light in higher-energy 

regions of the spectrum: angiosperms contain an oxygen-insensitive light-dependent 

protochlorophyllide oxidoreductase(Masuda & Takamiya, 2004), whereas gymnosperms, algae and 

cyanobacteria possess an oxygen sensitive, dark-operating, protochlorophyllide oxidoreductase(Fujita & 

Bauer, 2003) evolutionarily related to nitrogenase. 

The reaction mechanism of the light-dependent protochlorophyllide oxidoreductase has been 

extensively studied through experimental(Heyes & Hunter, 2004; Heyes et al., 2009, 2011; Sytina et al., 

2012) and computational(Heyes et al., 2009; Silva & Ramos, 2011) methods. In contrast, relatively little 

is known about the precise sequence of events taking place in the dark-operative protochlorophyllide 
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oxidoreductase (dPCHOR). The enzyme contains two components: a homodimeric L-protein which 

performs ATP-dependent electron transfer reminiscent of that observed in nitrogenase Fe protein(Fujita 

& Bauer, 2000; Sarma et al., 2008), and a heterotetrameric component bearing the active site and a 

(Cys)3Asp-ligated [4Fe-4S] cluster which accepts electrons from the L-protein and functions as the 

electron donor to the protochlorophyllide substrate(Muraki et al., 2010; Bröcker et al., 2010). The 

peculiar ligation of the electron-transferring [4Fe-4S] cluster has been shown by site-directed 

mutagenesis to be crucial to the enzyme activity(Muraki et al., 2010), probably due to the lowering of its 

reduction potential below that of other [4Fe-4S] clusters.(Kondo et al., 2011; Takano et al., 2011) The 

crystallographic structure of dPCHOR(Muraki et al., 2010; Bröcker et al., 2010) shows that the substrate 

binding site, while mostly lined by hydrophobic residues, contains a single conserved aspartate residue 

(Asp274) which is thought to be a proton-donor for the reaction. Two protons and two electrons are 

required (Fig. 1), which necessarily entails two separate reduction events (as the [4Fe-4S] cluster is a 

one-electron donor) and the presence of a second proton-donor. Asp274 is unlikely to act as the donor of 

the second proton, as it cannot be reprotonated due to the absence of pathways linking it to the solvent. 

The propionic acid side-chain present on the substrate C17 was therefore proposed as the second proton 

donor(Muraki et al., 2010). The intricacies of proton and electron transfer from dPChOR to its 

protochlorophyllide substrate have, however, remained unaddressed by experimental methods. In this 

report, we describe this reaction mechanism with the help of density-functional theory methods. The 

results allow the description of the sequence of the reduction/protonation events and also identify the 

factors governing the stereochemical outcome of this enzyme-catalyzed reaction. Comparisons of the 

energetic features of the intermediates with those of common biochemical redox intermediates suggest a 

simple explanation for the differences observed in the dark-catalyzed and light-dependent enzyme 

reactions.  

 

Computational methods 
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Coordinates of the active site were taken from the X-ray structure (3AEK) determined by Muraki et 

al.(Muraki et al., 2010). Since the substrate binding cavity is almost completely lined with hydrophobic 

residues (which are generally inert from a reactional point of view) the computational model of the 

active site could be thoroughly pruned, to achieve a cost-effective computational model: computations 

with a very simplified substrate mimic (4-methyl-2,5-dimethylidene-2,5-dihydro-1H-pyrrol-3-yl)acetic 

acid, the proton-donating Asp274, and the second-shell amino acids Arg48 (which is located close to the 

proton-donating Asp274) and Gly409-Leu410 backbone (which may establish a single hydrogen bond 

to the propionic acid present on the substrate) showed that neglect of the second-shell amino acids 

affects proton-transfer energies by less than 2 kcal.mol-1. The reaction mechanism was therefore studied 

using the complete natural substrate, the water molecule bound to its Mg atom, and the only amino acid 

side chain (Asp 274) able to interact with the substrate through hydrogen-bonds and/or proton donation. 

To prevent unrealistic movements of the simplified computational model, the protochlorophyllide Mg 

atom and the Asp274 Cα and Cβ carbon atoms were constrained to their crystallographic positions. 

Geometry optimizations were performed with the Firefly(Granovsky, 2013) quantum chemistry 

package, which is partially based on the GAMESS (US)(Schmidt et al., 1993) source code, at the 

B3LYP(Lee, Yang & Parr, 1988; Becke, 1993; Hertwig & Koch, 1995) level with the 6-31G(d) basis 

set, using autogenerated delocalized coordinates(Baker, Kessi & Delley, 1996). Transition states were 

located by scanning the appropriate reaction coordinates, taking the highest-energy point in these scans, 

and following the highest imaginary frequency computed at those geometries to the appropriate first-

order saddle point. All transition states found contained an imaginary frequency connecting the reactant 

state to the product state of that reaction step and a few vibration modes with small imaginary 

frequencies due to the constrained atoms. Zero-point and thermal effects on the enthalpies/free energies 

at 298 K were computed at the optimized geometries using a scaling factor of 0.9804(Foresman & 
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Frisch, 1996). Single-point energies were computed with the triple-zeta 6-311G(d,p) basis set, 

augmented with a set of diffuse functions on the oxygen, henceforth called 6-311G(+)(d,p).  

The Asp(Cys)3-ligated Fe-S cluster was optimized separately in the reduced (charge=-3, spin=1/2) and 

oxidized (charge=-2, spin=0) forms, using the SBKJC effective core potential and associate basis set for 

Fe and 6-31G(d) for the other elements. The Cα and Cβ carbon atoms of the coordinating amino acids 

were constrained to their crystallographic positions to prevent unrealistic movements and to capture the 

subtle influence of the conformation of the cysteinyl side chains on the redox potential of the Fe-S 

cluster(Niu & Ichiye, 2009). Appropriate broken-symmetry initial guesses of the Fe-S cluster density 

were generated using a combination of the protocols of Szilagyi(Szilagyi & Winslow, 2006) and 

Greco(Greco et al., 2010). Single-point energies of the optimized geometries of the Fe-S cluster were 

computed using the all-electron s6-31G* basis set(Swart et al., 2010) for Fe and 6-311G(2d,p) for all 

other elements. Intra- and inter-molecular dispersion effects were computed with the DFT-D3 

formalism developed by Grimme et al.(Grimme et al., 2010). The activation energy of the one-electron 

transfer between the reduced Fe-S cluster and the substrate was estimated by applying Marcus theory 

for electron transfer, as suggested by Blomberg and Siegbahn(Blomberg & Siegbahn, 2003). 

