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The fishery for octopus in Northwest Mexico has increased to over 2,000 tons annually, but

to date the specific composition of the catch has been ignored. With at least three main

species with varying life histories targeted by artisanal fisheries in the region, lack of

information about the distribution of each species and metapopulation size and structure

could impede effective fisheries management to avoid overexploitation. Here we tested if

different life histories in three species of octopus help to predict observed patterns of

genetic diversity, population dynamics, structure and connectivity that could be relevant

to the sustainable management of the fishery. We sequenced two mitochondrial genes and

genotyped seven nuclear microsatellite loci to identify the distribution of each species in

20 locations from the Gulf of California and the Pacific coast of the Baja California

peninsula. We tested four a priori hypothesis derived from population genetic theory based

on differences in the fecundity and dispersal potential for each species. We found that the

species with low fecundity and without a planktonic larval stage (Octopus bimaculoides)

had lower average effective population size and genetic diversity, but higher levels of

kinship, population structure, and richness of private alleles, suggesting limited dispersal

and high local recruitment. In contrast, two species with higher fecundity and planktonic

larvae (O. bimaculatus, O. hubbsorum) showed higher effective population size and

genetic diversity, and overall lower kinship and population structure, supporting higher

levels of gene flow over a larger geographical scale. Even among the latter, there were

differences in the calculated parameters possibly associated with increased connectivity in

the species with the longest planktonic larval duration (O. bimaculatus). We consider that

O. bimaculatus could be more susceptible to over exploitation of small, isolated
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populations that could have longer recovery times, and suggest that management should

take place within each local population. For the two species with pelagic larvae,

management should consider metapopulation structure over larger geographic scales and

the directionality and magnitude of larval dispersal between localities driven by ocean

currents. The distribution of each species and variations in their reproductive timing should

also be considered when establishing marine reserves or seasonal fishing closures.
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21 ABSTRACT

22 The fishery for octopus in Northwest Mexico has increased to over 2,000 tons annually, but to 

23 date the specific composition of the catch has been ignored. With at least three main species with 

24 varying life histories targeted by artisanal fisheries in the region, lack of information about the 

25 distribution of each species and metapopulation size and structure could impede effective 

26 fisheries management to avoid overexploitation. Here we tested if different life histories in three 

27 species of octopus help to predict observed patterns of genetic diversity, population dynamics, 

28 structure and connectivity that could be relevant to the sustainable management of the fishery. 

29 We sequenced two mitochondrial genes and genotyped seven nuclear microsatellite loci to 

30 identify the distribution of each species in 20 locations from the Gulf of California and the 

31 Pacific coast of the Baja California peninsula. We tested four a priori hypothesis derived from 

32 population genetic theory based on differences in the fecundity and dispersal potential for each 

33 species. We found that the species with low fecundity and without a planktonic larval stage 

34 (Octopus bimaculoides) had lower average effective population size and genetic diversity, but 

35 higher levels of kinship, population structure, and richness of private alleles, suggesting limited 

36 dispersal and high local recruitment. In contrast, two species with higher fecundity and 

37 planktonic larvae (O. bimaculatus, O. hubbsorum) showed higher effective population size and 

38 genetic diversity, and overall lower kinship and population structure, supporting higher levels of 

39 gene flow over a larger geographical scale. Even among the latter, there were differences in the 

40 calculated parameters possibly associated with increased connectivity in the species with the 

41 longest planktonic larval duration (O. bimaculatus). We consider that O. bimaculatus could be 

42 more susceptible to over exploitation of small, isolated populations that could have longer 

43 recovery times, and suggest that management should take place within each local population. For 
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44 the two species with pelagic larvae, management should consider metapopulation structure over 

45 larger geographic scales and the directionality and magnitude of larval dispersal between 

46 localities driven by ocean currents. The distribution of each species and variations in their 

47 reproductive timing should also be considered when establishing marine reserves or seasonal 

48 fishing closures. 

49

50 KEYWORDS: octopus, fecundity, planktonic larval duration, larval dispersal, marine 
51 connectivity, Gulf of California
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52 INTRODUCTION

53 As fish catches are collapsing around the world, the focus of commercial fisheries has 

54 shifted to resources within lower trophic levels, but with similar or upper economic impact 

55 (Watson & Pauly 2001; Pauly et al. 2002; Sala et al. 2004). Some of the marine resources among 

56 lower trophic levels capable to support the substantial expansion of fisheries landings include 

57 cephalopods (Arkhipkin et al. 2015; Doubleday et al. 2016), for which fishing pressure is 

58 expected to increment as a response to growing demands of marine resources (Hunsicker et al. 

59 2010). Cephalopods represent about 20% of the fisheries landing of the world, mainly 

60 represented by squids (FAO 2015). The octopus fisheries targeted by small-scale fisheries have 

61 incremented considerably since 1970 to date (from ~3,000 ton/year up to ~60,000 ton/year) and 

62 its value in the market is sometimes higher than squids (FAO 2015). From 2003 to 2013 most of 

63 the production has originated in Mexico (36%), Spain (17%), Portugal (15%), Italia (12%) and 

64 others (20%) (FAO 2015). In contrast to most countries where Octopus vulgaris is the main 

65 species targeted, in Mexico O. maya Voss and Solís-Ramírez, 1966 is the most important species 

66 along the Atlantic coast (NOM-008-PESC-1993; Jurado-Molina 2010). 

67 In the Mexican pacific, there have been described at least 10 different Octopus species, 

68 including Octopus bimaculatus Verrill 1883, Octopus chierchiae Jatta 1889, Octopus digueti 

69 Perrier and Rocheburne 1894, Octopus bimaculoides Pickford and McConnaughey 1949, and 

70 Berry9s (1953) octopuses: Octopus alecto, Octopus fitchi, Octopus hubbsorum, Octopus veligero, 

71 Octopus rubescens y Octopus penicillifer (Brusca 1980; Hochberg & Fields 1980; Roper et al. 

72 1995; Gotshall 1998; Norman & Hochberg 2005). Recent studies indicate that probably three 

73 species contribute to the majority of the catch in the Pacific coast of Mexico, namely O. 

