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Abstract 27 

RATIONALE: Several lines of evidence suggest that dopamine (DA)-influenced neuronal 28 

pathways may malfunction in Tourette Syndrome (TS). Some PET studies support the 29 

hypothesis of presynaptic abnormalities in levodopa uptake, dopamine synthesis, or dopamine 30 

release.  31 

OBJECTIVE: Directly test the presynaptic hypothesis using a new approach. 32 

METHODS: We used positron emission tomography (PET) and [
11

C]raclopride (RAC*) to 33 

measure synaptic dopamine release before and during levodopa and placebo infusions (with 34 

carbidopa) in 5 neuroleptic-naïve adults with TS and 5 matched control subjects. The primary 35 

analysis examined RAC* binding potential (BPND) in predefined volumes of interest (VOIs). A 36 

secondary analysis compared BPND voxel by voxel over the entire brain. 37 

RESULTS: (1) Baseline RAC* BPND did not differ significantly between groups, though 38 

nucleus accumbens BPND was higher in TS (16%, p=0.051). (2) DA release declined from before 39 

to during infusions (p=0.014), including with placebo. (3) This decline was smaller in TS 40 

(p=0.080). (4) Levodopa’s effect on BPND differed significantly in right midbrain (p=0.002, 41 

corrected), where levodopa displaced RAC* by 59% in control subjects but increased BPND by 42 

74% in TS subjects, and in parahippocampal gyrus (p=0.02, corrected). 43 

DISCUSSION: Our finding that a before/after RAC* design is confounded by time and/or 44 

expectation effects may have implications for other RAC* PET studies. The smaller decrease of 45 

BPND with time in TS may be attributable to impaired habituation to the scan environment. 46 

Levodopa’s opposite effect on RAC* binding in TS dopaminergic midbrain but may signify an 47 

abnormal response to dopaminergic stimulation in TS.  48 

Keywords 49 

dopamine D2 receptor; raclopride; positron emission tomography; PET; levodopa; dopamine; 50 

Tourette syndrome; nucleus accumbens; substantia nigra; midbrain 51 

52 

PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.30v2 | CC-BY 3.0 Open Access | received: 31 Jan 2014, published: 31 Jan 2014

P
re
P
rin

ts



3 

Introduction 53 

Tourette Syndrome (TS) is a chronic neuropsychiatric disorder defined by the presence of both 54 

vocal and motor tics that begin early in life, fluctuate in phenomenology over time, and are not 55 

caused by another illness (American Psychiatric Association 2000). Tics are brief movements or 56 

noises, repeated many times a day in a stereotyped fashion, that may look intentional but that 57 

serve no useful purpose (Black 2010b). Several lines of evidence suggest that dopamine-58 

influenced neuronal pathways malfunction in TS (Albin 2006; Anderson et al. 1999; Black 2009; 59 

Hershey et al. 2004; Singer 2013). 60 

One of the earliest clues to the pathophysiology of tics was their clear response to dopamine D2-61 

like (D2, D3, or D4) receptor antagonists, now confirmed by over 35 randomized controlled 62 

trials (Black 2010a; Singer and Wendlandt 2001). Tics also improve with dopaminergic 63 

stimulation (Anca et al. 2004; Black and Mink 2000; Carpenter et al. 1999; Feinberg and Carroll 64 

1979; Friedhoff 1982; Gilbert et al. 2003; Gilbert et al. 2000b; Nomura and Segawa 1982; 65 

Nomura and Segawa 2003), and such stimulation is primarily postsynaptic (Gilbert et al. 2000a; 66 

Gilbert et al. 2000b). These treatment studies confirm that in TS, abnormal activity in 67 

movement-related brain circuits is sensitive to dopamine. Nonmotor brain circuits also manifest 68 

a dopamine-sensitive abnormality of brain function in TS (Hershey et al. 2004). 69 

However, identifying why this occurs has not been easy (for a superb review, see Singer 2013). 70 

A dopamine-responsive abnormality of brain function in TS could be either presynaptic or 71 

postsynaptic. Studies of TS in vivo have examined dopamine D2-like receptors (D2Rs), 72 

dopamine precursor uptake and monoamine transporters (Albin et al. 2009; Anderson et al. 1999; 73 

Peterson 2001; Singer and Wendlandt 2001; Wong et al. 2008). Post-mortem data are limited by 74 

the small number of adequately studied subjects (Kalanithi et al. 2005; Kataoka et al. 2010; 75 

Minzer et al. 2004; Swerdlow and Young 2001; Yoon et al. 2007). Most studies suggest that 76 

(baseline) post-synaptic dopamine D2-like receptor binding is similar in TS and control subjects 77 

