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Abstract

Sub-Saharan Africa and other developing regions of the world are dominated by smallholder
farms, which are characterized by small, heterogeneous, and often indistinct field patterns.
In previous work, we developed an algorithm for mapping both smallholder and commercial
agricultural fields that includes efficient extraction of a vast set of simple, highly corre-
lated, and interdependent features, followed by a random forest classifier. In this paper, we
demonstrated how active learning can be incorporated in the algorithm to create smaller,
more efficient training data sets, which reduced computational resources, minimized the
need for humans to hand-label data, and boosted performance. We designed a patch-based
uncertainty metric to drive the active learning framework, based on the regular grid of a
crowdsourcing platform, and demonstrated how subject matter experts can be replaced with
fleets of crowdsourcing workers. Our active learning algorithm achieved similar performance

as an algorithm trained with randomly selected data, but with 62% less data samples.
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1. Introduction

Supervised machine learning algorithms enable fast, repeatable landcover classification
that can generalize to large geographic areas (Debats et al., 2016; Khatami et al., 2016; Lu
& Weng, 2007). Algorithm performance depends on the selection and labeling of training
data by human experts from which a supervised classifier can learn (Li & Sethi, 2006).
Efficient training data sets of only the most informative samples limit the expense and time
of training data preparation, whether through visual interpretation of satellite imagery or
gathering groundtruth samples in field campaigns (Chi & Bruzzone, 2005; Li et al., 2010; Li
& Sethi, 2006; Tuia et al., 2011a,b). Compact data sets also increase computational efficiency
(Shi et al., 2016) and generalization performance (Campbell et al., 2000; Cohn et al., 1994;
Crawford et al., 2013). This paper explores active learning and crowdsourcing, which are
two methods that have been individually employed to optimize training data sets, though
their joint contribution to supervised classification is just beginning to be explored.

Determining the number of required samples and how these samples are selected are
two main considerations for supervised classification. Often, the number of samples may
simply be limited by availability of data or manpower for labeling. Alternatively, simple
heuristics, such as 30p samples, where p is the number of multi-spectral bands, aim to
quantify the number of training samples required based on the dimensionality of remote
sensing data (Foody et al., 2006; Van Niel et al., 2005). For selecting the specified number
of samples, random sampling is most commonly used, but this method is sub-optimal when
classes are imbalanced or rare, which is frequently the case in complex natural landscapes
(Lewis & Catlett, 1994; Lewis & Gale, 1994). In high-resolution satellite imagery, landcover
classes exhibit lower inter-class and higher intra-class spectral variability, suggesting random
selection of training samples may not fully describe a class (Lu & Weng, 2007; Tokarczyk
et al., 2013, 2015). In a recent study, human experts attempted to improve upon random
selection by instead identifying a small subset of informative samples, based on their own

judgement and knowledge of ancillary data, like soil type (Foody & Mathur, 2004; Foody

2

Peer] Preprints | https://doi.org/10.7287/peerj.preprints.3004v1 | CC BY 4.0 Open Access | rec: 6 Jun 2017, publ: 6 Jun 2017



28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

et al., 2006).

Regardless of the selection mechanism, all of these methods are examples of passive
learning, in which supervised classifiers passively receive training data from human experts
(Li & Sethi, 2006). For remote sensing applications, active learning is showing promise as
an alternative approach, in which an algorithm iteratively guides the selection of samples to
produce efficient training data sets, creating a two-way flow of data between human experts
and the algorithm (Crawford et al., 2013; Tuia et al., 2011a,b). An algorithm identifies the
most informative samples in each iteration and queries a human expert for labels, which are
then added to the training data set to retrain the algorithm, until the desired accuracy is
achieved (Angluin, 1988; Baum, 1991; Cohn et al., 1994, 1996; Lewis & Catlett, 1994; Lewis
& Gale, 1994; Li & Sethi, 2006; Plutowski & White, 1993). Active learning is based on the
idea that a classifier trained on a set of carefully chosen examples will outperform one trained
on a larger randomly-selected set, both in terms of accuracy and computational efficiency
(Cohn et al., 1994, 1996; MacKay, 1992; Shi et al., 2016).

