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Abstract

Acoustic classification of frogs has received increasing attention for its promising
application in ecological studies. Various studies have been proposed for classifying frog
species, but most recordings are assumed to have only a single species. In this study,
a method to classify multiple frog species in an audio clip is presented. To be specific,
continuous frog recordings are first cropped into audio clips (10 seconds). Then, various
time-frequency representations are generated for each 10-s recording. Next, instead of
using traditional hand-crafted features, a deep learning algorithm is used to find the most
important feature. Finally, a binary relevance based multi-label classification approach is
proposed to classify simultaneously vocalizing frog species with our proposed features.
Experimental results show that our proposed features extracted using deep learning can
achieve better classification performance when compared to hand-crafted features for frog
call classification.

I. INTRODUCTION

As a widely distributed amphibian species, frogs are an integral part of the food1

web, and are often regarded as a valuable indicator species for environmental health2

[1]. Although frogs are very important, rapid decline in frog populations has been3

spotted worldwide. Reasons for this decline can be summarized as habitat loss, invasive4

species, climate change. To monitor the change of frog population and optimize its5

protection policy, it is becoming ever more important to gain insights about frogs and6

the environment. Compared to traditional methods that require ecologists to enter the7

fields frequently for biodiversity data collection, an acoustic sensor provides a way8

to collect data over larger spatial and temporal scales [2]. Since large volumes of9

acoustic data can be generated by an acoustic sensor, enabling automatic methods to10

study collected data is in high demand.11

Many previous studies have developed different methods for classifying frog species12

by acoustic data [3], [4], [5], [6], [7], [8]. In those studies, various feature vectors13

and classifiers have been explored for frog call classification. Linear predictive coding14

(LPC) [9] and Mel-frequency cepstral coefficients (MFCCs) [10], [3] are two well-15

known features for classifying frog calls. Since LPC and MFCCs describe individual16

frame within one syllable, all frame-level features of the syllable need to be averaged17

to characterize the syllable as a whole. Besides LPC and MFCCs, many other acoustic18

features have been explored for frog call classification, including syllable duration,19

averaged energy, zero-crossing rate, oscillation rate, Shannon entropy, spectral cen-20

troid, spectral flatness, spectral flux, fundamental frequency [4], [5], [6], [7], [8]. Two21

classifiers, k-nearest neighbor (k-NN) and support vector machine (SVM), are most22

widely used models for their easy implementation and high accuracy [11], [7], [12].23

However, recordings used in those previous studies often have a high signal-to-noise24

ratio (SNR), and each recording is assumed to include a single species.25

In contrast, recordings used in this study have a low SNR and contain many26

overlapping animal vocal activities, including frogs, birds, crickets. To address those27
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challenges, multi-label learning is introduced to classify simultaneously vocalizing28

frog species in low SNR recordings. Various methods have been proposed to classify29

simultaneously vocalizing birds [13] and frogs [14]. However, hand-crafted features30

are used in those studies, which are highly affected by the segmentation process.31

Compared to hand-crafted features, recent use of deep learnings has achieved state-32

of-the-art accuracy in frog call classification [15], [16], but all recordings used are33

assumed to have a single species.34

In this study, we use a deep learning algorithm to extract features. After splitting35

continuous recordings into 10-s audio clips, we translate each recording into its36

time-frequency representation. Then, acoustic features are directly extracted from the37

time-frequency representation with a pre-trained network. Different from hand-crafted38

features, we do not need to segment recordings into individual events as previous39

studies [13], [14], which can increase the robustness of our classification model. To40

classify simultaneously vocalizing frog species, a binary relevance based multi-label41

classification approach is used. Eight frog species, which are widely distributed in42

Queensland, Australia, are selected for the experiment.43

The rest of this paper is organized as follows: In section II, we describe the method44

for frog call classification, which includes data description, feature extraction, and45

classification. Section III reports experimental results. Section IV presents conclusion46

and future work.47

II. METHODS48

Our frog call classification method consists of four steps: data description, signal49

pre-processing, feature extraction, and classification. Detailed information of each step50

is shown in following sections.51
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Fig. 1. Flowchart of our frog call classification system using pre-trained deep networks and multi-label learning

A. Data description52

Digital recordings in this study were obtained with a battery-powered, weatherproof53