(Albin et al. 2009; Hwang et al. 2008; Singer et al. 2002; Wong et al. 1997), though there are 78 

exceptions (Denys et al. 2013; Gilbert et al. 2006; Minzer et al. 2004; Yoon et al. 2007). Even if 79 

dopamine D2-like receptors (D2Rs) are normal in TS, a postsynaptic abnormality in the response 80 

to dopamine stimulation could be located downstream in striatum, pallidum, thalamus, or cortex 81 

(Mink 2006). 82 

Alternatively, several PET or SPECT studies support the hypothesis of presynaptic 83 

abnormalities, i.e. dysfunction in levodopa uptake, dopamine synthesis, or dopamine release 84 

(Albin et al. 2003; Butler et al. 2006; Ernst et al. 1999; Heinz et al. 1998; Hwang et al. 2008; 85 

Malison et al. 1995; Serra-Mestres et al. 2004; Singer et al. 2002; Wong et al. 1994), though 86 

some studies detected no such abnormality (Meyer et al. 1999; Singer 2013; Stamenkovic et al. 87 

2001). One widely discussed theory is that basal, tonic dopamine release is normal in TS, but 88 

that transient, phasic dopamine release is not (Singer 2013; Singer et al. 2002; Wong et al. 2008; 89 

Yeh et al. 2007). Phasic dopamine release is crucial to dopamine’s role in changing behavior 90 

(Breitenstein et al. 2006), including learning sequences of movements (Badgaiyan et al. 2007). 91 

Remarkably, however, little research has been done on phasic dopamine release in TS. 92 

Amphetamine-induced striatal dopamine release has been studied, with some support for 93 

differences in TS (Singer et al. 2002; Steeves et al. 2010; Wong et al. 2008; Yeh et al. 2007). 94 

However, amphetamine also has some disadvantages—primarily, that it does not really produce 95 
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phasic dopamine release in the usual sense of the word. Rather, it causes prolonged, substantial 96 

dopamine release regardless of environmental demands. Amphetamine also induces euphoria 97 

(Drevets et al. 2001) and transiently increases tic severity (Denys et al. 2013), clouding 98 

interpretation of the results. 99 

Ideally, if a pharmacological challenge drug is used to test phasic dopamine release, it should not 100 

produce effects noticed by the subject. Levodopa, the body’s natural synthetic precursor to 101 

dopamine, is such a drug. When given with an adequate dose of carbidopa, which prevents 102 

conversion to dopamine but does not cross the blood-brain barrier, systemic levodopa 103 

administration essentially delivers dopamine selectively to the brain, boosting dopamine 104 

synthesis almost immediately in both parkinsonian and healthy brains (reviewed in Gordon et al. 105 

2007). Confirming this, when given with adequate carbidopa, levodopa does not alter 106 

quantitative whole-brain blood flow (Hershey et al. 2003; Hershey et al. 2000; Hershey et al. 107 

1998). Furthermore, volunteers usually cannot tell whether they are receiving levodopa or a 108 

placebo (Black et al. 2003; Gordon et al. 2007). 109 

The present study tests the presynaptic dopaminergic hypothesis in TS using a novel approach. 110 

Specifically, the hypothesis tested was that levodopa would stimulate striatal dopamine 111 

production differently in people with TS than in people without tics. The radioligand 112 

[
11

C]raclopride (hereinafter RAC*) binds to the dopamine D2 receptor loosely enough to be 113 

displaced by physiological increases of dopamine at the synapse. We used PET and RAC* to 114 

measure synaptic dopamine release in response to a standardized levodopa infusion (with 115 

carbidopa) in TS and matched control subjects.  116 

Materials & Methods 117 

Participants 118 

All human studies were performed in accordance with the ethical standards laid down in the 119 

1964 Declaration of Helsinki. This study was approved by the Human Studies Committee of 120 

Washington University School of Medicine (IRB, protocol # 03-0347, the WUSM Radioactive 121 

Drug Research Committee (protocol # 497F), and the U.S. Food and Drug Administration 122 

(Investigator IND #69,745 for i.v. levodopa). All subjects provided written confirmation of 123 

informed consent before study participation. 124 

Diagnostic assessment included psychiatric and neurological examination by a movement-125 

disorders-trained neuropsychiatrist (KJB) and a validated semistandardized psychiatric 126 

diagnostic interview (SCID-IV; First et al. 2002). Tic subjects met DSM-IV-TR criteria for 127 

Tourette’s Disorder. Control subjects with no history of tics were matched one-to-one for age, 128 

sex and handedness (with one ambidextrous TS subject matched to a right-handed control). 129 

Exclusion criteria included any lifetime neurological or Axis I psychiatric disorder (except that 130 

TS, ADHD and OCD were allowed in tic subjects, and migraine and specific phobia were 131 

allowed in either group), current serious general medical illness, medication history of dopamine 132 

antagonists or other drugs likely to affect the dopaminergic system, current use of any 133 

neuroactive medication, lactation, possibility of pregnancy, or contraindication to levodopa or 134 