Using the quintuple notation of Li & Sethi (2006), an algorithm for active learning can

be defined as follows:

C': classifier

L: labeled training data set

U: pool of unlabeled samples

@: query function to select samples from unlabeled pool

e S: human supervisor who is capable of labeling samples

3
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Algorithm 1 Active learning, based on Li & Sethi (2006)

1: Randomly select small set of samples from U
2: Query S to label selected samples

3: Initialize L with labeled samples

4: Train C

5: while stopping criterion not satisfied do

6: Select sample from U based on ()

7 Query S to label selected sample

8: Add new sample to L

9: Retrain C'

10: end while

The query function that an algorithm uses to select samples for labeling by a human
expert distinguishes different active learning methods. Queries can leverage knowledge of
how a particular classifier functions, such as weighting samples by their distance from a
support vector machine’s decision boundary (Campbell et al., 2000; Cheng & Shih, 2007).
Alternatively, the output of probabilistic classifiers, such as the random forest, can be directly
used in a query function as a measure of the classifier’s confidence in assigning a label (Lewis
& Catlett, 1994; Lewis & Gale, 1994; Li & Sethi, 2006).

Active learning generally assumes humans with expert knowledge of the problem will
serve as supervisors. However, in this age of citizen science and volunteered geographic
information, expert individuals are giving way to fleets of crowdsourcing workers (Goodchild,
2007). Humans excel at pattern recognition, even with occlusion or noise (Biederman, 1987),
and are preferable to machines for certain tasks (i.e. CAPTCHA (Von Ahn et al., 2003)).
In remote sensing, crowdsourcing has been used to assess disasters (Xie et al., 2016), create
landcover maps (Estes et al., 2016; Salk et al., 2016; See et al., 2013b, 2015), and most
recently, provide training data for supervised machine learning algorithms (Ofli et al., 2016).

Most crowdsourcing workers are non-experts, participating either for compensation or
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due to personal interest in the issue, who receive basic training for the required task (Estes
et al., 2016; Salk et al., 2016; See et al., 2016). Tasks range from classification, which requires
assigning a label to an image, to the more complex task of digitization, which involves cre-
ating a digital representation (i.e. delineation) of an identified object (Albuquerque et al.,
2016). See et al. (2013a) found that experts and non-experts differed minimally in their
ability to identify human impacts and landcover types, while Salk et al. (2016) demon-
strated that contributors often improved with experience. Comber et al. (2015, 2016) found
larger differences between cultural groups, who vary in their conceptualization and visual
interpretation of landcover, than between experts and non-experts.

Quality control measures are critical for turning crowdsourcing results into accurate land-
cover maps. Typically, expert-validated data sets are used to judge the quality of crowd-
sourcing workers’ results (Estes et al., 2016; Salk et al., 2016). Though multiple workers
mapping the same area increases time and expense, worker agreement has been shown to be
highly correlated with correct classification (Albuquerque et al., 2016) and multiple workers’
digitizations can be combined to increase overall map accuracy (Estes et al., 2016). To fa-
cilitate serving images to workers, repeated mappings, and comparisons to the expert data
sets, crowdsourcing systems typically divide the area of interest into various image patches
using a regular survey grid (Estes et al., 2016; Jacobson et al., 2015). The gridded structure
and output of crowdsourcing platforms create opportunities to improve active learning query
functions. Samples in an active learning framework typically equate to individual pixels, yet
point-wise labeling wastes the ability of humans to perceive high-order objects (Biederman,
1987; Henderson & Hollingworth, 1999) and leads to repeated pixel queries in the same
geographic region (Stumpf et al., 2014).

Thus, crowdsourcing produces high-quality landcover classifications suitable for use as
training data for supervised classifiers, while active learning guides the selection of training
data samples. In this paper, we present an integrated framework using both crowdsourcing

and active learning to train a supervised classifier, imposed on a regular grid of a typical
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crowdsourcing platform. Within this framework, we developed a patch-based uncertainty cri-
terion for the active learning query function to interact with crowdsourcing workers. Finally,
we present the results of a case study of agricultural field digitization in high-resolution,
multi-spectral satellite imagery of South Africa, comparing the performance of our active

learning system to a model using traditional random sampling.