74 hubbsorum (López-Uriarte et al. 2005, Alejo-Plata et al. 2009, Domínguez-Contreras et al. 
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75 2013), O. bimaculatus (López-Rocha et al. 2012, Villegas et al. 2014) and O. bimaculoides 

76 (González-Meléndez 2012). In Northwest (NW) Mexico, the octopus fishery represents an 

77 important resource for small-scale fishers both in terms of local consumption and markets 

78 (Moreno-Báez et al. 2012; Finkbeiner 2015; Finkbeiner & Basurto 2015). However, it is unclear 

79 which species contribute to the catch in different localities, and even official fisheries statistics 

80 do not attempt to distinguish different species. During 2014, official reports indicate NW Mexico 

81 produced at least ~2,000 ton of octopus worth ~ 6 million Mexican pesos (~350,000 USD) 

82 (CONAPESCA 2014). Most of the capture for octopus in NW Mexico takes place in the Gulf of 

83 California year-round via hooka diving with an air compressor or using traps, and it has been 

84 suggested that the fishery might be targeting at least two different species (O. bimaculatus and 

85 O. hubbsorum) (Moreno-Báez et al. 2012). The lack of identification of octopus species in 

86 fisheries reports is due their dynamic behavior and ability to change color, pattern, texture and 

87 shape (Boyle & vonBoletzky 1996). Besides, their anatomy includes few hard structures that 

88 difficult their identification to the species level, especially in octopods (Hanlon 1988).

89 Ignoring which species are being fished and their geographic distribution could have 

90 serious detrimental consequences in the long term not only for local fisheries management but 

91 for the conservation of species (Garcia-Vazquez et al. 2012), including over or sub exploiting 

92 particular species in certain areas (Marko et al. 2004). The problem of not identifying different 

93 species could be particularly serious if they show contrasting life histories and population 

94 dynamics that may translate into distinct levels of maximum sustainable yield (MSY) and 

95 recovery times, requiring distinct management tools during different seasons and geographic 

96 scales. In NW Mexico, Octopus bimaculatus could potentially be sympatric with O. 

97 bimaculoides in the NW of the Baja California Peninsula (BCP), while O. bimaculatus could 
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98 potentially overlap with O. hubbsorum within the Gulf of California (Table 1). The reproductive 

99 season is different for each species, and the three species differ in their fecundity, egg size and 

100 planktonic larval duration (PLD) (Table 1). Octopus bimaculoides lays hundreds of large eggs 

101 and lacks a paralarval stage and planktonic larval dispersal. Octopus hubbsorum lays thousands 

102 of smaller-sized eggs and a PLD probably similar to Octopus vulgaris based on the size of its 

103 eggs (~60 days, Iglesias et al. 2007). Octopus bimaculatus lays thousands of medium-sized eggs 

104 and shows a longer PLD (up to 90 days) (Table 1). All three species have similar short life spans 

105 between 1.5 and 2 years and size at sexual maturity is smaller for males than females (Table 1). 

106 Our main hypothesis is that differences in the life history among three species of octopus 

107 from Northwestern Mexico could translate into distinct patterns of genetic diversity, population 

108 dynamics, structure and connectivity that could be relevant for sustainable fisheries management. 

109 To infer differences in population parameters and evolutionary processes that are important 

110 within species, we used two mitochondrial markers and seven nuclear microsatellite loci 

111 informative for the three species. We first established the geographic distribution of each species 

112 through genetic identification of tissue samples collected over the study region. We then tested 

113 four a priori hypotheses within each species derived from theoretical and empirical population 

114 genetic studies regarding expected effective population size, genetic diversity, genetic 

115 relatedness within populations (kinship) and population structure, based on the fecundity and 

116 potential for larval dispersal of each species reported in the scientific literature (Table 1). We 

117 discuss the implications of our results for the fisheries management of the three species. 

118 MATERIALS & METHODS

119 Sample collection and DNA extraction
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120 We obtained 316 samples of octopus (arm tissue) from 20 localities in both coasts of 

121 BCP, including the Gulf of California (Fig.1) and collected between 2008 and 2013. The 

122 sampling took place at fishing communities with help of small-scale fishers. Samples were 

123 collected at seven localities along the Eastern coast of BCP, (Ejido Erendira close to Ensenada B. 

124 C. down to El Conejo in Baja California Sur) and 13 sites from the central (Santa Rosalía) and 

125 northern Gulf of California (from the northern tip of Bahía de Los Angeles and Isla Tiburón up 

126 to Puerto Peñasco), including the Midriff islands. The Midriff islands include many islands and 

127 islets in the northern Gulf of California (Fig. 1). Some of these are very remote and access is 

128 difficult, which is reflected in smaller samples sizes, while others localities with low number of 

129 samples reflect the difficult of catch octopuses outside their reproductive season. We identified 

130 only three organisms based on morphology (one of each species). We distinguished between O. 

131 bimaculatus and O. bimaculoides using mature females from which distinctive characteristics of 

132 the gonads of each species have been described (Pickford & MacConnaughey 1949). For O. 

133 hubbsorum we followed morphological traits described previously by Domínguez-Contreras et 

134 al. (2013) and original descriptions of Berry (1953). Tissue samples were stored in 96% ethanol 

135 and in the lab they were preserved at -20 °C. We extracted DNA using the DNeasy blood and 

136 tissue kit (QIAGEN, Valencia, CA, U. S. A) following the manufacturer specifications. 

137

138 Mitochondrial DNA sequencing 

139 For a subset of the samples (97 individuals from 13 localities, including 8 samples from 

140 each locality except from Puerto Refugio where only one sample was analyzed), we amplified 

141 two fragments of the mitochondrial genome: the large ribosomal subunit rDNA (16S) employing 
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142 primers L1987 59-GCCTCGCCTGTTTACCAAAAAC-39 and H2609 59-

143 CGGTCTGAACTCAGATCACGT-39 (Palumbi et al. 1991) and the Cytochrome Oxidase 

144 subunit 1 (COI) with primers LCO 1490 59-GGTCAAACAAATCATAAAGATATTGG-39 and 

145 HCO2198 59-TAAAATTCAGGGTGACCAAAAAATCA-39 (Folmer et al. 1994), For both 

146 markers, we used 25µL volume PCRs with 15 - 40 ng genomic DNA, 1× PCR buffer, 0.2 mM 

147 each dNTP, 2 mM MgCl2, 0.2% BSA, 1 U Taq DNA polymerase (Invitrogen) and 0.5 µM of 

148 each primer. PCR protocol consisted of denaturation at 94 °C for 2 min, 30 cycles of 94 °C for 

149 1min, annealing at 51 °C (COI) or 45.5 °C (16s rDNA) for 1 min, and extension at 72 °C for 2 

150 min, followed by a final extension of 72 °C for 7 min. PCR products were purified using 