MRI. 135 
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Clinical features were characterized by the Diagnostic Confidence Index (0=no features of TS; 136 

100=all enumerated features of classic TS; scores in the original clinical validation sample 137 

ranged from 5 to 100, mean=61, S.D.=20) (Robertson et al. 1999); the YGTSS, an expert-rated 138 

measure of tic severity over the previous week (motor tic scale 0-25, vocal tic scale 0-25, 139 

impairment scale 0-50, higher scores indicating a higher symptom burden) (Leckman et al. 1989; 140 

Walkup et al. 1992); the revised Tic Symptom Self-Report (TSSR) scale, a self-report scale 141 

including scores of 0-3 for each of 18 motor tics and 16 vocal tics, with 3 indicating tics were 142 

“very frequent and very forceful” over the preceding two weeks (Cohen et al. 1984; Scahill et al. 143 

1999); the ADHD Rating Scale, an expert-rated measure of current severity of Attention-Deficit/144 

Hyperactivity Disorder (ADHD) based on DSM-IV criteria (range 0-54, higher scores indicating 145 

a higher symptom burden) (DuPaul et al. 1998); and the Y-BOCS, an expert-rated measure of 146 

current obsessive-compulsive disorder (OCD) severity (range 0-40, higher scores indicating a 147 

higher symptom burden) (Goodman et al. 1989a; Goodman et al. 1989b). 148 

Overview of subject participation 149 

Each subject had 4 RAC* PET scans: two scans on each of two days at least a week apart 150 

(Fig. 1). After oral carbidopa and the baseline PET scan, an infusion of levodopa or saline 151 

placebo was begun by vein at an individualized dose intended to produce a steady-state levodopa 152 

plasma concentration of 600ng/mL. After allowing 30 minutes to approach steady-state levodopa 153 

concentration, a second scan was done while the infusion continued. The order (levodopa on day 154 

1 and placebo on day 2, or the reverse) was assigned randomly to each subject, and subjects and 155 

PET staff were blind to drug assignment during all scans.  156 

The room was darkened and subjects were instructed to lie quietly in the scanner with eyes 157 

closed throughought each scan. Study staff asked subjects every 5 or 10 minutes if they were 158 

comfortable and made sure they were awake.  159 

Levodopa infusion 160 

Subjects took 200mg carbidopa by mouth at least 1 hour before levodopa infusion began. A dose 161 

of levodopa estimated to fill each subject’s volume of distribution at a target concentration of 162 

600ng/mL was infused over 10 minutes, followed until the second PET scan of the day was 163 

completed by a maintenance infusion at a rate estimated to compensate for elimination. In prior 164 

work, these infusion rates produced a mean blood level across subjects of ~625ng/mL after 25 165 

minutes of infusion (Black et al. 2003). On average, that concentration produces substantial 166 

motor benefit in early Parkinson disease (Contin et al. 2001; Harder and Baas 1998), yet this 167 

infusion method is well enough tolerated that subjects cannot reliably distinguish the levodopa 168 

and saline infusions (Black et al. 2003; Gordon et al. 2007).  169 

Levodopa plasma concentration 170 

Levodopa plasma concentration was measured by a validated method (Karimi et al. 2006). 171 

Radiotracer preparation 172 

[
11

C]raclopride was prepared by O-[
11

C]methylation of (S)-O-desmethylraclopride HBr (ABX 173 

Advanced Biochemical Compounds, Radeberg, Germany) using a modification of previously 174 
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reported procedures (Ehrin et al. 1986; Farde et al. 1988). Carbon-11 was produced as 
11

CO2 175 

using the Washington University JSW BC 16/8 cyclotron and the 
14

N(p, )
11

C nuclear reaction. 176 

The 
11

CO2 was converted to 
11

CH3I using the microprocessor-controlled PETtrace MeI 177 

MicroLab (GE Medical Systems, Milwaukee, WI), and immediately used for [
11

C]methylation of 178 

(S)-O-desmethylraclopride. Product [
11

C]raclopride was purified via semipreparative HPLC, and 179 

reformulated in a 10% ethanol/normal saline solution.  The radiochemical purity exceeded 95%, 180 

and the specific activity exceeded 500 Ci/mmol, as determined by analytical HPLC. The mass of 181 

raclopride was <13.9 µg per injected dose. 182 

Image acquisition 183 

RAC* 14.5 ± 4.79mCi (mean ± S.D.) was given i.v. over an interval of 30 seconds. PET images 184 

were acquired on a Siemens ECAT 961 camera beginning with arrival of radiotracer in the head 185 

and continuing for 60 minutes using image frames of increasing duration.  186 

An MP-RAGE sequence was used to acquire a 3-dimensional T1-weighted image of the brain 187 

with acquisition time ~400 sec and voxel dimensions 1.25x1x1mm
3
.  188 

Image alignment 189 

The PET images were realigned within each subject and then to the subject’s MRI using a rigid-190 

body alignment method with low measured error, optimized for dynamic PET images (Black et 191 

al. 2001; Black et al. ; Eisenstein et al. 2012; Perlmutter et al. 1998).  192 

VOI analysis 193 

Nine subcortical volumes of interest (VOIs) were defined for each subject from that subject’s 194 