2. Integrated framework

2.1. Supervised classifier

An active learning framework requires an algorithm that is fast to train and computation-
ally inexpensive to enable repeated iterations (Lewis & Catlett, 1994). We utilized a random
forest supervised pixel-wise classification algorithm, presented in Debats et al. (2016). To
summarize, random forests (Breiman, 2001) are used extensively by the remote sensing com-
munity for their classification accuracy and speed, as well as their handling of nonlinear
interactions and high-dimensional data sets (Belgiu & Dragut, 2016; Khatami et al., 2016;
Pelletier et al., 2016). Random forests have also been shown to be particularly well-suited
to agricultural mapping (Li et al., 2016). Though random forests sometimes struggle with
low generalization performance when transferred to regions far from training areas (Belgiu
& Dragut, 2016; Crawford et al., 2013; Juel et al., 2015; Pelletier et al., 2016; Vetrivel et al.,
2015), the addition of spatial /textural features has been shown to ameliorate this issue as well
as increase overall accuracy (Debats et al., 2016; Du et al., 2015; Khatami et al., 2016; Ur-
sani et al., 2012). Our algorithm learned from hand-labeled field boundaries during training,
extracting several thousand simple, highly correlated, and interdependent features, using an
expanded version of Randomized Quasi-Exhaustive (RQE) features (Tokarczyk et al., 2013,
2015), which, in aggregate, are able to capture the subtle textural changes denoting the
boundaries of smallholder fields (Debats et al., 2016).

The original algorithm was re-implemented for this paper as an open-source algorithm,

using Python and Apache Spark. Apache Spark is an open-source framework for distributed
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computing with data parallelism and fault tolerance for large-scale data processing (Zaharia
et al., 2010). Through its use of in-memory processing, Apache Spark is able to outperform
other distributed computing frameworks, like Hadoop MapReduce, which continually reads
and writes to disk. In a Spark application, a driver program coordinates all processes,
connects to a cluster manager to allocate resources, and sends tasks to executors on the
worker nodes. The Spark implementation of our algorithm enables faster training and easier

scalability, which are necessary for the rapid, repeated iterations of active learning.

2.2. Crowdsourcing platform

To facilitate the rapid creation of groundtruth labels for training data, we based our
framework on DIYlandcover, a crowdsourcing platform. DIYlandcover was built with open-
source software to support the Mapping Africa project (mappingafrica.princeton.edu),
which draws on workers to map the boundaries of agricultural fields in high-resolution satel-
lite imagery. A full description of the DIYlandcover platform is included in Estes et al.
(2016).

From a worker’s perspective, they are connected to the DIYlandcover platform via a
crowdsourcing marketplace, like Amazon Mechanical Turk. After passing a training module,
a worker is presented with an image patch and utilizes tools in a mapping interface to draw
polygons around agricultural fields (Figure 1). Upon completion of the task, the worker

receives a small payment.
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. y

Figure 1: DIYlandcover interface for crowdsourcing agricultural field boundaries. A worker is served one
image patch and uses the point-and-click tools provided to outline the boundaries of individual agricultural
fields.

In the background, the DIYlandcover platform continually monitors worker mapping
skill. This information is used to accept or reject mapping results from specific workers, pay
out performance-based bonuses, and estimate overall map accuracy. DIYlandcover includes
a main server hosting the platform’s database, a Map API from which imagery is served, and
a crowdsourcing marketplace where jobs are assigned to workers. The platform uses a regular
survey grid to define image patches to be served to workers, including quality control sites,
in order to frequently assess overall accuracy, compute worker-specific confidence scores, and

enable repeated mappings of areas. In a recent production run, DIYlandcover achieved 91%
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accuracy in the digitization of agricultural fields in South Africa using novice workers. Based
on this trial, it is estimated that 500 workers, each working 1 hour per day, could map the

entire continent of Africa in 1.9 years at a cost of about $2 million (Estes et al., 2016).