Reorganization energies for the Fe-S cluster and substrate in each oxidation state were computed using 

the reactant geometry for the product state (e.g. the oxidized state energy is computed at the reduced Fe-

S cluster geometry, etc.) and vice-versa. Activation energies were then computed by building 

appropriate Marcus parabolas using these reorganization energies, as shown in Scheme 1. 

All energy values described in the text include solvation effects (ε=10) computed using the 

Polarizable Continuum Model(Tomasi & Persico, 1994; Mennucci & Tomasi, 1997; Cossi et al., 1998) 

implemented in Firefly. ε=10 was chosen instead of the more common ε=4 to model some of the 

stabilization of the ionic forms of Asp274 and propionic acid residues provided in the enzyme by 

hydrogen bonding with the Gly409-Leu410 backbone amide. Energies computed at other dielectric 
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constants are shown in Table 1. In table 3, energies of reactions involving addition of n non-modeled 

solvent protons were computed as : 

ΔG= ΔGsolvated products - ΔGsolvated reactants 3 n ΔGsolvated H+ 

For the solvation free energy of H+, ΔGsolv, H+ , we used the value of -265.9 kcal mol-1, obtained by 

converting the experimental value of -263.98 kcal mol-1 (Tissandier et al.(Tissandier et al., 1998)) to 

the appropriate thermodynamic standard state conventions as recommended by Kelly et al.(Kelly, 

Cramer & Truhlar, 2006). To enable direct comparison of energies with a different number of non-

modeled solvent protons, these ΔG values were then converted to effective ΔG at pH=7.0 : 

n][Hln  RT G  Geff

 . 

Energy differences between n-electron containing species and the corresponding n+1-electron-

containing analogues were converted to reduction potentials (ΔE) through 

ΔG=-n F ΔE 

, where n is the number of electrons added to the species and F is the Faraday constant (96485 C.mol-1). 

In order to characterize the protonation states of Asp274 and the propionic acid side chain in the 

enzyme-substrate complex, continuum electrostatic calculations were performed using MEAD(Bashford 

& Gerwert, 1992). AMBER03 charges and radii(Duan et al., 2003) were assigned to the protein 

structure using YASARA (Krieger et al., 2004). Substrate and Fe-S cluster charges were assigned 

according to the RESP protocol (Bayly et al., 1993). The solvent probe radius was 1.4 Å, which should 

provide a reasonable spherical approximation of the water molecule. The ionic exclusion layer thickness 

was set at 2.0 Å, and temperature at 300 K. The dielectric constant used for the solvent region was 80, 

the approximate value for bulk water at room temperatures. The dielectric constant for the protein 

interior was set to 15, the value previously found to yield optimum results with this 

methodology(Antosiewicz, McCammon & Gilson, 1994; Martel et al., 1999). A two-step focusing 

method was used. A first calculation using a (200 Å)3 cube with a 1.0-Å lattice spacing, centered on the 

protein was followed by a second calculation using a (25 Å)3 cube with a 0.25-Å spacing, centered on 
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the titrable site. All Asp, Glu and His residues, as well as the substrate propionic acid substituent, were 

allowed to titrate. The sampling of proton-binding states was done using the MCRP program (Monte 

Carlo for Reduction and Protonation), which implements a Monte Carlo method described by Baptista 

et al.(Baptista, Martel & Soares, 1999; Teixeira, Soares & Baptista, 2002). Initial sampling was 

performed at 0.1 pH units intervals in the 5 - 9 range and at 20 mV intervals from -750 mV to -200 mV 

using 2×105 Monte Carlo steps. In production runs, amino acids found to remain protonated or 

deprotonated over 90% (or more) of the sampling grid were kept at their protonated (or deprotonated) 

states, and the remaining sites were allowed to titrate freely for 1×106 Monte Carlo steps an each 

pH/electric potential point.  

The electrostatic influence of the full protein on the active system (Δprot) was analyzed using an 

ONIOM-inspired(Dapprich et al., 1999) methodology: 

Δprot = EMM total system – EMM active site 

, where EMM total system is total electrostatic energy of the protein+intermediate system) and EMM active site is 

the active site (Asp274 + (Cys)3Asp ligated 4Fe-4S cluster + intermediate) electrostatic energy. Each 

gas-phase-optimized intermediate was first superimposed on the crystal structure of the substrate in the 

substrate-bound enzyme. The conformation of its propionate/propionic acid substituent was then 

optimized through a brief steepest descent run to avoid any clashes with the rest of the protein, which 

was kept frozen. Charges on protein atoms were assigned according to the AMBER03 forcefield, 

whereas the charges on the intermediate, the Fe-S clusters and the Fe-coordinating residues were 

derived according to the RESP protocol. Currently, ONIOM computations (and other QM/MM 

approaches) always assume that the protonation states of the amino acids present in the portion of the 

molecule described by the molecular-mechanics force field remain fixed, with all amino acids with 

predicted pKa below the solution pH kept deprotonated and those with predicted pKa above the solution 

pH kept protonated. This approach is inevitable when studying the full reaction pathway in QM/MM 

framework due to the need to perform extensive sampling of the conformational space of the 
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protein+substrate environment (Klähn et al., 2005; Claeyssens et al., 2005; Kamerlin, Haranczyk & 

Warshel, 2009; Lonsdale, Harvey & Mulholland, 2010; Lonsdale et al., 2013; Rommel & Kästner, 

2011), but may introduce errors due to the possibility that other combinations of protonation states with 

similar population to this postulated state exist and afford more favorable electrostatic environments. In 

this work, the information gleaned from the Continuum Electrostatics computations described above 

was used to refine the ONIOM-derived energies by simultaneously considering all possible protonation 

states of the titrating amino acids. A phenomenological <average= electrostatic stabilization was 

computed as the Boltzmann-averaged electrostatic contribution of all possible protonation states of the 

protein: 