MRI by a high-dimensional semi-automated method of known high test-retest reliability (Wang 195 

et al. 2007) (Fig. 2). These VOIs corresponded to the thalamus (Th) and the left and right 196 

putamen (Pu), caudate (Cd), nucleus accumbens (NA), and globus pallidus (Pl). An additional 197 

VOI was created from the average (weighted by region volume) of 22 FreeSurfer-labeled gray 198 

matter regions comprising frontal cortex (11 left- and 11 right-hemisphere VOIs). This large 199 

frontal VOI produced adequate counting statistics for modest noise in the time-activity curve 200 

(Fig. 3). A cerebellum VOI was traced on each subject’s MR image. All VOIs were transferred 201 

to each subject’s realigned PET images using the optimized MRI-to-PET transformation matrix 202 

computed in the alignment step. The cerebellar VOI was trimmed if needed so that no voxel in 203 

the VOI corresponded to any of the inferior-most 4 slices in any frame of that subject’s original 204 

PET images. Thus in each subject each VOI was identical for all 4 PET scans.  205 

The binding potential BPND (Innis et al. 2007; Mintun et al. 1984), an estimate of the quotient 206 

Bmax/KD, was computed as one less than the distribution volume ratio (DVR), which was derived 207 

for each of the nine subcortical VOIs and the frontal lobe VOI using the cerebellar reference 208 

region (Logan et al. 1996). As we had no a priori hypothesis about laterality of results in any of 209 

the paired basal ganglia nuclei, we averaged corresponding left and right BPNDs (weighted by 210 

VOI volume) to produce for each PET scan 6 final BPND values, one each for frontal lobe cortex 211 

(FL), thalamus (Th), putamen (Pu), caudate (Cd), nucleus accumbens (NA), and globus pallidus 212 

(Pl).  213 
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The primary statistical analysis used a repeated-measures analysis of variance (rmANOVA) with 214 

BPND  as dependent variable, diagnosis (tic or control) as a between-group variable, time (before 215 

or during the infusion) and day (placebo or levodopa) as within-subject variables, and region (the 216 

6 VOI-based BPNDs) as a repeated measure. Exploratory analyses used a rmANOVA for each 217 

region. 218 

Whole-brain analysis 219 

For each subject, a DVR image was computed using at each voxel in the brain the Logan 220 

graphical method with the cerebellar VOI described in the preceding section as reference region 221 

(Logan et al. 1996). As a methods check, the mean across striatal VOIs of the voxelwise DVR 222 

value was essentially identical to the regional DVR computed using the standard methods 223 

described above. Analysis was limited to voxels in atlas space at which every subject contributed 224 

data from all frames of the dynamic PET acquisition. 225 

Whole-brain comparisons used voxelwise t tests corrected by FDR for multiple comparisons in 226 

SPM 8, as follows. A t test compared DVR images between the TS and the control group, and 227 

clusters of contiguous voxels with t exceeding the threshold corresponding to p<0.001 were 228 

accepted as significantly different between groups if cluster volume exceeded the threshold 229 

required to control False Discovery Rate for the entire dataset at p<0.05.  230 

Two comparisons were made, one based on mean baseline DVR images and the other based on 231 

levodopa effect ΔDVR images. Each subject’s two pre-infusion RAC* PET scans, one from each 232 

scan day, were averaged to create that subject’s mean baseline DVR image. The difference of the 233 

during-levodopa DVR image and the during-placebo DVR image in a subject was used to create 234 

that subject’s levodopa effect ΔDVR image. 235 

Results 236 

Subjects 237 

Subject characteristics and adequacy of matching are reported in Table 1, and clinical 238 

characteristics of the Tourette syndrome group are reported in Table 2. 239 

Levodopa levels 240 

Levodopa plasma concentrations were ~800-1000ng/ml before the RAC* scan and ~500-241 

700ng/ml after the RAC* scan, and did not differ significantly between groups (Table 3).  242 

Baseline RAC* binding 243 

Across VOIs, RAC* binding did not differ significantly between tic and control subjects 244 

(multivariate main effect of diagnosis, F=0.744, df=1,8, p=0.413; tic vs control). Nevertheless, 245 

baseline RAC* binding was numerically higher in TS by 13-17% in the three striatal VOIs and 246 

by 5-7% in the FL and Th VOIs. The whole-brain analysis identified no significant differences in 247 

baseline RAC* binding between TS and control subjects.  248 
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Stability of RAC* binding between days and with time  249 