2.3. Active learning

Introducing active learning into the DIYlandcover crowdsourcing platform would expand
the definition of human supervisors from a handful of experts to a global pool of crowdsourc-
ing workers. Active learning integrates with the crowdsourcing platform by replacing the
current method of randomly sampling image patches weighted by the probability of land-
cover presence. Instead, selection of training samples is based on an uncertainty criterion
calculated from the posterior probabilities produced by the current algorithm (Figure 2).
DIYlandcover’s accuracy assessments, including periodic checks of worker’s performance on
quality control sites, would run simultaneously to ensure the creation of high-quality train-
ing data for the algorithm to learn from. The global, on-demand nature of crowdsourcing
works well with the iterative nature of active learning with intermittent periods of algorithm
retraining and querying workers.

An uncertainty criterion, which is used in a query function to direct the selection of image
patches from the unlabeled pool, is defined on a regular grid, in order to integrate with the
crowdsourcing platform’s survey grid and work simultaneously with worker quality control
assessments. By basing the uncertainty criterion on a regular grid, areas of high uncertainty
are prioritized, avoiding repeated queries in the same area as seen with pixel-based active
learning queries (Stumpf et al., 2014). In addition, a query consisting of a single patch
samples the higher intra-class variability present in high-resolution imagery and provides
more information than a query of a single point, which is critical for large geographic areas
of interest.

This criterion directly uses the probabilistic output of the random forest classifier to in-
creasingly penalize pixels with more ambiguous classifications, and sums these penalties over

image patches defined by the crowdsourcing platform’s regular grid. Thus, the uncertainty
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criterion, @, for an image patch, I, compares each pixel’s posterior probability, p(z,y), of
belonging to a field, as determined by the current iteration’s algorithm, to a value of 0.5,

which denotes maximum uncertainty in the algorithm output, as follows:

QU =1= > (p(z,y) —05) (1)

I(z,y)el
At each iteration, the image patch with the maximum value of the uncertainty criterion
is selected to be labeled and added to the training data set. The selected image is deemed
to add the most additional information and increase the diversity of the training data set

the most.

> Classifier,

Train C C Classify U
with L with C

Labeled Active Unlabeled
data, L Learning data, U

Transfer Select sample
sample from based on Q
Utol Human to label
supervisor, |
S

Figure 2: Active learning framework using quintuple terminology, adapted from (Li & Sethi, 2006) and
(Wang & Zhai, 2016). During an iteration, an uncertainty criterion is calculated for each sample in the
unlabeled data pool. The sample which the algorithm had the most difficulty in classifying (i.e. the most
uncertain sample) is selected for labeling by a human supervisor and transferred to the labeled data pool.
At this point, another iteration begins and the algorithm is retrained with the new, expanded labeled data
pool.
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3. Case study

We explored the use of the proposed active learning crowdsourcing platform in a case
study of mapping agricultural fields in South Africa. The goal was to assess performance
improvements as active learning was used to add new images to the training data set. To
facilitate comprehensive accuracy assessments of the algorithm and repeated experiments,
the entire area of interest was mapped offline, as opposed to in an on-demand fashion as the
active learning algorithm ran.

The code for the case study was written in Python and Apache Spark and deployed
on the Princeton University BigData cluster. The cluster is a SGI Hadoop Linux cluster,
consisting of 6 data nodes and 4 service nodes, utilizing 2.80GHz Intel Xeon CPU E5-2680
v2 processors. The BigData cluster features a Hadoop Distributed File System (HDFS),
which is a fault-tolerant file system that enables distributed storage of large files and rapid

data transfer between compute nodes.

3.1. Study area & satellite imagery

This case study builds upon the work of Debats et al. (2016), including the use of the
following satellite imagery data set. 8 study sites in South Africa capture a range of agricul-
tural types, including commercial center pivot irrigated, commercial rainfed, and smallholder
rainfed subsistence (Figure 3). Maize is the predominant crop across these sites, which is
representative of Sub-Saharan Africa overall (Jones & Thornton, 2003). Each site is covered
by a pair of DigitalGlobe Worldview-2 images, including a growing season image (Decem-
ber - April) and an off season image (July - November) within the same year or one year
apart. The images are each 25 km?, orthorectified, and aggregated using mean values to 2

m resolution. Spectral resolution spans one panchromatic band and 8 multi-spectral bands.
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Figure 3: Worldview-2 imagery sites in South Africa (n=8). Figure reproduced from (Debats et al., 2016).