              ∑           
    

, where N is the number of titrating acid/base amino acids, pi is the probability of a specific combination 

of protonation states in the population of n acid/basic sites, ΔEi is the electrostatic stabilization afforded 

by this combination of protonation states and the other symbols have their usual meanings. The 

energetic contributions of each (de)protonated amino acid to the electrostatic stabilization energy are 

additive, and therefore ΔEi can be computed directly for each combination of protonation states by 

simply summing the individual amino acid contributions In the absence of interactions between 

acid/base sites,    could also be computed easily as the product of the individual probabilities of finding 

each site in the corresponding protonated/deprotonated state. Inter-site interaction prevents these 

probabilities from being computed directly, but a suitable estimate may be obtained by taking the 

distribution of protonation states sampled from the Monte Carlo simulations. The memory requirements 

of these simulations increase exponentially with the number of protonation sites which are tracked 

simultaneously, and therefore all sites that remained at least 90% (de)protonated from pH 5 to pH 9 and 

redox potential between -750 mV and -200 mV were taken as 100% (de)protonated to achieve 

computational tractability. The remaining forty-four sites were then divided into five/six groups to 
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achieve manageable memory requirements. By grouping together the correlated amino acids, one can 

ensure that the correlations between the protonation states of the groups remain mostly negligible. The 

total <phenomenological= electrostatic stabilization can then simply be obtained from the addition of the 

partial phenomenological electrostatic stabilization energies of each of the six sub-groups: 
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The electrostatic stabilization due to the protein was computed for each proton- and electron-transfer 

step, and added (as a correction) to the electronic energy values obtained from gas-phase computations 

of the Fe-S cluster and substrate/intermediates at infinite distance (since gas phase DFT computations of 

the electronic state of the combined Fe-S cluster + substrate/intermediate system in the reduced-cluster 

state converged to unphysical solutions with an oxidized cluster and a super-reduced substrate). Similar 

computations in the presence of a PCM continuum show that using infinitely-separated subsystems 

introduces a small error (<2 kcal·mol-1) in the proton-transfer reaction steps and favors the electron-

transfer steps by a larger amount (4-8 kcal·mol-1) , particularly at lower values of ε. 
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Results and discussion 

 

In the crystal structure, Asp274 lies in the proper position to yield an intermediate with the correct 

stereochemistry only if it acts as proton donor to C17. Therefore, we began our investigations assuming 

that Asp274 protonates C17 and the propionic acid side chain protonates C18. We also computed the 

reaction energetic for the proton transfers leading to the products with the wrong stereochemistries on 

C17 and C18. 

 
Proton-transfer events 

 

The experimentally-obtained enzyme activity of dPChOR(Muraki et al., 2010) (50 nmol·min-1·mg-1) 

sets an upper limit of 19.3 kcal·mol-1 for the rate-determining step of the overall process, using the well-

known Eyring equation, RT

G

B
cat e

h

Tk
k

‡


 , where kcat is the measured rate-constant, kB is the Boltzmann 

constant, h is the Planck constant and ΔG‡ is the activation free energy. The initial generation of a 

reaction intermediate from proton-transfer from Asp274 to C17 can therefore be ruled out, as its energy 

lies 31.4 kcal·mol-1 above the reactant state (Table 1). In contrast, the computed barrier for the proton 

transfer from the propionic side chain to C18 (24.7 kcal·mol-1) agrees reasonably well with the 

experimental value. The difference in computed stabilities between the C17- and C-18-protonated isomers 

is more pronounced in the gas phase, which shows that the most important factor favoring the C18- over 

the C17- isomer is of an electrostatic nature. Indeed, although both systems contain a positive charge in 

the substrate aromatic ring and a negative charge on a carboxylate group, the distance between these 

charges is much larger in the C17-isomer/Asp274 carboxylate system. 

In the one-electron-reduced state, the excess spin is, as expected, strongly delocalized across the 

porphyrin π3system (≈0.1 spin each on rings B and D, ≈0.25 on ring A, ≈0.30 on the C/E rings, and the 

remaining spin on the methylene bridges). In this state, the proton uptake becomes much more favorable 
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than before (by >15 kcal·mol-1, irrespective of the protonation site), due to the formation of a neutral 

protochlorophyllide/negative carboxylate intermediate, rather than the charge-separated pair observed in 

the non-reduced state. Proton-transfer to C18 is predicted to occur with a very small barrier of 9.2 

kcal·mol-1, whereas the proton-transfer from Asp274 to C17 has a larger barrier of 13.6 kcal.mol-1. This 

difference in barriers seems to be correlated to the proton/protochlorophyllide distance observed in the 

transition state (1.46 Å for the Asp274-C17 transfer vs. 1.31 Å for the carboxylate sidechain-C18 

transfer). The transfer of an additional proton to the one-electron-reduced/singly-protonated substrate 

may then occur with moderate barriers. The transfer from the propionic side chain to C18 is again faster 

than that of Asp274 to C17 (10.8 kcal·mol-1, vs. 18.9 kcal·mol-1). The total barrier for the two 

consecutive proton-transfer events at the one-electron-reduced is fully consistent with the experimental 

value, regardless of the precise sequence of these events (13.6 kcal·mol-1 for Asp274-C17 transfer 

followed by propionic sidechain-C18 transfer; 18.9 kcal mol-1 for the sequence initiated with transfer to 

C18). 

In the two-electron-reduced state, the barrier for the Asp274-C17 proton transfer (8.5 kcal·mol-1) is 

almost as low as the barrier for the proton transfer from the propionic sidechain to the C18 atom (4.8 

kcal·mol-1). Transfer of the second proton to the ring occurs without an enthalpic barrier in both cases, 

yielding the chlorophyllide product with the deprotonated Asp274 and propionate sidechain. 

Analysis of alternative protonation events was also performed, to ascertain the reasons behind the 

observed stereochemical outcome. These computations showed that proton transfer from the propionic 

acid side chain to C17 (yielding the wrong configuration in this carbon atom) is less favorable than any 

of the stereochemically correct proton transfers (Asp274 to C17 and propionic acid to C18), even in our 

simplified models which do not include the full steric constraints imposed by the hydrophobic amino 

acids lining the active site. The difference in total energies amounts to 11 kcal·mol-1 in the one-electron-

reduced state, and to 8.5 kcal mol-1 at the two-electron-reduced state. This intermediate contains 

(especially at the one-electron-reduced state) an unfavorable steric interaction, as the wrong 
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configuration at C17 pushes the propionate side chain towards Asp274 (Figure 3). Protonation of C18 by 

Asp274, which generates the wrong configuration on C18, is also less favorable by 16 kcal mol-1 at the 

one-electron-reduced state, and by 9.5 kcal mol-1 at the two-electron-reduced-state.  This destabilization 

occurs in spite of the lack of sterical clashes because no favorable stabilizing interactions of the 

carboxylate in Asp274 with the Mg2+-coordinating water are possible in this isomer, in contrast to the 

correct isomer that arises when the carboxylate forms on the propionic acid side chain.  