This study includes a before- and after-infusion scan on each of two days. On one day the 250 

infusion contains levodopa, and on the other day the solution is a saline placebo. Thus each 251 

subject has three non-levodopa scans (the first scan of each day plus the scan during the placebo 252 

infusion). As expected, BPND was similar in the two pre-levodopa scans (correlated at r = 0.99 253 

across VOI and subject).  254 

BPND increased between the 1
st
 and 2

nd
 scan of the day (Fig. 4; main effect of time, F=10.605, 255 

df=1,8, p=0.012), but to our surprise this change did not differ significantly between the 256 

levodopa and placebo days (time x day interaction, F=0.014, df=5,4, p=0.909). In other words, 257 

the two scans on the placebo day were not identical. Mean BPND was 2.7% to 24.0% higher 258 

during the placebo infusion, indicating decreased dopamine release compared to earlier on the 259 

same day. The change from the first to the second scan of each day was significant in most 260 

individual region analyses: main effect of time, thalamus p=0.002, frontal lobe p=0.032, caudate 261 

p=0.039, pallidum p=0.048, and nucleus accumbens p=0.052 (Fig. 4; multivariate time x region 262 

interaction F=4.173, df=5,4, p=0.096).  263 

There was a trend for the change in BPND during the infusion to be smaller in tic subjects (Fig. 5; 264 

time x diagnosis interaction F=4.211, df=1,8, p=0.074). In individual regions, 0.05 < p < 0.10 for 265 

the NA, Pu, and Cd VOIs. 266 

Effect of levodopa on RAC* binding 267 

Since the pre- and on-placebo scans differed, the only appropriate comparison for the on-268 

levodopa *RAC scan is the on-placebo scan. Therefore we assessed the effect of levodopa by 269 

comparing the BPND  in the post-LD and post-placebo scans. 270 

 In the VOI analysis, there was no significant effect of LD (day x time interaction, F=0.014, 271 

df=1,8, p=0.909), the effect of LD did not differ overall in tic subjects (day x time x diagnosis 272 

interaction, F=1.308, df=1,8, p=0.286), and the 4-way interaction (diagnosis x day x time x 273 

region) was not significant (F=1.577, df=5,4, p=0.340). However, the diagnosis x day x time 274 

interaction was significant for pallidum (p=0.050) with a trend in thalamus (p=0.098; Fig. 6). In 275 

these regions BPND decreased in control subjects, consistent with increased dopamine release 276 

during the levodopa infusion, whereas the mean effect in the tic subjects was in the opposite 277 

direction.  278 

The whole-brain analysis identified a similar effect (decreased RAC* binding with levodopa in 279 

controls, increased in TS) in a cluster of 38 midbrain voxels (1.0 ml) with peak t at atlas 280 

coordinate (1.5, −21, −15) and extending laterally, in the right substantia nigra (peak t(_df) = 9.0, 281 

FDR corrected p=0.002; Fig. 7A). A second significant cluster of 19 voxels (0.5 ml) was seen in 282 

parahippocampal gyrus (peak t=7.92 at (22.5,−39,−6), corrected p=0.023; Fig. 7B). The mean 283 

regional change in BPND with levodopa is shown in Fig. 7C. Note that in both these clusters, the 284 

BPND on placebo was positive in all subjects (p < 0.001, binomial distribution), consistent with 285 

nontrivial RAC* binding. The highest t value in the whole-brain comparison, 11.62, occurred at 286 

(−31.5, 6, −15) in Brodmann’s area 13 (uncorrected p = 1.37 × 10
−6

; Bonferroni threshold 1.17 × 287 

10
−6

), but the cluster volume was only 0.1 ml, not significant by FDR correction (Fig. 7D). A 288 
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third statistically significant cluster was centered at the posterior edge of the occipital lobe; both 289 

the location and the observation that in this cluster the BPND on placebo was negative in half the 290 

subjects suggests that this cluster likely does not reflect D2R binding. 291 

Discussion 292 

Baseline striatal RAC* binding 293 

We found no difference in RAC* binding between subjects with or without TS. Previous RAC* 294 

PET studies (Singer et al. 2002; Turjanski et al. 1994) or IBZM SPECT studies in TS (George et 295 

al. 1994; Muller-Vahl et al. 2000) similarly found no difference in baseline binding. However, a 296 

recently published study by Denys and colleagues reported decreased RAC* binding at baseline 297 

in the putamen and right caudate nucleus (Denys et al. 2013). Outside the striatum, two PET 298 

studies using higher affinity D2R radioligands indicated decreased binding at baseline in the 299 

thalamus and frontal cortex (Gilbert et al. 2006; Steeves et al. 2010). In vivo studies with these 300 

radioligands are sensitive to synaptic dopamine concentration as well as to receptor number and 301 

affinity. A postmortem study found increased cortical dopamine receptor binding in TS (Yoon et 302 