151 ExoSAP (Affimetrix, INC). PCR products were sequenced from both strands on an Applied 

152 Biosystems 3730XL DNA Analyzer at the University of Arizona Genetics Core (UAGC). 

153 Genotyping of microsatellites markers

154 We employed seven unlinked microsatellites (Ocbi25, Ocbi35, Ocbi39, Ocbi41, Ocbi47, 

155 Ocbi48, and Ocbi50) that were shared and proved informative among the three octopus species 

156 (Domínguez-Contreras et al. 2014). We genotyped the 316 samples following PCR methods 

157 previously described (Domínguez-Contreras et al. 2014). PCR products were sized on an 

158 Applied Biosystems 3730XL DNA Analyzer at the UAGC. Microsatellite electropherograms 

159 were scored using GeneMarker Version 2.6.0 (SoftGenetics LLC). Allele sizes were assigned 

160 bins using FLEXIBIN (Amos et al. 2007). Deviations from Hardy-Weinberg equilibrium (HWE) 

161 were estimated using GENEPOP 4.2 (Raymond & Rousset 1995). We used MICROCHECKER 

162 2.2.3 to test for genotyping errors and presence of null alleles (Van Oosterhout et al. 2004).

163 Species assignment
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164 We used the mitochondrial sequences and microsatellite genotypes to assign individuals 

165 to species using phylogenetic analyses of sequence data and Bayesian assignment analyses of 

166 microsatellite genotypes, respectively. The 16S rDNA and COI sequences were corrected by eye 

167 using Chromas Pro Version 1.6 and aligned using MUSCLE multiple alignment tools 

168 implemented in Mega6 (Tamura et al. 2013). We used JmodelTest 2 (Guindon & Gascuel 2003; 

169 Darriba et al. 2012) to select the best fit model of nucleotide substitution for phylogenetic 

170 analysis, according to Akaike and Bayesian information criteria. We applied the Jukes-Cantor 

171 (JC) model with 1,000 bootstraps to estimate genetic distances and constructed a Neighbor-

172 joining (NJ) tree using 10,000 bootstraps replications in MEGA (Tamura et al. 2013). 

173 We ran STRUCTURE version 2.3.4 (Pritchard et al. 2000) with the microsatellite 

174 genotypes using admixture and without prior location information, with allele frequencies 

175 correlated among populations. We used a length of the burning period of 1×106, a number of 

176 MCMC repeats after burning of 2×106, with 10 iterations for each number of genetic clusters 

177 (K), and K assumed to vary between 1 and 20. To determine the optimal number of K, we 

178 selected the number of cluster by looking at the highest likelihood values (mean of 10 iterations) 

179 as well as the highest &K value implemented in the online software CLUMPAK (Kopelman et al. 

180 2015). We used both values because some evidence has suggested the likelihood method is not 

181 always accurate (Evanno et al. 2005). The value of &K is based on the rate of change in the log 

182 probability of data between successive K values, which provides a better estimate of the number 

183 of genetic clusters (Evanno et al. 2005). 

184

185 Genetic diversity and effective population size within species
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186 According to the neutral theory of molecular evolution (Kimura 1983), in a population of 

187 constant size genetic diversity should be proportional to the effective size of the population (Ne, 

188 or the size of an idealized population that would show the same amount of genetic diversity as a 

189 population of interest). This is because in an idealized, panmictic population the strength on the 

190 loss of neutral alleles via genetic drift is inversely proportional to the population size 

191 (Charlesworth 2009). Based on recent comparative studies, we expect that highly fecund species 

192 that release high numbers of small eggs into the environment (O. bimaculatus and O. 

193 hubbsorum) will show higher diversity and effective population size than low-fecundity species 

194 that produce a small number of relatively large offspring (O. bimaculoides) (Table1) (Romiguier 

195 et al. 2014; Ellegren & Galtier 2016). To evaluate genetic diversity from the microsatellite data, 

196 we calculated the number of alleles (NA), effective number of alleles (NE, which takes into 

197 account different sample sizes among localities), expected heterozygosity (HE) and observed 

198 heterozygosity (HO) with GENALEX 6.501 (Peakall & Smouse 2012). Allelic richness (RA) was 

199 estimated using HP-Rare to correct for differences in sample size among localities (Kalinowski 

200 2005).

201 Private alleles, or alleles that are unique to one population, are expected to be more frequent in 

202 genetically isolated populations, while their frequency should be reduced in well connected sites 

203 (Beger et al. 2014; Munguía-Vega et al. 2015). If we extend this process to populations within 

204 each species, then populations of species with narrow opportunities for dispersal (direct 

205 developer, O. bimaculoides) should show higher frequency of private alleles than species with a 

206 pelagic larval stage (Table 1). Private allelic richness (RPA) was estimated using HP-Rare to 

207 correct for different sample sizes. We estimated a global contemporary effective size (Ne) for 

208 each species via the linkage disequilibrium method with a bias correction and a lower allele 
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209 frequency of 0.05 and 0.02, and with the molecular coancestry method as implemented in the 

210 software NE-ESTIMATOR V2 (Do et al. 2014).

211

212 Genetic structure within species

213 Species with a long PLD are expected to disperse further than species with short or absent 

214 PLD (e.g. direct developers) (Shanks 2009). Consequently, the species with direct development 

215 (PLD = 0, O. bimaculoides) should show higher genetic structure (e.g. global FST) (Riginos & 

216 Liggins 2013), than species with short PLD (O. hubbsorum) and particularly compared to species 

217 with long PLD (O. bimaculatus) (Table 1) (Selkoe & Toonen 2011; Selkoe et al. 2014). To 

218 estimate genetic structure, we conducted a hierarchical analysis of molecular of variance 

219 (AMOVA) using 999 permutations in GENALEX 6.501(Peakall & Smouse 2012) to estimate the 

220 genetic differences observed within and between populations. Both pairwise FST and F9ST values 

221 were calculated using the software GENODIVE 2.0b24 (Meirmans & Van Tienderen 2004) as 

222 recommended to account for loci with high polymorphism such as microsatellites (Meirmans & 

223 Hedrick 2011). Additionally, we used FreeNA to measure the effect of null alleles on FST 

224 estimates of population structure, taking into account the frequency of null alleles estimated with 

225 the expectation maximization method (EM) (Chapuis & Estoup 2007). 