Song Meter (SM2) box1. Recordings were two-channel, sampled at 22.05 kHz and54

1https://www.wildlifeacoustics.com
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saved in WAC4 format. A representative sample of 342 10-s recordings was selected55

to train and evaluate our proposed algorithm for classifying simultaneously vocalizing56

frog species in a recording. All those examples were collected between 02/2014 to57

03/2014, since it is breeding season for frogs with high calling activity. All the species58

that are presented in each 10-s recording were manually labeled by an ecologist who59

is a frog expert. There are totally eight frog species in the recordings: Rhinella marina60

(RMA), Cyclorana novaehollandiae (CNE), Limnodynastes terraereginae (LTE), Lito-61

ria fallax (LFX), Litoria nasuta (LNA), Litoria rothii (LRI), Litoria rubella (LRA),62

and Uperolela mimula (UMA). Each recording contains between one and five species.63

B. Signal pre-processing64

All the recordings were re-sampled at 16 kHz and mixed to mono. Since features are65

directly calculated by applying deep learning techniques to recordings’ time-frequency66

representations. Three time-frequency representations are tested in this study: fast-67

Fourier transform spectrogram, constant-Q transform spectrogram, and Gammatone-68

like spectrogram.69

Fast-Fourier transform (FFT) spectrogram is generated by applying short-time Fourier70

transform (STFT) to each recording. Specifically, each recording was divided into71

frames of 32 ms with 50 % frame overlap. A fast Fourier transform was then performed72

on each frame with a Hamming window, which yielded amplitude values for 25673

frequency bins, each spanning 31.25 Hz. The final decibel values (S) were generated74

using75

Stf = 20 ∗ log10Atf (1)

where t = 0, ..., T − 1, f = 0, ..., F − 1, t and f represent frequency bin and time76

index, T and F are 256 frequency bins and 625 frames, A is the amplitude value.77

Constant-Q transform spectrogram is generated by applying constant-Q transform78

to the signal. Compared to STFT, this transform provides a frequency analysis on a79

log-scale which makes it more adapted to sound with harmonic structures. Here we80

use 48 filters per octave with lowest and high frequency as 50 Hz and 8000 Hz.81

Gammatone-like spectrogram is constructed by first calculating a conventional,82

fixed-bandwidth spectrogram, then combining the fine frequency resolution of the83

FFT-based spectra into the coarser, smoother Gammatone responses via a weighting84

function. Here, each recording was passed through a 64 channel gammatone auditory85

model filterbank, with lowest and highest frequency as 50 Hz and 8000 Hz. The86

outputs of each band have their energy integrated over windows of 25 ms with 60%87

overlap.88

Fig. 2. Spectrogram comparison using three time-frequency representations

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3007v1 | CC BY 4.0 Open Access | rec: 6 Jun 2017, publ: 6 Jun 2017



4

C. Feature extraction89

Different from [15], we use a deep learning algorithm as a feature extractor. In90

[16], a pre-trained network is found to achieve higher classification accuracy than91

training a new network. Also, there are only 342 10-s recordings for the experiment,92

which are not enough for training. Here, we directly use a pre-trained network to93

extract features by removing the vectors from one of the final fully connected layers.94

Multiple different nets, which are trained on ImageNet with different architecture, are95

used: AlexNet, CaffeNet, and VGG16.96

AlexNet [17] was trained on the 1.3 million images in the LSVRC-2010 ImageNet97

training set and consists of five convolutional layers, two fully connected layers, and98

a final soft max layer.99

CaffeNet [18] has a similar architecture as AlexNet. The difference is that CaffeNet100

was trained with data that was augmented differently and the pooling and normaliza-101

tion layers were switched.102

VGG16 [19] was trained on a subset of the ImageNet database, which was used in103

the ImageNet Large-Scale Visual Recognition Challenge (ILSVRC).104

D. Classification105

In this study, a binary relevance (BR) based multi-label learning is used for its106

scalability and flexibility [20]. The principle of the BR method is to solve a multi-label107

classification problem using multiple binary classifiers. Similar to our previous work108

[21], three classic single-label learning algorithms are used in this study: decision tree109

(DT), and k-nearest neighbour (k-NN), and random forest (RF). For each classifier, a110

grid search is conducted to optimize classification results. To evaluate the multi-label111

classification model, a tagged representative sample of 342 10-s recordings is used112

with 5-fold cross-validation.113

E. Evaluation metrics114

Three evaluation metrics are used: hamming loss, accuracy, and subset accuracy115