al. 2007), though such studies are necessarily limited in sample size. 303 

Change in striatal BPND on the placebo day 304 

Implications for other RAC* challenge studies 305 

BPND increased from before to during the placebo infusion in the striatum, thalamus and frontal 306 

lobe VOIs, especially in control subjects (Figs. 4, 5). Most published information on the stability 307 

of RAC* binding over time reflects time intervals of days to months (Hietala et al. 1999; Volkow 308 

et al. 1993; Volkow et al. 1994; Yoder et al. 2011). Mawlawi et al. (2001) scanned 10 subjects 309 

twice each on the same day using a bolus-plus-constant-infusion method, and found no 310 

significant mean change from the first to the second scan. However, Alakurtti and colleagues 311 

(2011) found that mean BPND increased from the first to the second scan of the day in striatal and 312 

thalamic regions, with the change (about +5%) reaching statistical significance in medial and 313 

lateral thalamus.  314 

The observation in the present study that BPND increased from the first to second scan of the day 315 

is consistent with this background, and has implications for RAC* challenge PET studies in 316 

general, because essentially all such studies use a before- vs. after-intervention design. Our 317 

results and those of Alakurtti et al. (2011) suggest that the before-after design is flawed in that 318 

BPND increases from the first to the second scan even without active intervention. This does not 319 

invalidate the results of methylphenidate challenge RAC* studies, since that challenge decreases 320 

striatal RAC* BPND by a large fraction, but it may mean that before-after RAC* studies are less 321 

sensitive to manipulations that would decrease dopamine release. 322 

Possible pathophysiological interpretation 323 

The increase in BPND during the placebo infusion is most likely associated with passage of time 324 

rather than a placebo effect per se, especially as placebo administration is more likely to increase 325 

dopamine release (de la Fuente-Fernandez et al. 2001b; de la Fuente-Fernandez and Stoessl 326 
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2002). The presumed decrease in dopamine release during the placebo infusion could indicate 327 

that control subjects accommodate to the scanner environment over the course of the study day. 328 

The fact that TS subjects do this less may correspond to more persistent alertness/arousal. 329 

Greater arousal would correspond to the observation of Chappell and colleagues that TS subjects 330 

release more ACTH and norepinephrine with lumbar puncture, which the authors interpreted to 331 

indicate a higher level of arousal/anxiety in TS (Anderson et al. 1999; Chappell et al. 1994). 332 

Additionally, many people with TS report hypersensitivity to mild unchanging sensations, which 333 

can be seen as a failure of habituation to an unchanging sensory environment (Belluscio et al. 334 

2011; Panagopoulos et al. 2013). 335 

Alternatively, a smaller change in dopamine release may indicate a more steady level of 336 

boredom in TS subjects. Decreased dopamine release with boredom would fit with the 337 

observation that at baseline the TS group had (nonsignificantly) higher RAC* than controls in 338 

the striatal and thalamic VOIs. Boredom, or its complement novelty seeking, have been related 339 

to dopamine; in Cloninger’s model of temperament, the Novelty Seeking trait was designed with 340 

the intent to reflect central dopaminergic status, and some experimental data have supported that 341 

connection (Cloninger 1987; Keltikangas-Järvinen and Jokela 2012). Boredom is also a typical 342 

clinical manifestation of ADHD, which can be diagnosed in about half of TS subjects, and is 343 

influenced by dopamine. Adults and children with TS showed improvement in ADHD rating 344 

scale scores when treated with levodopa (Gordon et al. 2007 and unpublished data). 345 

Effect of levodopa infusion on RAC* binding  346 

Levodopa effect on RAC* binding in striatum 347 

Striatal RAC* binding was not substantially changed by levodopa. Initially this result came as a 348 

surprise to the authors, because levodopa was given expressly with the expectation that it would 349 

increase synaptic dopamine levels. Briefly, support for this expectation includes the following. 350 

First, in Parkinson disease there is overwhelming evidence both by clinical observations and by 351 

RAC* PET imaging that exogenous levodopa substantially increases striatal dopamine release 352 

(Antonini et al. 1997; de la Fuente-Fernandez et al. 2001a; Pavese et al. 2006). But there is also 353 

evidence in subjects without dopamine deficiency: intravenous levodopa is rapidly taken up from 354 

the bloodstream into the brain and converted into dopamine, and several studies show that it then 355 

boosts synaptic dopamine release (reviewed in Gordon et al. 2007). For instance, exogenous 356 

levodopa produces clear sedative and cognitive effects in healthy people (Andreu et al. 1999; 357 