226

227 Genetic relatedness within populations of each species

228 The magnitude of local larval retention, or the proportion of larvae produced within a site 

229 that remain in that site, is expected to increase the degree of genetic relatedness within 

230 populations (Christie et al. 2010; Burgess et al. 2014). We expect that species with direct 
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231 development (PLD = 0, O. bimaculoides) should have a higher probability for individuals to 

232 remain near their natal site, and thus to show higher levels of genetic relatedness or kinship 

233 within populations than the other two species with a dispersive pelagic larval stage (Table 1). 

234 Since local retention is expected to decrease with increasing PLD (Byers & Pringle 2006), we 

235 expect that genetic relatedness within populations will be lower in the species with the longest 

236 PLD (O. bimaculatus). We calculated pairwise relatedness to describe the number of alleles 

237 shared between pairs of individuals using Queller & Goodnight (1989) relatedness metric and 

238 then calculated the average within each population as implemented in GenAlex 6.2 (Peakall & 

239 Smouse 2012). Statistical significance was assessed by 9,999 permutations and 10,000 bootstraps 

240 to estimate 95% confidence intervals around the hypothesis of random mating.

241

242 RESULTS 

243 Species assignment

244 A total of 1054 bp were sequenced for each individual sample, including 473 bp from the 

245 16S rDNA gene and 581 bp from the COI gene (GenBank Accession number KY985098 3 

246 KY985194 for 16S, and KY985005 3 KY985097 for COI). The optimum model of substitution 

247 according to the Akaike and Bayesian criteria was JC for both 16S rDNA and COI. The resulting 

248 NJ trees showed the monophyletic status of the three species O. bimaculatus, O. bimaculoides 

249 and O. hubbsorum according to the topology of both 16S rDNA and COI trees (Fig 2 A). O. 

250 bimaculoides was present in locations from the Pacific coast of BCP (Ejido Erendira, San 

251 Quintin, and Bahía Magdalena), but absent in the Gulf of California. O. bimaculatus was present 

252 at only one locality from the Pacific coast of the BCP (Malarrimo) and in samples from the 

253 Northern Gulf of California including Puerto Peñasco, Puerto Refugio, Puerto Lobos, San Luis 
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254 Gonzaga, Bahía de los Ángeles and only one individual from Puerto Libertad for 16S rDNA, (no 

255 data was obtained for the COI sequence of this individual). O. hubbsorum was present in some 

256 localities from the Northern Gulf of California (Puerto Libertad, Isla San Lorenzo, and Bahía 

257 Kino) and also in the Central Gulf of California (Santa Rosalía) (Fig 2 A). Nucleotide divergence 

258 between the three species ranged from 3.3 3 7.1% for the 16S rDNA gene and from 6.3 3 10.4% 

259 for the COI gene (Table 2). Octopus bimaculoides showed less divergence with O. bimaculatus 

260 (3.3% and 6.3%, respectively) than with O. hubbsorum (6.3% and 10.0%, respectively), while 

261 the largest divergence was observed between O. bimaculatus and O. hubbsorum (7.1% and 

262 10.4%, respectively).

263 We genotyped seven microsatellite loci in 316 samples from 20 localities and observed 

264 an average frequency of missing data of 3.75% (range 1.26 3 7.27) by locus, and 3.84% (range 0 

265 3 28.5) by sample. Hardy-Weinberg tests suggested significant deviations at only 7 out of 140 

266 unique loci/locality combinations tested without any clear pattern observed within localities or 

267 species (after Bonferroni correction P = 0.00036). Only Ocbi39, Ocbi41 and Ocbi50 were 

268 significant deviated in 1, 2 and 4 localities from the 20 tested, respectively (P = 0.00036). Two 

269 loci were monomorphic (Ocbi41 and Ocbi50) in 1 and 6 localities, respectively (Table S1). 

270 Except for two loci (Ocbi35 and Ocbi41), all other loci showed null alleles in at least one 

271 locality, with Ocbi39 showing null alleles in 8 localities. The average frequency of null alleles 

272 among loci varied from 0.000 3 0.108 for O. bimaculatus 0.025, for O. bimaculoides 0.026, and 

273 for O. hubbsorum 0.041, according to EM method (Table S2). 

274 The STRUCTURE analysis showed a modal frequency that supported the presence of at 

275 least two clusters or species (&K = 2, Fig. S1A) according to the &K method (Evanno et al. 

276 2005). However the highest mean value of the ln probability of data for K = 2 (average ln [K] = -
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277 8362.29, Fig. S1B) was very close to K = 3 (average ln [K] = -8086.16, Fig. S1B) in 10/10 

278 repetitions, and in both cases the matrix of similarity scores produced by Clumpak between runs 

279 aligned were identical 0.999 (Fig. S1C). The STRUCTURE bar plots (Fig 2 B) showed that K = 

280 3 clearly distinguished the three clusters or species previously identified in the phylogenetic 

281 analyses of the mitochondrial markers and corresponding to O. bimaculoides, O. bimaculatus 

282 and O. hubbsorum among the 20 localities from NW Mexico (Fig 2 B). All localities assigned to 

283 each species using 16S rDNA and COI sequences (Fig. 2 A) were correctly assigned using 

284 microsatellites (Fig. 2 B). Based on the STRUCTURE analysis, O. bimaculoides is only present 

285 in the Pacific coast of BCP, while O. bimaculatus and O. hubbsorum are present on both the 

286 Pacific coast of BCP and in the Gulf of California. On the Pacific coast of BCP, O. bimaculoides 

287 is present in Ejido Erendira, San Quintin and Bahía Magdalena; O. bimaculatus in La Bocana, 

288 Las Barrancas and Malarrimo, and O. hubbsorum in El Conejo. In the Gulf of California, O. 

289 bimaculatus is present in Puerto Peñasco, San Luis Gonzaga, Isla Smith, Bahía de Los Angeles 

290 and Puerto Lobos, while O. hubbsorum is present in Puerto Libertad, Isla San Lorenzo, Isla 

291 Tiburon, Bahía Kino and Santa Rosalía (Fig. 2 C). In some localities like Las Barrancas in the 

292 Pacific coast of BCP and Puerto Peñasco, Puerto Refugio and Isla Tiburón in the Northern Gulf 

293 of California STRUCTURE suggested the presence of individuals from both O. bimaculatus and 

294 O. hubbsorum (Fig. 2 B, C).

295

296 Genetic diversity and effective population size within species

297 The seven loci were polymorphic for the three species (Table 3). Results generally 

298 supported our prediction about higher allelic diversity and effective size in highly fecund species 

299 with small eggs (O. bimaculatus and O. hubbsorum) than in species that are less fecund and have 
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300 larger eggs (O. bimaculoides). We observed lower average levels of allelic diversity in O. 