 

Electron-transfer events 

 

The ease of reduction of each intermediate may be easily computed by taking the difference of 

energies between any n-electron containing species and the corresponding n+1-electron-containing 

analogues. It can readily be seen (Table 2, last column), that one-electron reduction of the reaction 

intermediates depends strongly on the charge present on the PChlide ring: species with negative or 

neutral protochlorophyllide rings have an absolute redox potential between 2.3 and 3.2 V, whereas 

intermediates bearing one or more positive charges have much more favorable absolute redox potentials 

between 4.0 V and 4.5 V. In dark-operating PChOR, the electron-donating species is an unusual 

(Cys)3Asp-ligated [4Fe-4S] cluster, which has been assigned a redox potential of 3.1 V in previous 

computations(Takano et al., 2011). Since those computations were performed without geometrical 

constrains and with very truncated cysteine models (SCH3) which do not allow the evaluation of the 

influence of the side chain geometry on the electronic properties of the clusters(Niu & Ichiye, 2009), we 

performed additional optimizations of the Fe-S cluster using ethanethiol as model for the cysteine side 

chains and appropriate constraining of their carbon atoms to their crystallographic positions. The 

absolute redox potential of the electron-donating (Cys)3Asp-ligated [4Fe-4S] cluster in PChOR is thus 

computed to be 2.80 V, which implies that, in the absence of significant interactions between cluster and 
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substrate, all electron-uptake events by protochlorophyllide (except those by the 1-electron-reduced 

substrate or by the 1-electron-reduced, C18-protonated substrate) should be thermodynamically 

favorable, as electrons spontaneously move from the species with lower redox potentials to the ones 

with higher potentials. Additional single-point computations were then performed in models including 

the separately-optimized Fe-S clusters and reaction intermediates at their crystallographic positions to 

ascertain the mutual influence of the Fe-S electronic distribution on the redox potential of the reaction 

intermediates, and vice-versa (Table 2). Irrespective of the redox state of the Fe-S cluster, the reaction 

intermediates become harder to reduce by 0.1-0.15 V in the original, non-reduced, state, and by 0.25-0.4 

V in the one-electron-reduced state. The electric dipoles of the reaction intermediates in turn lower the 

Fe-S cluster redox potential (i.e. facilitate its oxidation) by similar modest amounts (0.1-0.15 V), 

irrespective of the redox state of the substrate. These data also show that the oxidation state of the Fe-S 

cluster barely affects the energetics of the substrate protonation reactions and, consequently, should also 

barely affect their activation barriers. 

The electronic energies of the combined Fe-S cluster/active site systems show that electron-transfer 

from the reduced Fe-S cluster to the protochlorophyllide intermediates is thermodynamically favored in 

almost all cases (Table 2), except for the reduction of the one-electron-reduced/C18-protonated species , 

which is unfavorable by a few kcal.mol-1. For this thermodynamically disfavored reduction step no 

activation energy could be computed through the Marcus formalism as the parabolas do not touch (see 

Supporting Information), but comparisons with the reorganization energies at lower dielectric constants 

(at which this transfer becomes spontaneous) suggest that the barrier should not be too different from 

the others. For the spontaneous steps the electronic reorganization energies of the combined Fe-S 

cluster/active site systems are quite low, yielding activation energies below 4 kcal.mol-1, which entails 

that) reduction will generally be much faster than the protonation events, which were shown above to 

have activation energies in excess of 10 kcal.mol-1. Electron transfer from the reduced Fe-S cluster 

should therefore precede each protonation event, though only if the rate of re-reduction of the Fe-S 
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cluster by the ATP-dependent L-protein(Kondo et al., 2011) does not become limiting. Two possible 

pathways emerge from this analysis, both arising from an initial one-electron transfer to the 

protochlorophyllide. In one of them (Figure 4A), re-reduction of the Fe-S cluster is slower that any of 

the proton-transfer events at the one-electron reduced state, which leads to the generation of a doubly 

protonated intermediated, preferably through the initial protonation at C17, which has a lower overall 

barrier (13.6 kcal.mol-1) than the double-protonation starting with the C18 atom (18.9 kcal.mol-1, as 

discussed earlier). After both protonations and cluster re-reduction occurs, electron transfer is both 

spontaneous and quite fast. In the second alternative (Figure 4B) re-reduction of the Fe-S cluster is not 

rate-limiting and the second electron transfer to the substrate may occur immediately after the first 

protonation: in this instance, the reaction will likely proceed through protonation of C18 by the propionic 

acid substituent of the protochlorophyllide D-ring, followed by electron transfer and barrier-less transfer 

of the second proton from Asp274 to C17. This pathway affords a barrier below 10 kcal mol-1 and 

reaction rates far in excess of those observed experimentally, suggesting that Fe-S cluster re-reduction 

should indeed be the rate-limiting stage of the process. 

 

Estimating the influence of the protein environment on the reaction energetics 

 

In the research mentioned in the previous sections, the inclusion of the full substrate binding-pocket was 

prevented by the unfavorable scaling of the computational cost of the high-levels of quantum theory 

used. Additionally, the extensive conjugation of the substrate π-system prevented the <sacrifice= of any 

portion of the substrate in the model for the sake of including more surrounding amino acids. Such 

exclusion should not affect the chemical steps since the omitted amino acids are relatively inert 

chemically due to their hydrophobic side chains and their influence is therefore only felt on the relative 

solvation of the reaction intermediates. The data computed at different dielectric constants (which is 

affected by the number and distribution of polar/apolar amino acids surrounding the substrate) show that 

the dependence of the reaction pathway with this factor is quite small. These observations agree with the 
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large body of research (reviewed in (Himo & Siegbahn, 2003; Shaik et al., 2005; Ramos & Fernandes, 

2008; Siegbahn & Blomberg, 2010)) which has established that the application of quantum chemical 

techniques to small-to-medium-size models of enzyme active sites can be extremely powerful in the 

thorough analysis of reaction pathways, provided that the charge distribution in the model accurately 

mimics that of the active site. 

Several important characteristics of the reaction mechanism cannot be derived from truncated active site 

models due to the lack of the protein-induced electrostatic field, which depends on the overall charge 

distribution in the protein (Stephens, Jollie & Warshel, 1996; Kamerlin & Warshel, 2010; Ribeiro, 

2013). In the enzyme studied in this report, such characteristics include the likelihood of occurrence of 

the active protonated states of Asp274 and propionic side chain at physiological pH and the 

susceptibility of the Fe-S cluster redox potential to the solution pH. Continuum electrostatics 

computations on the protochlorophyllide oxidoreductase structure bearing each of the quantum-

chemically-optimized intermediate allowed us to quantify these effects (see Material and Methods for 

details). The inclusion of the protein barely affects the way the redox potentials of the Fe-S cluster vary 

as the intermediate gains electrons/protons (Table 3), but has an important effect on the sensitivity of the 

Fe-S cluster redox state towards changes in pH: in all instances the predicted change in redox potential 

per pH unit corresponds to the uptake of 0.8 protons by the Fe-S surroundings upon the one-electron 

reduction of the cluster. Analysis of the correlations matrixes clearly shows that the reduction of the Fe-

S clusters increases the probability of finding the neighboring His53A and His13B in their protonated 

states. At lower pH, Asp147A also tends to become protonated as the cluster is reduced (Figure 5). 