Kelly et al. 2009; Weis et al. 2012). 358 

Thus the authors originally expected that exogenous levodopa would decrease striatal RAC* 359 

binding. However, further reflection and reading have motivated a different view whereby the 360 

results support the original goal of choosing a pharmacological challenge agent that would 361 

stimulate phasic dopamine release, but under endogenous control. Recall that the concern with 362 

stimulants as challenge agents was that they cause a substantial release of dopamine at the 363 

striatal synapse regardless of current environmental demands; it may produce a ceiling effect for 364 

dopamine release that does not reflect typical endogenous control. A sensible hypothesis to 365 

explain the results of the present study would be that a research subject lying awake in a quiet, 366 

darkened room without specific cognitive demands has no need for substantial phasic release of 367 
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dopamine, and thus even if exogenous levodopa has added dopamine to presynaptic vesicles, 368 

they are not released at a substantial rate at the synapse. A levodopa-raclopride study of a motor 369 

task in healthy individuals provides direct experimental support of this hypothesis (Flöel et al. 370 

2008). That study was properly designed with two sessions, placebo on one day and levodopa on 371 

another, with randomized order. Levodopa increased striatal dopamine release during 372 

performance of a motor task, but not at rest! Since in the present study all subjects were at rest 373 

during all scans, the results are consistent with those of Flöel and colleagues (2008). 374 

Levodopa effect on RAC* binding in midbrain, cortex, and thalamus 375 

Levodopa stimulated dopamine release in controls but reduced it in TS subjects in midbrain 376 

(approximately VTA/substantia nigra) and in parahippocampal gyrus. Similar effects, though not 377 

statistically significant, were observed in orbital cortex (Brodmann’s area 13) and in thalamus.  378 

One expects exogenous levodopa to increase dopamine release in the substantia nigra, and this 379 

occurred in the control subjects. D2 and D3 dopamine receptors are present in the substantia nigra 380 

and their activation inhibits spike firing, dopamine synthesis and dopamine release by nigral 381 

dopaminergic cells (Grace 2002). We hypothesize that levodopa increased dopamine stimulation 382 

of these inhibitory D2-like receptors in control subjects, and this may have prevented levodopa 383 

from stimulating nigrostriatal dopamine release into the striatum.  384 

Subjects with TS, however, showed an increase in substantia nigra RAC* binding with levodopa, 385 

consistent with a decrease in nigral dopamine release. Nigral dopamine release has been related 386 

to reward and novelty in humans. Healthy adults with higher novelty seeking scores had lower 387 

D2-like binding ([
18

F]fallypride) in SN, consistent with greater dopamine release (Zald et al. 388 

2008). Functional MRI studies have also demonstrated substantia nigra signal related to stimulus 389 

novelty or to the Novelty Seeking trait (Bunzeck and Duzel 2006; Krebs et al. 2011; Krebs et al. 390 

2009). Healthy adults receiving a sweet vs salty taste had BOLD activation in this region 391 

(O’Doherty et al. 2002). Despite this information, it is not clear how to relate a decrease in 392 

levodopa-stimulated dopamine release in substantia nigra to the pathophysiology of TS. 393 

Explaining the similar difference in nigral levodopa response in TS in parahippocampal gyrus 394 

and orbital cortex is no easier. Nevertheless, these results document an abnormality of 395 

presynaptic dopaminergic pharmacology in TS. 396 

There was a trend for a similar effect in thalamus; dopamine release increased with levodopa 397 

infusion in control thalamus but decreased in TS subjects. A [
11

C]FLB-457 PET study found a 398 

similar result, in that amphetamine provoked thalamic dopamine release in control subjects but 399 

not in TS (Steeves et al. 2010). 400 

Limitations 401 

Higher affinity radioligands, such as [
18

F]fallypride or [
11

C]FLB-457, have advantages for 402 

measuring cortical D2Rs, e.g. in the frontal lobe where D2Rs appear at much lower 403 

concentrations than in the striatum. There are two primary concerns with RAC* outside the 404 

striatum (reviewed thoroughly in Egerton et al. 2009). The first is a reliability issue: since the 405 

concentration of D2-like receptors is low in cortex compared to striatum, the counting statistics 406 

are poor for cortical VOIs of similar volume, and this renders the computed BPNDs suspect. For 407 
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instance, some regional RAC* BPNDs are negative or close enough to zero that displacement 408 

studies produce results that are hard to interpret. In the present study, FreeSurfer-defined cortical 409 

regions allowed the creation of a large, reliably defined frontal lobe VOI, in which PET time-410 

activity curves were low in noise (Fig. 3B), allowing statistically reliable estimates of BPND that 411 

were uniformly positive. Similarly RAC* displacement in thalamus has previously shown 412 

adequate counting statistics and reliability (Alakurtti et al. 2011; Hirvonen et al. 2003). 413 

The second concern with RAC* in extrastriatal regions is one of validity or interpretation. 414 

RAC* binding in cortex occurs at low levels, only some of which is attributable to specific 415 

binding (Farde et al. 1988). The concern is whether specific binding in cortex represents 416 

dopamine D2-like receptors. D2 and D4 receptors are expressed in human prefrontal cortex, 417 

though at relatively low concentrations compared to striatum (Meador-Woodruff et al. 1996). 418 