301 bimaculoides (NE = 3.67 ± 0.47, RA = 4.56 ± 0.45) than in O. bimaculatus (NE = 5.93 ± 0.28, RA 

302 = 5.05 ± 0.05), while results for O. hubbsorum were mixed and showed intermediate values for 

303 one metric (NE = 4.75 ± 0.45), and similar values to O. bimaculoides in the other (RA = 4.47 ± 

304 0.28). 

305 We observed that the species with direct development (O. bimaculoides) had the largest 

306 average frequency of private alleles (PAR = 1.71 ± 0.43), compared to the species with a pelagic 

307 larval stage (Table 3). The lowest values were observed in O. bimaculatus (PAR = 0.28 ± 0.05), 

308 while O. hubbsorum again showed intermediate values (PAR = 0.49 ± 0.20).

309 The highest contemporary effective population size Ne was calculated for Octopus 

310 bimaculatus using both linkage disequilibrium and molecular ancestry methods (average LDNE 

311 = 261 3 265, MC = 28), followed by O. hubbsorum (LDNE = 88 3 125, MC = 23). Octopus 

312 bimaculoides had the lowest effective size according to the two methods (LDNE = 5 3 10, MC = 

313 11) (Table 4).

314 Genetic structure within species

315 After pooling sampling locations according to the results of the species assignment (Fig 

316 1), we found that the AMOVA results for the microsatellite data supported the prediction that 

317 species with direct development (O. bimaculoides) show higher levels of genetic structure (FST = 

318 0.19, P = 0.000), compared to species with pelagic larvae (Table 5). Also, we observed that the 

319 species with the longest PLD had overall lower genetic structure (O. bimaculatus, FST = 0.09, P 

320 = 0.000) compared to the species with shorter PLD (O. hubbsorum, FST = 0.15, P = 0.000).
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321 The frequency of null alleles can affect the estimates of genetic differentiation, reducing 

322 the genetic diversity and overestimating the FST values (Chapuis & Estoup 2007). In the present 

323 study, the values of genetic differentiation with (Null FST) and without (FST) null alleles 

324 estimated with FREENA were very similar within each species: O. bimaculoides (Null FST = 

325 0.020 and FST = 0.020), O. bimaculatus (Null FST = 0.091 and FST = 0.089) and O. hubbsorum 

326 (Null FST = 0.170 and FST = 0.163) (Table S3).

327 O. bimaculoides showed both higher and significant genetic differentiation between all 

328 population pairs (range of FST = 0.174 3 0.232; F9ST = 0.481 3 0.653, Table S4), with respect to 

329 O. hubbsorum that showed only 60.7% of paired values that were moderated and significant (FST 

330 = 0.086 3 0.258; F9ST = 0.216 3 0.751, Table S5), and O. bimaculatus with 69.5% of paired 

331 values that were significant and showed the lowest genetic differentiation (FST = 0.007 3 0.144; 

332 F9ST = -0.165 3 0.668, Table S6). We observed both high and low values of genetic 

333 differentiation between localities from the Pacific coasts of BCP when compared to the Gulf of 

334 California for O. hubbsorum and O. bimaculatus, Tables S5, S6).

335 Genetic relatedness within populations of each species

336 The three species showed average levels of relatedness that were significantly greater 

337 than expectations based on random mating (all values p = 0.000, Fig. 3). We found that the direct 

338 developer (O. bimaculoides) had the highest average level of relatedness within populations (R = 

339 0.244), followed by the species with the intermediate PLD (O. hubbsorum, R = 0.104), while the 

340 species with the longest PLD had the lowest levels (O. bimaculatus, R = 0.016).

341

342 DISCUSSION
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343 Our study employed both slow evolving haploid markers (mitochondrial DNA) and fast-

344 evolving and hypervariable nuclear markers (microsatellites) to establish the geographic 

345 distribution of three species of octopus among fishing localities from NW Mexico and 

346 corroborated that differences in the fecundity and potential for larval dispersal (or lack thereof) 

347 affect the levels of genetic diversity and structure found within each species. 

348 A minimum of 3% genetic divergence in the COI gene is considered a threshold to 

349 differentiate different octopus species (Hebert et al. 2003). Our results showed a higher 

350 divergence among the three species (6% 3 10%), suggesting they are reproductively isolated 

351 taxa. We observed a smaller nucleotide divergence between O. bimaculoides and O. bimaculatus 

352 probably due to their more recent origin from a common ancestor (Hebert et al. 2003). The three 

353 taxa studied are the most relevant species for small-scale fisheries from NW Mexico and our 

354 results showed that, although their ranges sometimes overlap, most of the surveyed localities had 

355 evidence for the presence of a single species, which seem to occur in different habitats. Octopus 

356 bimaculoides prefers habitats with low wave energy as enclosed bays and coastal lagoons, 

357 although it can also inhabit at 20 m depth over rocks and kelps forests (Forsythe & Hanlon 1988; 

358 Sinn 2008). In the Pacific coast of the BCP exist at least 16 coastal lagoons located between 

359 Ensenada BC and Bahía Magdalena BCS (Lankford 1977), which probably have been colonized 

360 by stepping-stone events during rafting behavior (Gillespie et al. 2012). Rafting has been 

361 documented for O. bimaculoides and O. bimaculatus on floating objects including macroalgae 

362 (Thiel & Gutow 2005) and besides larval dispersal could help explain colonization events and 

363 range expansions. Our study expanded the distribution of the three species in the Pacific coast of 

364 BCP with regard to published records: ~800 km to the south for O. bimaculoides, ~400 km to the 

365 south for O. bimaculatus and ~150 km to the north for O. hubbsorum. In the Gulf of California, 
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366 Octopus bimaculatus was restricted to the northern Gulf of California where its distribution 

367 might be influenced by the geographic extent of a cyclonic (anti-clockwise) oceanographic gyre 

368 that transports larvae during its spawning period in summer (Castellanos-Martínez 2008; 

369 Marinone et al. 2008; Munguía-Vega et al. 2014). O. bimaculatus seems to show the pattern of 

370 disjunct distribution reported for several temperate species of fishes that are present in the Pacific 

371 coast of BCP, disappear in the Southern Gulf of California and reappear in the Northern Gulf of 

372 California (Bernadi et al. 2003). The distribution of O. hubbsorum was redefined to include the 

373 south of the Midriff Island region in the Gulf of California (López-Uriarte et al. 2005; Moreno-