[22]. Hamming loss is defined as the fraction of labels that are incorrectly predicted116

for an instance and the normalized hamming loss which is normalized over instances117

is reported. To better interpret these results, a baseline for hamming loss is obtained by118

considering a non-informative classifier that cannot predict any accuracy labels [13].119

Accuracy for a single instance xi is defined by the Jaccard similarity coefficients120

between the ground truth yi and the prediction h(xi). Subset accuracy is defined as121

follows:122

subsetAccuracy =
1

N

N∑
i=1

I(h(xi) = yi) (2)

where I(true) = 1 and I(false) = 0. This is a very strict evaluation measure as it123

requires the predicted set of labels to be an exact match of the true set of labels.124

Values for hamming loss, accuracy, and subset accuracy range from zero to one. For125

hamming loss, zero denotes the perfect result, and one means the wrong prediction of126

all labels over every instance, whereas for accuracy and subset accuracy, the values127

have complete opposite meanings.128
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III. EXPERIMENTAL RESULTS AND DISCUSSIONS129

In this experiment, three time-frequency representations are first compared using130

AlexNet. Here, features are extracted from multiple fully connected layers, including131

layer fc6, fc7, and fc8. As for the classification, a BR based multiple learning is used132

with three classic single-label learning algorithms as binary classifiers: DT, k-NN, and133

RF.134

A. Comparison of three time-frequency representations using three layers and DT135

Classification results using AlexNet are shown in Table I. Compared to FFT spec-136

trogram and CQT spectrogram, gamma spectrogram using layer fc7 achieves the best137

Hamming loss and subset accuracy. According to Fig. 2, gamma spectrogram is the138

the time-frequency representation with a highest resolution, which is in accordance to139

the classification result. Therefore, gamma spectrogram is selected for the subsequent140

analysis.141

TABLE I
CLASSIFICATION RESULTS USING ALEXNET. THE BEST VALUE OF EACH EVALUATION METRIC IS IN BOLD.

HERE ↓ MEANS THAT A HIGHER VALUE IMPLIES A BETTER PERFORMANCE, BUT ↑ HAS A COMPLETELY
OPPOSITE MEANING.

Layer TF representation Hamming loss ↓ Accuracy ↑ Subset accuracy ↑
fc6 FFT spectrogram 0.150 0.589 0.310
fc6 CQT spectrogram 0.151 0.585 0.301
fc6 Gamma spectrogram 0.147 0.588 0.310
fc7 FFT spectrogram 0.156 0.576 0.295
fc7 CQT spectrogram 0.160 0.571 0.289
fc7 Gamma spectrogram 0.138 0.591 0.310
fc8 FFT spectrogram 0.149 0.598 0.301
fc8 CQT spectrogram 0.152 0.584 0.289
fc8 Gamma spectrogram 0.145 0.584 0.284

B. Comparison of three nets using three basic single-label learning algorithms142

In this part, gammatone-like spectrogram with fc7 layer is used for various nets and143

three classifiers due to its best performance in Table I. Table II shows that AlexNet144

with RF and VGG16 with k-NN are two best classification methods. Among three145

classifiers, classification performance of DT is the worst. Compared to AlexNet and146

VGG16, CaffeNet is the worst, which is in consistent with [16].147

TABLE II
CLASSIFICATION RESULTS USING THREE NETS AND THREE CLASSIC CLASSIFIERS.

Net Classifier Hamming loss ↓ Accuracy ↑ Subset accuracy ↑
AlexNet DT 0.138 0.591 0.310
AlexNet k-NN 0.117 0.691 0.444
AlexNet RF 0.097 0.692 0.477
CaffeNet DT 0.160 0.572 0.298
CaffeNet k-NN 0.133 0.651 0.418
CaffeNet RF 0.111 0.647 0.412
VGG16 DT 0.151 0.597 0.319
VGG16 k-NN 0.109 0.711 0.482
VGG16 RF 0.099 0.679 0.462
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C. Comparison with hand-crafted features and baseline148