Raclopride may even have superior sensitivity to fallypride for measuring dopamine release in 419 

some cortical regions (Slifstein et al. 2010). The validity concern is less worrisome in substantia 420 

nigra, where D2 and D3 receptors are well characterized, and in human thalamus, which contains 421 

predominantly D3 rather than D2 receptors (Sun et al. 2012). There are precedents for interpreting 422 

substantia nigra RAC* displacement in terms of synaptic dopamine release (Egerton et al. 2009).  423 

Finally, the limited sample size for the comparison of the TS and control groups likely prevented 424 

identifying some true differences (type II error). Nevertheless, the sample size was adequate to 425 

find the significant group differences described above. 426 

Future directions 427 

These results suggest a natural next step for research in TS: testing whether dopamine release in 428 

TS differs during a dopamine-releasing cognitive (or other) task. Levodopa may augment the 429 

task-evoked release or interact with it differently in people with versus without tics. Along these 430 

lines, a cognitive-pharmacological interaction fMRI study found that LD changed the BOLD 431 

responses to a working memory task (Hershey et al. 2004). A newer levodopa infusion produces 432 

roughly twice as high a levodopa plasma concentration as the infusion used in this study (Gordon 433 

et al. 2007), and may produce greater dopamine release. 434 
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Tables 770 

Table 1 Subject characteristics and adequacy of matching 771 

Measure Tic Subjects (N=5) Controls (N=5) 

Age (years; mean ± S.D.) 33.8 ± 12.9 32.8 ± 11.1 

Sex, male (N) 4 4 

Race, Caucasian (N) 4 4 

Handedness, right (N) 4 3 

OCD dx (N) 1 0 

ADHD dx (N) 2 0 

 772 

 773 

Table 2 Clinical characteristics of the Tourette syndrome group 774 

Scale Scores (mean ± S.D.) 

DCI score 

 

36.8 ± 22.0 

YGTSS  Motor tic score 10.6 ± 3.4 

Vocal tic score 7.8 ± 4.0 

Impairment score 9.4 ± 9.8 

TSSR score Motor  9.3 ± 5.9 

Vocal  3.2 ± 2.3 

Total 12.5 ± 7.9 

ADHD Rating Scale  

 

11.6 ± 10.7 

Legend to Table 2: 775 

The Y-BOCS was completed for only 1 tic subject; the score was 9 on day 1 and 14 on day 2. 776 

Abbreviations: DCI=Tourette Syndrome Diagnostic Confidence Index, YGTSS=Yale Global Tic 777 

Severity Scale, Y-BOCS=Yale-Brown Obsessive Compulsive Scale, ADHD=Attention Deficit 778 

Hyperactivity Disorder, TSSR=Tic Symptom Self Report 779 

 780 

 781 

Table 3 Levodopa plasma concentrations in ng/ml, mean ± SD 782 

Time Controls  Tic subjects p (t test) 

Peak (10’ into infusion) 1591.5 ± 232.5  1938.8 ± 726.3 0.36 

Just before RAC* scan 788.0 ± 152.4  992.4 ± 322.9  0.26 

Just after RAC* scan 529.5 ± 149.2 662.8 ± 136.1  0.21 

 783 

784 
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Figure Captions 785 

Fig. 1 Study overview 786 

Fig. 2 Automated striatal VOIs 787 

Fig. 3 Decay-corrected time-activity curves for the right putamen VOI (filled circles), the frontal 788 

lobe VOI (+’s), and the cerebellar reference region (empty circles) from one subject’s pre-789 

levodopa PET scan 790 

Fig. 4 Mean difference in BPND across all 10 subjects from before to during the infusion on the 791 

placebo day 792 

Fig. 5 Change in BPND with placebo infusion, tic vs. control groups; the p values shown are for 793 

difference between groups, from t tests for each region 794 

Fig. 6 Levodopa-induced change in BPND, tic vs. control groups. The mean difference in BPND 795 

during levodopa vs. placebo infusion is shown for each group. FL, Frontal lobe; Th, Thalamus; 796 

Pl, Pallidum; NA, Nucleus Accumbens; Cd, Caudate; Pu, Putamen 797 

Fig. 7 Differences in the RAC* binding response to levodopa between TS and control subjects, 798 

thresholded at uncorrected p = 0.001, in color, laid over the MRI template image (grayscale). 799 

a, b: Significant clusters, with blue lines crossing at substantia nigra  in (a), 3 views, and 800 

parahippocampal gyrus in (b). (c) Levodopa-induced change in BPND, TS vs. control, in the 801 

clusters shown in A and B.  R., Right; PHG, parahippocampal gyrus.  (d) Blue lines cross at the 802 

peak voxel from the same comparison 803 

 804 
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