3.2. Methodology

Using an 8 x 8 grid, the satellite images of South Africa (8 images of 2400 x 2400 pixels
at 2 m resolution) were each divided into image patches of 300 x 300 pixels, resulting in 512
image patches of sufficient size for workers to identify fields in a crowdsourcing platform.

The 512 image patches was divided into the following pools:

e Unlabeled pool: 384 image patches were randomly selected for the unlabeled pool. At

each iteration, one image was selected for labeling and transferred to the labeled pool.

e Labeled pool: The algorithm learned from the labeled images in this pool. At each

iteration, one image was transferred to the labeled pool.

e Holdout pool: The remaining 128 image patches and their corresponding labels were
completely separate from the training process. This pool was used to assess the algo-

rithm’s performance at each iteration on an independent data set.

Using these three pools, cross-validation was employed in the experiments to assess gen-
eralization performance. A 4-fold cross-validation scheme was selected to ensure a sufficient
variety of images in each fold, given the data set size. Each fold’s 128 image patches became

the holdout pool and the remaining 384 image patches were assigned to the unlabeled pool.

12

Peer] Preprints | https://doi.org/10.7287/peerj.preprints.3004v1 | CC BY 4.0 Open Access | rec: 6 Jun 2017, publ: 6 Jun 2017



218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

234

235

236

238

239

240

241

At each iteration, one image patch was selected from the unlabeled pool. This image patch
was matched with its labeled data and transferred to the labeled pool to be included in the
training of the next iteration. Accuracy metrics were calculated at each iteration on the
holdout set and averaged across folds to provide insights on the algorithm’s generalization
performance.

Our new implementation of the supervised pixel-wise classification algorithm was utilized
for this case study. Initially, the classifier was trained with one randomly selected image
patch. At each subsequent iteration, an additional image patch was selected to be labeled
and added to the training data set, either based on (1) random selection, or (2) the highest
scoring image patch according to the uncertainty criterion of the active learning framework.
For each fold, the active learning experiment was run once, while the random selection
experiment was run four times and averaged to account for the varying amounts of additional
information in a randomly selected sample.

At each iteration, a performance metric, specifically the true skill statistic (TSS), was
calculated on the holdout pool of images for both the random selection and active learning
experiments. Unlike the more common kappa statistic, TSS is independent of prevalence
in presence-absence studies (Allouche et al., 2006). The use of TSS is appropriate for this
study, where non-field areas are more common than fields. For a binary classification, the

true skill statistic is defined as:

TSS = sensitivity + specificity — 1
_ TP TN (2)
~TP+FN FP+TN 7

where TP is true positives, T'N is true negatives, F'P is false positives, and F'N is false
negatives.
Learning curves were constructed for both the active learning and random selection ex-

periments to assess the number of training samples required to achieve a desired performance.
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In a learning curve, the performance metric (in this case, the TSS of the holdout set) was
calculated at each iteration and plotted against the number of image patches currently in

the training data set.

3.53. Results

Figure 4 compares the learning curves, using the TSS metric, of active learning using
the patch-based based uncertainty criterion and the traditional approach of passive learning
using random selection of training samples without regard to algorithm performance. At the
end of the experiment when 45 image patches had been added to the training data set, active
learning had achieved a T'SS of 0.69, while random selection had achieved a T'SS of 0.65. More
importantly, if 0.65 is taken as a baseline, active learning required only 17 training samples
to achieve the required accuracy, compared to random selection’s 45 training samples, a 62%
reduction.