The probability p of finding the postulated proton-donating moieties (Asp274 and the propionic acid 

substituent) in their protonated states can also be computed using these techniques, and converted into 

energetic barrier increases through the expression pRTG ln  (Table 4). The predicted 6.9 kcal 

·mol-1 increase in the barrier of the initial step further prevents the reaction from proceeding through an 

initial protonation step, but does not prevent the one-electron reduction of the substrate due to its high 
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energetic driving force and low (< 4 kcal mol-1) barrier. The barriers for subsequent steps increase by 

smaller values, so that both mechanisms depicted in Figure 4 remain possible even after taking account 

the variable probabilities of finding Asp274 and propionic acid sidechain in the appropriate protonation 

states.  

Additional effects of the assymetric protein-induced electrostatic field on the reaction energetics were 

analyzed using the ONIOM-inspired methodology described in the Methods section. The inclusion of all 

possible protonation states of the titrating aminoacids on the computation of the <average= electrostatic 

field proved to be crucial, as several of the amino acids whose protonation state showed the higher 

electrostatic effects on the reaction energetics would otherwise be assumed to be present in their non-

protonated states: for example, histidines 404B and 404D (present in the interface between subunits B 

and D, ca. 21 Å from the substrate) favor electron-transfer from the cluster to the substrate by 5-7 

kcal.mol-1, but their effect would have been neglected by a computation that only took account of the 

most likely protonation state of each aminoacid, as each remains (on average) 1/3 protonated in the 

pH/potential windows studied. Other aminoacids whose protonation strongly favors electron-transfer are 

His 35, His 288, and His 378B. Protonation of His 86, His 13B, His 31B, His 64B and Asp 147, in turn, 

tend to disfavor this electron transfer. The presence of a protonated His378B favors the proton-transfer 

from the propionic acid side chain in the substrate to C18, whereas protonation of His35 and His53 

disfavors the proton-transfer from Asp274 to C17 (Figure 6 and Supporting Information). 

The energetic profiles of the proton-transfer-steps computed with the isotropic PCM model (Table 2) ) 

broadly agrees with the profile computed with the ONIOM-based correction to the gas-phase energies of 

infinitely-separated Fe-S cluster and substrate intermediates (Table 5), as proton-transfer from the 

propionic acid side chain to C18 is consistently found to be thermodynamically more favorable than the 

transfer of Asp274 to C17. Large differences are, however, observed in the electron-transfer steps, which 

are predicted by the ONIOM-based approach to be much more favorable (by ca. 115 kcal.mol-1 for the 

first electron moving to the substrate and by 25-30 kcal·mol-1 for the second electron), though their 
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relative magnitudes closely follow the trends predicted by PCM. The exaggerated exergonicity afforded 

by the ONIOM-based computations are surely artifactual, as they would imply extremely high redox 

potentials for the substrate/intermediates: for example, a value of 3.15 V above the standard hydrogen 

electrode is predicted for PChlide, which is higher than the experimental values of the very strong 

oxidants fluorine (2.87 V) and ozone ( 2.07 V). This artifact most likely arises from the neglect of the 

relaxation of the protein upon protonation of its amino acids and of the water shell surrounding, which 

has been shown (Schutz & Warshel, 2001) to require the use of a higher <effective dielectric constant= 

to obtain accurate electrostatic stabilization energies. <True= electrostatic stabilization energies should 

be obtainable by dividing the value computed with ε=1 (as in this work) by this <effective= dielectric 

constant, whose magnitude is site-dependent (Schutz & Warshel, 2001) and not immediately accessible 

from first-principles considerations. Interestingly, the Fe-S cluster (which lies buried inside the protein 

and far from the high-dielectric environment of the water solution) is predicted by the ONIOM-based 

methodology to have a much more reasonable redox potential (0.10 V vs. the standard hydrogen 

electrode) than PChlide, which lies much closer to the protein surface and whose redox potential should 

therefore be much more sensitive to the neglect of water in the computations. Indeed, screening the 

electrostatic stabilization of the Fe-S cluster with ε=1.06 is enough to yield a computed redox potential 

of -0.32 V, in agreement with -0.4V 4 -0.3 V range deduced from the redox potential of the Mg-ATP-

activated Fe-cluster present in the nitrogenase Fe protein (Ryle, Lanzilotta & Seefeldt, 1996) which is 

known to be related to the L-protein that acts as electron-donor to PChOR. 

 

Energetic comparison to the light-dependent reaction 

 

The moderate barriers computed for the reaction mechanism raise an intriguing question: why does the 

light-dependent enzyme require an external driving force, as a quantum of light, to catalyze the 
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reduction of the C17=C18 bond in PChlide by NADPH?  We have therefore compared the energies and 

redox potentials of several reaction intermediates to those of other biochemical redox models (Table 6). 

Direct comparison of the redox potential of NADPH (Table 6, line f) to that of the two-proton, two-

electron conversion of PChlide to Chlide (Table 6, line d) shows that the PChlide reduction to Chlide by 

NADPH should be thermodynamically favored in the ground state. Further analysis of the computed 

redox data shows that hydride transfer from NADPH (Table 6, line f) to PChlide to yield a singly-

protonated, two-electron reduced PChlide (Table 6, line g) is thermodynamically disfavored, which 

entails that the spontaneity of the overall process arises from the addition of the second proton. 