374 Báez et al. 2012). 

375 The three species were sympatric in the Pacific coast of the BCP around the Bahia 

376 Magdalena region, while in the Gulf of California only O. bimaculatus and O. hubbsorum were 

377 sympatric around Midriff Island region. Both regions have been considered transition zones 

378 between template and tropical species (Briggs 1974; Brusca 2010; Briggs & Bowen 2012). In 

379 this sense, it is possible that O. bimaculatus and O. hubbsorum could be sharing the same 

380 shelters around the Midriff Islands region in different season along the year, with O. bimaculatus 

381 being more frequent during the cold-temperate seasons, while O. hubbsorum prefers warm-

382 tropical water conditions. A pattern of alternate presence of the two species through the year 

383 could explain why the octopus fishery is carried out yearlong in the Northern Gulf of California 

384 (Moreno-Báez et al. 2012). Thus, at some localities in the Northern Gulf of California both 

385 species could be the main target of the fishery according to the time of the year, and at least in 

386 some localities where samples in our study were assigned to O. bimaculatus (e.g. Puerto Lobos) 

387 there have been recent field observations were only O. hubbsorum individuals were recorded 

388 (unpublish data J. F. D. C and A. M. V.), highlighting the need of a temporal sampling during 
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389 different seasons to complement our understanding of the species being captured and their 

390 seasons, particularly near geographic transition zones. 

391 The life history parameters differing among species played an important role on levels of 

392 genetic diversity and structure within species, suggesting that significant differences in 

393 population dynamics and connectivity are present. The direct developer O. bimaculoides had the 

394 lower levels of effective population size and genetic diversity and showed higher levels of 

395 relatedness within populations, more structure among populations and a higher proportion of 

396 private alleles, compared to the two species with a planktonic larval stage. These observations 

397 suggest that populations of O. bimaculoides are comparatively smaller and structured at a local 

398 geographic scale, and are likely highly dependent upon local recruitment. In contrast, O. 

399 hubbsorum and O. bimaculatus have higher fecundity and a planktonic life phase that increase 

400 their dispersal potential and the opportunities for gene flow among populations (Villanueva et al. 

401 2016), which is consistent with our hypotheses regarding a larger effective population size 

402 associated to higher levels of genetic diversity and lower levels of genetic relatedness within 

403 populations, less genetic structure among populations and fewer private alleles. These results 

404 suggest that O. hubbsorum and O. bimaculatus might depend less on local larval retention and 

405 more on larval dispersal among populations. However, O. bimaculatus had lower levels of 

406 genetic differentiation between populations, and lower frequency of private alleles and genetic 

407 relatedness within populations compared to O. hubbsorum. In addition, genetic diversity and 

408 effective population size for O. hubbsorum were lower compared to O. bimaculatus. Although 

409 no studies exist about the PLD of O. hubbsorum, our results are consistent with a shorter PLD 

410 and less potential for dispersal compared to O. bimaculatus. This is also in line with a recent 

411 study suggesting that for species with a planktonic stage, the duration of the planktonic phase 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3016v2 | CC BY 4.0 Open Access | rec: 12 Jun 2017, publ: 12 Jun 2017



412 increases with hatchling size (O. hubbsorum = 1.2 mm ML O. bimaculatus = 2.6 mm ML 

413 (Ambrose 1981; Alejo-Plata & Herrero-Alejo 2014; Villanueva et al. 2016). 

414 An inability to properly identify biological species hampers any effort towards their 

415 management and conservation (Bickford et al. 2007). The distinct geographic and habitat 

416 distributions along with contrasting life history traits are expected to have strong direct effects 

417 over population parameters that are key for establishing the spatial scale, location and timing of 

418 management actions and rates of sustainable fishing for each species. Therefore, is not advisable 

419 to continue with the current management that does not differentiate among the three species. A 

420 species as O. bimaculoides with a lower effective population size, and with local populations that 

421 are mostly self-sustaining and partially isolated from other nearby populations could be 

422 susceptible to over exploitation, severe bottlenecks and long recovery times if fisheries 

423 management erroneously considers all populations as a single stock and ignores the importance 

424 of local population dynamics. We recommend that in O. bimaculoides management should take 

425 place at the level of local populations, for instance, to assign catch quotes per individual bay. For 

426 the species with higher fecundity and dispersal potential (O. bimaculatus and O. hubbsorum) the 

427 implementation of management tools should consider metapopulation dynamics on a larger 

428 geographic scale and the presence of larval dispersal among populations, identifying key larval 

429 sources and larval dispersal routes during the PLD, spawning and hatching seasons for each 

430 species. 

431 An important consideration for management of the octopus fishery in the Northern Gulf 

432 of California is the differences in the spawning season between O. hubbsorum (spring and fall) 

433 and O. bimaculatus (summer) and its relationship to the direction of larval dispersal and its 

434 impact on source-sink metapopulation dynamics. Patterns of oceanographic currents in the 
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435 Northern Gulf of California are highly directional or asymmetric driven by a cyclonic (anti-

436 clockwise) gyre during spring and summer (Marinone et al. 2008; Marinone 2012) when both O. 

437 hubbsorum and O. bimaculatus spawn. However, O. hubbsorum also spawns during Fall-winter 

438 (unpublish data J. F. D. C and A. M. V.), when the gyre reverses to an anti-cyclonic (clockwise) 

439 direction (Lavin & Marinone 2003; Marinone 2012), effectively transforming key larval sources 

440 during spring-summer into larval sinks during fall-winter. When implementing spatial 

441 management tools in systems with strong asymmetry in the direction of the currents, including 

442 marine reserves, it is advised that reserves are located upstream according to the main flow to 

443 protect the sources of larvae that support multiple downstream fishing sites (Beger et al. 2014; 

444 Munguía-Vega et al. 2014) These observations imply that the location of marine reserves for 

445 octopus in the northern Gulf of California will have to consider the cyclonic phase of the 

446 oceanographic gyre for both species in addition to the anti-cyclonic phase for O. hubbsorum. 

447 Also, temporal fishing closures based on the spawning period of a single species, like the one 

448 recently implemented in the northern Gulf of California based on O. bimaculatus (Opinión 

449 Técnica No. RJL/INAPESCA/DGAIPP/1065/2015; DOF. 2016, 01 junio), might be only 

450 partially effective for protecting the recruitment of the other species present in the same locations 

451 but with a different spawning season (e. g., O. hubbsorum, López-Uriarte et al. 2005; Moreno-

452 Báez et al. 2012). Similarly, minimum sizes established based on size at sexual maturity for O. 

453 bimaculatus might overestimate the minimum size required for O. hubbsorum (Table 1). Our 

454 findings highlight that sustainable fisheries management will heavily depend upon establishing 

455 management tools that match the geographic and habitat distribution, life history and population 

456 dynamics of the biological entities targeted by multi-specific fisheries. 