Figure 5 provides a visual comparison between active learning and random selection for
two sample images over 45 iterations. For both samples, active learning approaches a suitable
classification with fewer iterations than random selection (15 versus 45). In addition, active
learning has fewer false positives along roadways and more distinct boundaries between

agricultural fields.
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Figure 4: Learning curves constructed for active learning and random selection. Within 45 iterations, the
algorithm trained with randomly selected data achieved a peak True Skill Statistic (TSS) of 0.65, while the
algorithm trained through active learning reached a TSS of 0.69. The learning curves highlight that active
learning was able to achieve the same level of performance as random selection, but with 17 training samples
instead of 45.

4. Discussion and conclusions

In this paper, we presented an integrated framework that joins crowdsourcing and ac-
tive learning with a supervised classification algorithm for large-scale landcover mapping.

Crowdsourcing is increasingly recognized as a legitimate means of collecting high-quality
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Figure 5: The progression of the algorithm output through 45 iterations of active learning and random
selection for two sample images. These images demonstrate how the active learning algorithm converged to
a better mapping of agricultural fields with fewer training samples than an algorithm trained with randomly
selected samples. The active learning algorithm showed more distinct field boundaries and fewer false
positives along roadways.
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landcover data, given proper platform design and appropriate worker assessments, providing
new opportunities for creating training data and reducing the dependence on subject matter
experts.

In our case study of digitizing agricultural field boundaries in high-resolution satellite
imagery of South Africa, the number of samples needed to achieve a desired level of accu-
racy was reduced by 62% with active learning over typical random selection. Furthermore,
based on qualitative analysis of the algorithm output (Figure 5), active learning resulted in
more distinct field boundaries and fewer false positives along roadways. In operation, this
reduction in training samples would be reflected in the training time and required computa-
tional resources, as well as the worker hours and distributed payments in the crowdsourcing
platform.

When scaling the case study to much larger areas, it is important to consider other
trade-offs between active learning, which requires less labeled training data but more train-
ing iterations, and random selection, which requires much more data but does not require
iterative training. Iteratively training the algorithm can be scaled indefinitely across com-
pute nodes, using on-demand cloud computing resources, like Amazon EC2 and Google
Cloud Compute. Crowdsourcing more data can also scale indefinitely, but is more limited
by the human element: the number of workers active at a given time and whether they have
been qualified to participate by passing a training module. Given these considerations, we
believe the trade-offs favor an active learning approach in large-scale applications.

Furthermore, by operating within a regular grid using the proposed patch-based uncer-
tainty criterion, the active learning algorithm inherits the crowdsourcing platform’s robust
quality control measures for filtering workers based on the accuracy of their labeling to min-
imize error and uncertainty in the training data provided to the algorithm. The patch-based
approach also prioritizes areas of high uncertainty with a single query per iteration. How-
ever, in large-scale applications, batch-mode active learning would be needed to iteratively

improve performance in a reasonable amount of time and take advantage of fleets of crowd-
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sourcing workers functioning in parallel. To avoid adding a batch of image patches with
redundant information, future work will focus on including diversity measures and spatial
information in the patch-based uncertainty criterion, building on relevant approaches for
pixel-based uncertainty criteria (Brinker, 2003; Fu et al., 2012; Gao et al., 2016; Huo &
Tang, 2014; Liu et al., 2009; Pasolli et al., 2011; Persello et al., 2014; Shi et al., 2016).
From previous work, it was estimated that mapping the entire continent of Africa with
crowdsourcing alone would take 1.9 years at a cost of $2 million (Estes et al., 2016). Using
a supervised classification algorithm for mapping agricultural fields, we could conservatively
designate a random sample of 50% of Africa’s landmass as training data, using a simple rule-
of-thumb from (Hastie et al., 2001). It would take crowdsourcing workers almost 1 year to
produce this much training data at a cost of $1 million. Simply scaling our current findings,
we may estimate that an active learning approach would require 62% less training data to
achieve similar results, or only 19% of Africa’s landmass. This scenario represents just over 4
months of mapping and $380,000 in crowdsourcing worker payments. The benefits of active
learning would likely be even greater in large-scale applications, where similar visual patterns
across landscapes would further reduce the size of an efficient training data set. By joining
crowdsourcing with active learning and a classification algorithm, the problem of mapping

agricultural fields across the entire continent of Africa becomes more feasible.
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