Furthermore, the energetic barrier for the direct hydride transfer in the ground state has previously been 

shown to be very high (>30 kcal.mol-1(Heyes et al., 2009; Silva & Ramos, 2011)), even after accounting 

for quantum tunneling effects(Silva & Ramos, 2011). Ground-state hydride transfer from NADPH to the 

substrate therefore may only occur if it precedes the protonation event. Indeed, hydride transfer from 

NADPH to C18-protonated PChlide (Figure 7) should proceed efficiently with a negligible barrier (1.0 

kcal mol-1) and very high exergonicity (-33 kcal.mol-1), but the actual feasibility of this step depends on 

the relative abundance of the C18-protonated PChlide. Our computations on the dark-dependent PChOR, 

above, showed that the initial protonation of the C17=C18 bond by carboxylic acids (the most acidic 

amino acid side chains present in proteins) is thermodynamically expensive by 20 kcal mol-1, which 

means that the natural abundance of C18-protonated PChlide is very small ( e-20 kcal/mol/RT). The overall 

barrier for the reduction of PChlide to Chlide by NADPH would therefore amount to at least those 20 

kcal mol-1 + the 1.0 kcal.mol-1 barrier for the hydride transfer when the initial PChlide protonation is 

performed by a carboxylic acid (like Asp or Glu) and would be even larger when weaker acids are used 

(like the Tyr or Lys residues actually present in the light-dependent PChOR active site(Wilks & Timko, 

1995)). Reduction of PChlide by NADPH therefore has too large an activation barrier to proceed at 

reasonable rates in the electronic ground state. The experimentally-observed initiation of the reaction 

upon uptake of a 590 nm photon(Griffiths, McHugh & Blankenship, 1996) can be easily computed to 
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correspond to an increase of 1.05 V in the reduction potential of PChlide, which places it above the 

redox potential of NADPH and therefore makes the electron-transfer thermodynamically favorable. 

More exotic pathways for ground-state reduction of PChlide by NADPH may also be excluded from 

consideration: for example, a two-electron transfer from NADPH to PChlide followed by energetically 

favorable H+ transfer is also unfeasible, as the Eº of the NADPH/NADPH2+ pair (Table 6, line a) lies 

even farther above the PChlide substrate. On the other hand, two-electron transfer from a hypothetical 

(deprotonated) NADP- species (Table 6, line h), to PChlide (Table 6, line d), might be very favorable 

but is ruled out by the extreme difficulty of deprotonating NADPH: indeed, the difference of energies 

between NADPH and NADP- in water (337.2 kcal.mol-1) is far higher than computed for even 

moderately weak acids (e.g. the difference between phenol and phenoxide(Silva, 2009) is only 299.2 

kcal.mol-1), which implies an extremely high pKa for the NADPH proton. 

The preceding analysis explains the need for an external energetic event for the reduction of 

protochlorophyllide by NADPH. Incidentally, our comparative analysis also showed that the two-

electron/two-proton reduction of the double bond in PChlide, (Table 6, line d) is approximately as 

favorable as the comparable reduction of the typical C-C double bond found in fumaric acid (Table 6, 

line c), whereas the absence of Mg2+ ion from PChlide disfavors this reduction process (Table 6, line e), 

which may explain why Mg2+ becomes inserted into the porphyrin ring before the reduction of the 

C17=C18 bond. 

 

Conclusions 

 

We have analyzed the proton and electron transfer events in light-independent protochlorophyllide  

oxidoreductase using medium-sized models. The reaction mechanism begins with single-electron 

reduction of the substrate by the (Cys)3Asp-ligated [4Fe-4S] yielding a negatively-charged intermediate 
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which, depending on the rate of Fe-S cluster re-reduction, either receives two protons before the final 

reduction event or receives a proton from the propionic side chain present on ring D, is reduced by a 

second electron and then abstracts a proton from Asp274 in a barrier-less process. The energetic barrier 

of the second alternative lies well below the experimental values, which suggests that the rate-limiting 

step in vivo is most likely to reside in the ATP-dependent re-reduction(Kondo et al., 2011) of the 

(Cys)3Asp-ligated [4Fe-4S] by the L-protein, or in the reduction of the L-protein by cytoplasmic 

electron donors, which we have not attempted to address. Additional consideration of the protein 

environment allowed the confirmation of the broad features of the reaction mechanism, revealed a 

hitherto unsuspected pH-dependence of the reaction potential of the Fe-S cluster and afforded valuable 

insights on the influence of specific amino acids on each reaction step.  

The proposed reaction mechanism is made possible due to the low redox potential of the electron-

donating (Cys)3Asp-ligated 4Fe-4S cluster. In the light-dependent PChOR, this low-potential cluster is 

absent, and NADPH (which has a higher redox potential) is used as the electron donor. All possibilities 

of electron/hydride transfer from NADPH to PChlide were shown by our computations to be highly 

disfavored, clearly showing the  reason behind the requirement for a quantum of light in the NADPH-

dependent protochlorophyllide oxidoreductase, as it provides the energy needed to overcome this 

thermodynamically disfavored process by generating a more easily reducible state (Silva & Ramos, 

2011) of the PChlide substrate. 

 

Supporting Information: Geometries and energies of every molecule described. 
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Figure 1

Overall reaction mechanism

Comparison of the overall reaction mechanisms of light-dependent (central pathway) and 

dark-operative (bottom pathway) protochlorophyllide oxidoreductases. The rings have been 

labeled according to the IUPAC nomenclature.(Moss, 1987)



Figure 2

Scheme 1 -Computation of electron transfer activation energies

Determination of activation energies of electron transfer from a donor (D) to an acceptor (A). 

λ
1
 is the reorganization energy of the A-:D+ complex, de&ned as the energy needed to bring 

the charge-separated complex to the geometry of the neutral complex A:D. λ
2
 is the 

reorganization energy of the neutral A:D complex, de&ned as the energy needed to bring this 

complex to the geometry of the charge-separated complex A-:D+.





Figure 3

Potential energy surfaces of proton and electron transfer events in light-independent 

PChOR

Potential energy surfaces of proton and electron transfer events in light-independent PChOR,

computed at the D3-B3LYP/6-311G(+)(d,p)// B3LYP/6-31G(d) level of theory with ε=10. The 

upper trace represents the potential energy surface (PES) with no added electrons; middle 

trace: PES at the one-electron-reduced state; lower trace: PES at the two-electron-reduced 

state. The energetic distance between the potential energy surfaces computed at di3erent 

reduction states may be converted to redox potentials, as described in the methods section 

and discussed in the text.





Table 1(on next page)

Relative enthalpies (in kcal mol-1) of all intermediates and transition states in the 

reaction mechanism of light-independent protochlorophyllide oxidoreductase.

Energies were computed at the B3LYP-D3/6-311+G(d,p)// B3LYP/6-31G(d) level of theory. 

ZPVE, dispersion and solvation e,ects at several dielectric constants (ε) are included. *) 

Wrong stereochemistry on the protochlorophyllide C17 or C18 atoms. Proton-transfer 

transition states are labeled in the format X•••Y (where X and Y are the atoms/residues 

donating and accepting the proton).