Table III shows the comparison between hand-crafted features and deep learning149

based features. In our previous studies, the best classification results for Hamming150

loss are 0.131 and 0.182, which are obtained using multi-label learning and multiple-151

instance multiple-label learning. The hand-crafted features used for multi-label learn-152

ing are wavelet-based cesptral coefficients and linear predictive coefficients. However,153

this kind of global features will cause the information loss in time domain. Features154

extracted from segmented frog syllable using acoustic event detection are highly155

affected by the segmentation results. The segmentation process is sensitive to the156

background noise, and the classification results are not robust.157

TABLE III
COMPARISON WITH HAND-CRAFTED FEATURES AND BASELINE

Methods Hamming loss ↓ Accuracy ↑ Subset accuracy ↑
AlexNet + RF 0.097 0.692 0.477
VGG16 + k-NN 0.109 0.711 0.482
[23] 0.131 — —
[14] 0.182 — —
Baseline 0.249 — —

IV. CONCLUSIONS158

This study presents a novel feature extraction method using a deep learning al-159

gorithm for classifying simultaneously vocalizing frog calls. Continuous recordings160

are first segmented into 10-s audio clips. Then, three types of time-frequency rep-161

resentations are used for extracting features with three pre-trained nets. Finally, a162

binary relevance based multiple-label classification algorithm is used to classify frog163

species with three single-label learning algorithms: DT, k-NN, and RF. Experimental164

results on 342 recordings of eight frog species are promising with hamming loss,165

accuracy and subset accuracy as 0.109, 0.711, and 0.482, respectively. Compared166

to hand-crafted features, features extracted using deep learning can achieve a better167

classification performance. Future work will include additional experiments that test a168

wider variety of audio data from different geographical and environment conditions.169
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[10] C. Bedoya, C. Isaza, J. M. Daza, and J. D. López, “Automatic recognition of anuran species based on syllable199

identification,” Ecological Informatics, vol. 24, pp. 200–209, 2014.200

[11] C.-J. Huang, Y.-J. Chen, H.-M. Chen, J.-J. Jian, S.-C. Tseng, Y.-J. Yang, and P.-A. Hsu, “Intelligent feature201

extraction and classification of anuran vocalizations,” Applied Soft Computing, vol. 19, no. 0, pp. 1 – 7,202

2014.203

[12] J. Xie, M. Towsey, J. Zhang, and P. Roe, “Adaptive frequency scaled wavelet packet decomposition for frog204

call classification,” Ecological Informatics, vol. 32, pp. 134–144, 2016.205

[13] F. Briggs, B. Lakshminarayanan, L. Neal, X. Z. Fern, R. Raich, S. J. Hadley, A. S. Hadley, and M. G. Betts,206

“Acoustic classification of multiple simultaneous bird species: A multi-instance multi-label approach,” The207

Journal of the Acoustical Society of America, vol. 131, no. 6, pp. 4640–4650, 2012.208

[14] J. Xie, M. Towsey, L. Zhang, K. Yasumiba, L. Schwarzkopf, J. Zhang, and P. Roe, “Multiple-instance209

multiple-label learning for the classification of frog calls with acoustic event detection,” in International210

Conference on Image and Signal Processing. Springer, 2016, pp. 222–230.211

[15] J. Colonna, T. Peet, C. A. Ferreira, A. M. Jorge, E. F. Gomes, and J. Gama, “Automatic classification of212

anuran sounds using convolutional neural networks,” in Proceedings of the Ninth International C* Conference213

on Computer Science & Software Engineering. ACM, 2016, pp. 73–78.214

[16] S. M. M. S. M. B. E. R. Julia Strout, Bryce Rogan, “Anuran call classification with deep learning,” In:215

Proc. International Conference on Acoustics, Speech, and Signal Processing (ICASSP), New Orleans, USA,,216

March 5-9, 2017.217

[17] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolutional neural218

networks,” in Advances in neural information processing systems, 2012, pp. 1097–1105.219

[18] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, and T. Darrell, “Caffe:220

Convolutional architecture for fast feature embedding,” in Proceedings of the 22nd ACM international221

conference on Multimedia. ACM, 2014, pp. 675–678.222

[19] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla,223

M. Bernstein et al., “Imagenet large scale visual recognition challenge,” International Journal of Computer224

Vision, vol. 115, no. 3, pp. 211–252, 2015.225

[20] J. Read, B. Pfahringer, G. Holmes, and E. Frank, “Classifier chains for multi-label classification,” Machine226

learning, vol. 85, no. 3, pp. 333–359, 2011.227

[21] L. Zhang, M. Towsey, J. Xie, J. Zhang, and P. Roe, “Using multi-label classification for acoustic pattern228

detection and assisting bird species surveys,” Applied Acoustics, vol. 110, pp. 91–98, 2016.229
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