457
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Table 1(on next page)

Life history & Hypotheses

Life history and hypotheses regarding levels of genetic diversity and structure in three

species of octopus from Northwest Mexico. BCP = Baja California Peninsula, ML = Mantle

Length.
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Life history O. bimaculoides O. hubbsorum O. bimaculatus References

Geographic 

distribution

From CA, USA to Bahia 

San Quintin in BC, 

Mexico.

From Bahia Magdalena, 

BCS to Oaxaca, including 

the Gulf of California.

From CA, USA to Bahia 

Vizcaino BCS, including the 

Gulf of California

( 2, 3, 4, and 11)

Reproductive 

period

Santa Barbara, CA, 

USA (Dec-May)

San Quintin, BCP,  

Mexico (Oct-Jan)

Pacific coast of BCP

(May-Oct)

Gulf of California

(Mar, Sep-Dec)

Pacific coast of BCP

 (Jan-Jun)

Gulf of California

(Jun-Sep)

(1, 2, 3, 5, and 

9)

*Fecundity
Eggs laid in festoons

137 3 780

Clutch eggs

105,000 3 144,000

Ripe ovarian eggs

240, 050

(range 22,447 3 545,444)

Clutch eggs

>20,000

Ripe ovarian eggs 

91,407 ± 75,361 SD (range 

11,618 3 372,269)

(1, 2, 6, 10, 13 

and 19)

*Egg size (length) 

and  ripe ovarian 

eggs size

10 3 12 mm

(range 9.5 3 16 mm)

1.66 ± 0.74 mm

Ripe ovarian eggs 2.07 mm 

(range 0.7 3 3.7 mm)

4 37 mm

Ripe ovarian eggs

(range 1.8 3 4 mm)

(1, 2, 3, 10, 13, 

and 19)

Planktonic larval 

duration 

absent, direct 

development to 

Present but the time is 

uncertain (Probably ~ 60 

2 3 3 months (60 to 90 

days)
(1, 2, 3, and 13)
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(paralarvae) juvenile, benthic 

hatchlings

days)

Size at sexual 

maturity

55 mm (ML) males

110 mm (ML) females

70 mm (ML) males

119.7 mm (ML) females

124.5 mm (ML) males

147.0 mm (ML) females
(2, 6, 9, and 19)

Lifespan (years) Short (1.0 - 1.5) Short (1.5) Short (1.5 3 2.0) (2, 3, and 6)

Hypotheses O. bimaculoides O. hubbsorum O. bimaculatus References

Effective population 

size (Ne)
Small Medium Large (17 and 20)

Genetic diversity 

(allelic richness)
Low Medium High (17 and 20)

Diversity of private 

alleles
High Medium Low (14 and 18)

Genetic 

Structure
High Medium Low (8, 12, and 15)

Genetic relatedness High Medium Low (7 and 16)

1 * = considering average, min and max reported value.  (1) Ambrose (1981), (2) Forsythe & Hanlon (1988), (3) Ambrose (1990), (4) López-Uriarte et al. (2005), 

2 (5) Castellanos-Martínez (2008), (6) López-Uriarte & Rios-Jara (2009), (7) Christie et al. (2010), (8) Selkoe & Toonen (2011), (9) Domínguez-Contreras (2011), 

3 (10) Cardenas-Robles (2013), (11) Domínguez-Contreras et al. (2013), (12) Riginos & Liggins (2013), (13) Alejo-Plata & Herrero-Alejo (2014), (14) Beger et al. 

4 (2014), (15) Selkoe et al. (2014), (16) Burgess et al. (2014), (17) Romiguier et al. (2014), (18) Munguía-Vega et al. (2015) (19) Alejo-Plata & Gómez-Márquez 

5 (2015) and (20) Ellegren & Galtier (2016).
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Table 2(on next page)

Nucleotide divergence of both: 16s rDNA gene and COI gene

Nucleotide divergence between species of octopus identified through the analysis of both the

16s rDNA gene (below the diagonal) and COI gene (above the diagonal). Standard error

estimates are shown in parentheses.
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 O. bimaculoides O. bimaculatus O. hubbsorum

O. bimaculoides - 0.0632 (±0.0104) 0.1005 (±0.0142)

O. bimaculatus 0.0328 (±0.0079) - 0.1042 (±0.0139)

O. hubbsorum 0.0629 (±0.0113) 0.0708 (±0.123) -

1
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Table 3(on next page)

Genetic variation within population

Genetic variation within populations of three species of octopus. Sample Size (N), Mean ±

Standard Error (SE) of the number of alleles (NA), effective alleles (NE), and observed (HO),

expected (HE) heterozygosities, allelic richness (RA) and private allelic richness (PAR).
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Species Population N NA NE HO HE RA PAR

Octopus Ejido Erendira 14 5.00 ± 0.93 3.22 ± 0.58 0.77 ± 0.09 0.62 ± 0.07 4.15 ± 0.68 1.09 ± 0.33

bimaculoides San Quintín 9 6.14 ± 1.49 4.44 ± 1.18 0.52 ± 0.12 0.62 ± 0.11 5.46 ± 1.23 2.53 ± 1.23

Bahía Magdalena 9 4.29 ± 0.71 3.34 ± 0.62 0.91 ± 0.05 0.65 ± 0.05 4.08  ±  0.65 1.50 ± 0.58

Mean ± SE 5.14 ± 0.62 3.67 ± 0.47 0.74 ± 0.06 0.63 ± 0.04 4.56 ± 0.45 1.71 ± 0.43

Octopus Puerto Libertad 14 8.86 ± 1.18 5.85 ± 1.39 0.70 ± 0.10 0.72 ± 0.08 5.47 ± 0.71 1.84 ± 0.40

hubbsorum Isla San Lorenzo 22 7.71 ± 2.11 5.17 ± 1.55 0.57 ± 0.15 0.61 ± 0.13 4.44 ± 0.96 0.30 ± 0.14

Isla Tiburón 31 10.0 ± 2.35 5.89 ± 1.47 0.53 ± 0.12 0.69 ± 0.10 4.94 ± 0.85 0.39 ± 0.10