Table 1: Relative enthalpies (in kcal mol-1) of all  intermediates and transition states in the reaction

mechanism of  light-independent  protochlorophyllide oxidoreductase,  computed at  the D3-B3LYP/6-

311+G(d,p)//  B3LYP/6-31G(d)  level  of  theory.  ZPVE,  dispersion  and  solvation  effects  at  several

dielectric constants ( ) are included. *) Wrong stereochemistry on the protochlorophyllide Cε 17 or C18

atoms.  Proton-transfer  transition  states  are  labeled  in  the  format  X•••Y  (where  X  and  Y  are  the

atoms/residues donating and accepting the proton).

Added electrons Proton on… Proton on…  =4ε  =10ε  =20ε  =78.36ε

0 Asp274 propionate 0.0 0.0 0.0 0.0

0 Asp274 Propionate•••C18 24.0 24.7 25.0 25.2

0 Asp274 C18 19.7 19.8 19.9 19.9

0 Asp274•••C17 propionate 31.3 31.4 31.5 31.6

0 C17 propionate 26.3 25.3 25.0 24.7

1 Asp274 propionate -62.2 -67.4 -69.3 -70.7

1 Asp274•••C17 propionate -49.1 -53.8 -55.5 -56.8

1 C17 propionate -64.5 -70.5 -72.6 -74.2

1 Asp274 Propionate•••C18 -53.3 -58.3 -60.0 -61.3

1 Asp274 C18 -68.5 -73.9 -75.9 -77.3

1 Asp274•••C17 C18 -50.2 -55.1 -56.7 -58.0

1 C17 Propionate•••C18 -54.2 -59.7 -61.6 -63.0

1 C17 C18 -68.4 -75.6 -78.1 -79.9

1 C18* propionate -53.9 -59.6 -61.6 -63.1

1 Asp274 C17* -51.9 -58.4 -60.7 -62.5

2 Asp274 propionate -101.5 -121.2 -128.1 -133.4

2 Asp274•••C17 propionate -94.6 -112.7 -119.0 -123.8

2 C17 propionate -123.3 -142.1 -148.6 -153.5

2 Asp274 Propionate•••C18 -98.2 -116.4 -122.8 -127.6

2 Asp274 C18 -119.2 -138.7 -145.5 -150.7

2 C17 Propionate•••C18 -126.8 -145.3 -151.7 -156.6

2 Asp274•••C17 C18 -124.9 -143.7 -150.2 -155.1

2 C17 C18 -160.1 -179.1 -185.6 -190.5

2 C18* propionate -112.5 -130.5 -136.7 -141.4

2 Asp274 C17* -113.4 -132.9 -139.6 -144.8

1





Figure 4

Structures of intermediates with a singly-protonated C
17
=C
18
 bond at the one-electron-

reduced state.

Comparison of the structures bearing a singly-protonated C
17
=C
18 
bond at the one-electron-

reduced state. A) Bond protonated on C
17
 by Asp274 (correct stereochemistry); B) Bond 

protonated on C
17
 by the propionic acid side chain (wrong stereochemistry); C) Bond 

protonated on C
18
 by the propionic acid side chain (correct stereochemistry); D) Bond 

protonated on C
18
 by Asp274 (wrong stereochemistry)





Table 2(on next page)

Relative enthalpies (in kcal mol-1) of intermediates in the reaction mechanism of light-

independent PChOR in the presence of (independently optimized) [4Fe-4S] cluster.

Energies were computed at the B3LYP-D3/6-311(+)G(d,p) – s6-31G* (Fe)– 6-311G(2d,p) 

(non-Fe atoms in the Fe-S cluster)// B3LYP/6-31G(d) level of theory. Solvation e4ects at ε=10

are included. n.d: not determined; n.a: not applicable, since at this stage the substrate cannot

accept another electron



Table 2: Relative enthalpies (in kcal mol-1) of intermediates in the reaction mechanism of light-independent protochlorophyllide oxidoreductase

in the presence of (independently optimized) (Cys)3Asp-ligated [4Fe-4S] cluster.computed at the D3-B3LYP/6-311(+)G(d,p) – s6-31G* (Fe)– 6-

311G(2d,p) (non-Fe atoms in the Fe-S cluster)// B3LYP/6-31G(d) level of theory. Solvation effects at =10 are included. n.d: not determined; n.a:ε

not applicable, since at this stage the substrate cannot accept another electron

Electrons

added to

the

substrate

H+ in H+ in Relative energy

(with reduced

cluster)

Relative energy (with

oxidized cluster)

Fe-S redox

potential (V)

substrate redox

potential (with

reduced

cluster) (V)

substrate redox

potential (with

oxidized cluster) (V)

substrate redox

potential (in the

absence of cluster) (V)

0 Asp274 propionate 0.00 0.00 2.70 2.78 2.81 2.92

0 Asp274 C18 20.34 19.98 2.69 3.90 3.91 4.06

0 C17 propionate 25.36 25.25 2.70 3.95 3.97 4.15

1 Asp274 propionate -64.05 -64.70 2.67 n.d n.d 2.33

1 Asp274 C18 -69.64 -70.17 2.68 2.47 2.49 2.81

1 C17 propionate -65.73 -66.24 2.68 2.83 2.85 3.11

1 C17 C18 -72.20 -72.14 2.70 4.22 4.25 4.49

2 Asp274 C18 -126.58 -127.57 2.66 n.a. n.a. n.a.

2 C17 propionate -131.10 -132.04 2.66 n.a. n.a. n.a.

2 C17 C18 -169.60 -170.10 2.68 n.a. n.a. n.a.

1





Figure 5

Schematic representation of the most-favored computed reaction mechanisms.

Schematic representation of the most-favored computed reaction mechanisms. A) Slow Fe-S 

cluster re-reduction. B) Fast re-reduction of the Fe-S cluster. Red arrows show the electron-

transfer steps. Relevant activation energies (in kcal.mol-1) are shown for each reaction step. 

For simplicity, only the D ring of protochlorophyllide is represented.





Figure 6

In�uence of the Fe-S cluster reduction state on the protonation of neighboring amino 

acids.

Arrangement of Asp147, His53 and His13B around the Fe-S cluster in the substrate-bound 

protein and protonation probabilities of these aminoacids at di$erent pH/electric potential.



Table 3(on next page)

Redox potentials (mV) of the Fe-S cluster proximal to the active site.

Potentials computed from the populations observed in Monte Carlo simulation of 

simultaneous redox/protonation events of the intermediate-bound light-independent 

protochlorophyllide oxidoreductase. Potentials are computed vs. an arbitrary internal 

reference, and therefore only relative changes of potentials (rather than absolute values) 

should be compared to experimental observations (Martel et al., 1999; Teixeira et al., 2002)



Table 3: Redox potentials (mV) of the Fe-S cluster proximal to the active site, computed from the populations observed in Monte Carlo simulation

of  simultaneous  redox/protonation  events  of  the  intermediate-bound  light-independent  protochlorophyllide  oxidoreductase.  Potentials  are

computed vs. an arbitrary internal reference, and therefore only relative changes of potentials (rather than absolute values) should be compared to

experimental observations (Martel et al., 1999; Teixeira et al., 2002) 

pH

Extra electrons in substrate 0 0 0 1 1 1 1 2 2 2 2

H+ on C17 Y Y Y Y Y

H+ on C18 Y Y Y Y Y

No protein included 5.0 -430 -423 -425 -440 -432 -433 -425 -449 -441 -442 -433

7.0 -437 -428 -428 -447 -438 -438 -428 -457 -449 -449 -440

9.0 -437 -429 -428 -448 -439 -438 -428 -459 -449 -450 -439

Protein included

5 -289 -284 -285 -296 -291 -292 -285 -303 -298 -299 -292

7 -398 -390 -394 -405 -399 -401 -393 -414 -408 -410 -402

9 -491 -478 -480 -506 -495 -497 -480 -514 -505 -511 -499

Slope (mV/pH unit) -50.5 -48.5 -48.7 -52.5 -51 -51.2 -48.7 -52.7 -51.7 -53 -51.7



2



Table 4(on next page)

Energetic barrier increases (kcal•mol-1) at pH=7.0 caused by the non-unitary probability 

of !nding Aps274 and the propionic acid in the appropriate protonated states



Table 4: Energetic barrier increases (kcal·mol-1) at pH=7.0 caused by the non-unitary probability of finding Aps274 and the propionic acid in the

appropriate protonated states 

Reactant Asp274

must be …

Propionic  acid

sidechain  must

be…

Probability  of  finding

these  protonation states

Energetic barrier

increase

(kcal·mol-1)

PChlide protonated protonated 1.0×10-5 6.9

one-electron-reduced PChlide protonated protonated 4.1×10-4 4.7

one-electron-reduced, C17-protonated PChlide deprotonate

d

protonated 8.2×10-4 4.2

one-electron-reduced, C18-protonated PChlide protonated deprotonated 4.6×10-3 3.2

one-electron-reduced, C17 and 18-protonated PChlide deprotonate

d

deprotonated 9.95×10-3 0.0

two-electron-reduced PChlide protonated protonated 7.7×10-3 2.9

two-electron-reduced, C17-protonated PChlide deprotonate

d

protonated 1.1×10-2 2.7

two-electron-reduced, C18-protonated PChlide protonated deprotonated 2.6×10-2 2.2

1



Table 5(on next page)

Relative energies (in kcal mol-1) of intermediates in the reaction mechanism of PChOR 

in the presence of (independently optimized) [4Fe-4S] cluster, computed with an 

ONIOM-based methodology.



Table  5:  Relative  energies  (in  kcal  mol-1)  of  intermediates  in  the  reaction  mechanism  of  light-

independent  protochlorophyllide  oxidoreductase  in  the  presence  of  (independently  optimized)

(Cys)3Asp-ligated [4Fe-4S] cluster, computed with an ONIOM-based methodology. 

Electrons added to the substrate H+ in H+ in Relative energy 

0 Asp274 propionate 0.00

0 Asp274 C18 23.5

0 C17 propionate 37.8

1 Asp274 propionate -175.2

1 Asp274 C18 -182.6

1 C17 propionate -166.4

1 C17 C18 -184.06

2 Asp274 propionate -288.9

2 Asp274 C18 -310.3

2 C17 propionate -307.6

2 C17 C18 -355.3

1



Figure 7

Amino acids with strong in�uence on the proton-and electron-transfer reaction energies.

Amino acids which strongly a�ect the reaction energetics of A) the electron-transfer steps or 

B) the proton-transfer steps to C
17
 and C

18
. Favourable interactions are depicted in green, 

unfavourable interactions are shown in red. Amino acids which remain >85 % protonated 

from pH 5 to pH 9 are depicted as ball-and-sticks.





Figure 8

Hydride transfer from NADPH to C
18
-protonated PChlide

The transition state for the hydride transfer from NADPH to C
18
-protonated PChlide. 

Highlighted distances in ångstrom.





Table 6(on next page)

Absolute redox potentials (V) of relevant redox pairs, computed at the DB3LYP-D3/6-

311+G(d,p)// B3LYP/6-31G(d) level of theory.

Solvation e)ects and corrections for pH=7.0 are included. “apoPChlide” and “apoChlide” refer

to PChlide and Chlide devoid of Mg2+. Despite ongoing controversy,(Donald et al., 2008) the 

absolute reaction potential of the standard hydrogen electrode in water is usually taken as 

4.43 V.(Reiss & Heller, 1985)



Table  6:  Absolute  redox  potentials  (V)  of  relevant  redox  pairs,  computed  at  the  D3-B3LYP/6-

311+G(d,p)//  B3LYP/6-31G(d)  level  of  theory.  Solvation  effects  and  corrections  for  pH=7.0  are

included. “apoPChlide” and “apoChlide” refer to PChlide and Chlide devoid of Mg2+. Despite ongoing

controversy,(Donald et al., 2008) the absolute reaction potential of the standard hydrogen electrode in

water is usually taken as 4.43 V.(Reiss & Heller, 1985)

Redox half-reaction  =4ε  =10ε  =20ε  =78.36ε

a) NADPH2+ + 2 e-  NADPH→ 5.61 5.05 4.87 4.73

b) C18-Protonated PChlide + 2 e- + 1 H+  Chlide→ 5.36 5.29 5.27 5.25

c) Fumaric acid + 2 e- + 2 H+  succinic acid→ 4.97 4.98 4.98 4.98

d) PChlide + 2 e- + 2 H+  Chlide→ 4.93 4.94 4.94 4.94

e) apoPChlide + 2 e- + 2 H+  apoChlide → 4.53 4.53 4.53 4.53

f) NADP+ + 2 e- + 1 H+  NADPH→ 4.57 4.42 4.37 4.33

g) PChlide + 2 e- + 1 H+  deprotonated Chlide→ 3.60 3.72 3.76 3.79

h) NADP+ + 2 e-  NADP→
- 3.02 3.01 3.00 3.00

1