Isla el Dátil 3 4.00 ± 0.31 3.23 ± 0.39 0.76 ± 0.06 0.66 ± 0.04 4.00 ± 0.31 0.33 ± 0.28

Bahía Kino 32 10.0 ± 2.86 6.32 ± 1.77 0.70 ± 0.14 0.66 ± 0.13 4.79 ± 1.00 0.29 ± 0.19

I. San Pedro Mártir 3 2.86 ± 0.63 2.58 ± 0.56 0.41 ± 0.17 0.46 ± 0.13 2.86 ± 0.63 0.01 ± 0.01

Santa Rosalía 8 6.57 ± 1.51 4.82 ± 1.14 0.75 ± 0.12 0.66 ± 0.11 5.00 ± 0.99 0.50 ± 0.20

El Conejo 8 5.00 ± 1.31 4.09 ± 1.07 0.65 ± 0.12 0.60 ± 0.12 4.28 ± 0.98 0.27 ± 0.25

Mean ± SE 6.89 ± 0.67 4.75 ± 0.45 0.63 ± 0.05 0.63 ± 0.04 4.47 ± 0.28 0.49 ± 0.20

Octopus La Bocana 5 5.86 ± 0.51 4.73 ± 0.49 0.94 ± 0.06 0.77 ± 0.03 5.16 ± 0.42 0.06 ± 0.03

bimaculatus Las Barrancas 5 5.43 ± 0.53 4.49 ± 0.61 0.72 ± 0.11 0.73 ± 0.07 5.09 ± 0.50 0.43 ± 0.24

Malarrimo 32 11.71 ± 0.71 6.01 ± 0.79 0.79 ± 0.08 0.79 ± 0.06 4.90 ± 0.37 0.39 ± 0.16

Puerto Peñasco 32 11.42 ± 0.87 7.29 ± 1.15 0.87 ± 0.06 0.81 ± 0.07 5.15 ± 0.48 0.34 ± 0.10

San Luis Gonzaga 8 6.71 ± 1.02 5.21 ± 0.76 0.79 ± 0.14 0.71 ± 0.12 4.81 ± 0.66 0.10 ± 0.05

Puerto Refugio 17 9.14 ± 1.20 6.11 ± 0.96 0.68 ± 0.11 0.77 ± 0.08 4.89 ± 0.52 0.25 ± 0.09

Isla Smith 25 11.14 ± 1.24 6.76 ± 0.89 0.84 ± 0.06 0.81 ± 0.06 5.14 ± 0.41 0.39 ± 0.11

B.de Los Ángeles 14 9.57 ± 0.75 6.20 ± 0.89 0.68 ± 0.10 0.78 ± 0.07 5.13 ± 0.44 0.19 ± 0.06

Puerto Lobos 25 10.43 ± 0.75 6.66 ± 0.83 0.77 ± 0.08 0.82 ± 0.04 5.19 ± 0.34 0.39 ± 0.18

Mean ± SE 9.08 ± 0.40 5.93 ± 0.28 0.79 ± 0.03 0.78 ± 0.02 5.05 ± 0.05 0.28 ± 0.05

1
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Table 4(on next page)

Contemporary effective population size

Average and 95% confidence intervals for the contemporary effective population size (N
e
) for

three species of octopus. Locations were pooled according to the results of the genetic

assignment of species (Fig. 2). N
e
 was estimated with two methods, including linkage

disequilibrium (LD; lowest allele frequency used 0.05 and 0.02 respectively) and Molecular

coancestry (MC).
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 LDNE 0.05 LDNE 0.02 Molecular coancestry

O. bimaculoides 5.4 (3.4 - 8.8) 10.2 (7.4 - 13.8) 11.2 (3.0 - 24.4)

O. hubbsorum 88.0 (63.8 - 129.9) 125.5 (94.7 - 177.4) 22.9 (1.7 -71.5)

O. bimaculatus 261.4 (173.6 - 472.9) 264.9 (194.7 - 395.8) 27.7 (13.3 - 47.4)

1
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Table 5(on next page)

Analysis of molecular varianc

Analysis of molecular variance (AMOVA) from microsatellite data within three species of

octopus from Northwest México.
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Species Source of Variation Variance df
Sum of 

squares

Means of 

squares

Estimated

Variance

P

Value

Octopus Among Populations (FST) 19% 2 28.865 14.432 0.592 0.000

bimaculoides Among Indiv (FIS) 0% 29 61.401 2.117 0.000 0.995

Within Indiv (FIT) 81% 32 81.500 2.547 2.547 0.001

Total 100% 63 171.766 3.139

Octopus Among Populations (FST) 15% 7 110.224 15.746 0.459 0.000

hubbsorum Among Indiv (FIS) 13% 113 330.838 2.928 0.400 0.000

Within Indiv (FIT) 71% 121 257.500 2.128 2.128 0.000

Total 100% 241 698.562 2.987

Octopus Among Populations (FST) 9% 8 103.068 12.884 0.283 0.000

bimaculatus Among Indiv (FIS) 5% 154 467.367 3.035 0.162 0.000

Within Indiv (FIT) 86% 163 442.000 2.712 2.712 0.000

Total 100% 325 1012.436 3.156

1
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Figure 1(on next page)

Study area

Locations of 20 octopus populations sampled from Northwest Mexico. B.C = Baja California.

B. C. S = Baja California Sur. NGC = Northern Gulf of California. The blue stars represent

main fishing locations, and the red circle represents the Midriff Island region.
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Figure 2(on next page)

Genetic assignment of octopus samples in Northwest Mexico

Genetic assignment of octopus samples from fishery locations in Northwest Mexico to three

species. Locations used for both 16s rDNA and COI are indicated with stars. All locations were

used for microsatellites analysis. A) Neighbor-joining trees constructed with 97 haplotypes for

both 16s rDNA and COI for O. bimaculatus (blue), O. bimaculoides (purple) and O. hubbsorum

(orange). Bootstrap support >99% in 1000 replicates are shown for branches separating the

three species. B) Bayesian cluster from STRUCTURE shows the probability of individual

membership to three genetic clusters (K = 3, 316 individuals). C) Distribution of octopus

species in 20 localities from Northwest Mexico according to phylogenetic and Bayesian

analyses.
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Table 6(on next page)

Relatedness within three octopus species

Mean pairwise relatedness (R) values (±95% confidence intervals) within three octopus

species, compared with bootstrapped upper (Blue) and lower (Red) 95% confidence intervals

assuming random mating (10,000 bootstraps replicates).
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